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@CD predictions for deep-inelastic structure functions at the DESY ep collider HER+
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Perturbative @CD is used to predict the deep-inelastic electron-proton structure functions
FT 1.(x, Q ) in the small x region (x 10 ) from an experimental knowledge of the behavior
at larger x. Shadowing corrections are quantified.
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I. INTRODUCTION

The DESY ep collider HERA is poised to measure the
structure functions F, (x, Q ) for deep-inelastic electron-
proton scattering in the small x region, typically 2:

10 s and Qs 10 GeV2 [1]; a region so far unprobed by
experiment but in which novel effects are expected to oc-
cur. Perturbative @CD predicts, via a leading ln(l/x)
summation of multiple soft gluon emissions, that the
structure functions will have a singular 2: behavior at
small x, with A possibly as large as 0.5. The summation
is carried out by the Lipatov equation [2] and the result-
ing behavior is therefore said to arise from the "Lipatov"
(or bare @CD) Pomeron, which has intercept np = 1+A

considerably above unity. Ultimately, with decreasing x,
the singular behavior must be suppressed by shadowing
corrections, and eventually by nonperturbative effects.

So far the only way to explore these novel effects has
been to extrapolate parton distributions from the region
x ) 0.01 where they are determined by existing deep-
inelastic data into the small 2: region. Although such ex-
trapolations are notoriously unreliable, they do provide
useful information on the general trend. Figure 1 shows
the x behavior of F2(x, Q~) as obtained in the most recent
global structure function analysis [3]. It shows extrapo-
lations based on two sets of partons, D and De, which

1
respectively include and omit an x ~ factor designed to
mock up the Lipatov small 2: behavior. Both sets de-
scribe the whole range of existing precise deep-inelastic
data equally well. We see that it will be difBcult to ex-

1
perimentally distinguish the need for an 2: 2 factor from
the forthcoming measurements of Fq(x, Q ) in the re-
gion x 10 . The dashed curve in Fig. 1, obtained
from parton distributions which contain shadowing cor-
rections, shows that the screening effects are expected to
be small in this 2; region. We emphasize that the small
2: predictions shown in Fig. 1 are simply extrapolations
of parametric forms determined from data which, apart
from one or two measurements, populate the 2: 0.05 re-
gion. A missing ingredient is any constraint on the size of

*On leave from the H. Niewodniczanski Institute of Nuclear
Physics, 31-342 Krakow, Poland.
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FIG. 1. Extrapolations of F2 at Q = 20 GeV to small
x based on MRS partons [3]. Sets D and Do have xg, xq„
"starting" distributions (that is at Qo ——4 GeV ) which be-

1
have respectively as x & and x at small x. The dashed
curves show the effect of conventional parton shadowing with
R = 5 GeV together with the more extreme "hot spot"
shadowing with R = 2 GeV

the Lipatov component. The gluon distribution has not
been required to satisfy the Lipatov equation at small x;
simply, a leading x ~ behavior has been imposed on the
"starting" distribution at some Qs = Qe2, and also on
the sea quark distributions which are themselves driven
by the gluon. We should add, though, that it was sub-
sequently shown that the form of the gluon was quite
compatible with that obtained by numerical solution of
the Lipatov equation [4].

Here we present more quantitative predictions of the
behavior of F2(x, Q ), and the longitudinal structure
function Fl, (x, Q ), at small x. Since the density of glu-
ons increases rapidly with decreasing 2; the sea quark dis-
tributions are increasingly dominated by the gluon distri-
bution, via g —+ qq. This component may be calculated
in perturbative @CD. The relevant diagram is shown in
Fig. 2. The contribution to the (transverse and longi-
tudinal) deep-inelastic structure functions may therefore
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dominated by the contributions from the strongly or-
dered configuration kz~, (( vz (( Q, where the momenta
k, K, and q are shown in Fig. 3 and where Q—:—q2. In
this limit there is no contribution to FI, and so we need
only consider F2(x, Q ). If we keep only the strongly or-
dered contribution and we recall that 2." is the momentum
fraction of the gluon carried by the quark (or antiquark)
which is struck by the photon, then Fool of (1) is given
by

FIG. 2. Diagrammatic representation of a gluon "ladder"
contribution to the deep-inelastic structure functions of the
proton. q, ~, k, and p denote the particle four-momenta.

F,"'(x', k,', Q')/k' = dKT ) 2~ (~ )

T g

(3)

be written in the factorizable form [5—7]

FT,r, (x, Q')

&(xg(x Q'))
(x, kT

RnQ qg
(2)

The function g(x, Q ), which enters (2), is the tradi-
tional gluon distribution whose Q2 evolution is controlled
by the Altarelli-Parisi equations and whose form is deter-
mined by the parton analyses of the deep-inelastic struc-
ture function data. It is therefore instructive to see how
the general factorizable form (1) reduces to the Altarelli-
Parisi evolution of qq radiation from a gluon. In the
Altarelli-Parisi treatment in the leading lnQ approxi-
mation the integrations over the transverse momenta are

T 2 (&) t 2 2
2

~ f —,, kz) Iizz(z, kz, Q ),
kT x'

see Fig. 3, where x/x' is the longitudinal momentum
fraction carried by the gluon which dissociates into the
qq pair. The function F&ol denotes the quark box (and
crossed box) approximation to the photon-gluon subpro-
cess shown in the upper part of Fig. 3. In other words,
F&ol, or rather to be dimensionally correct F&o&/k&2, may
be regarded as the structure function of a gluon of ap-
proximate virtuality kz. The gluon density function f in

(1) denotes the sum of the ladder diagrams shown in the
lower part of Fig. 3. In the leading ln(l/x) approxima-
tion, f is given as the solution of the Lipatov equation;
for this reason it is the "unintegrated" gluon density

where P~~ is the Altarelli-Parisi splitting function. Thus
(1) becomes

F2(x, Q ) =
~' d~'

2
KT

2
dk~~

(
z

2-2),'"2(":P„(*) (4)

and hence, using (2), we have

2 1BE2 ~. ~tz. (Q ), ~,)
z z

o)lnQ~ - q 2vr
X qg X —g —

)

Q
x

(5)

that is the conventional Altarelli-Parisi evolution of F2
driven by g —+ qq.

There are at least two reasons why the leading lnQ
evolution (5) is inadequate in the small x region. The first
is due to the Lipatov effect and the second arises from
shadowing. We discuss these effects in turn. A crucial
observation is that it is the dominance of the region of
strong ordering of the transverse momenta which leads
to the nested logarithmic integrations of (4). However
at small x where the leading ln(1/x) terms dominate it
is important to retain the full Q~ dependence and not
just the leading lnQz terms. This is accomplished by
the Lipatov equation for the unintegrated distribution f
which sums the ladder diagrams over the full phase space
of the transverse momenta and not simply the strongly
ordered part. In the case of fixed a., the Lipatov equation
may be approximately solved analytically. The leading
small x behavior is found to be

F (o)
f (x, kT ) oc (kT)

ln(1/x)
1+O I, I (6)(in 1 x )
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FIG. 3. Diagrammatic representation of the factorization
formula of Eq. (1).

where

'
4ln2.

We note, in particular, the factor (k2) 2 which may be
traced to the anomalous dimension having magnitude 2
[2, 5]. Because of this factor, the region of strongly or-
dered transverse momenta is no longer dominant. The
integrals are no longer of logarithmic dkT2/k&~ form and
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we must use the exact k& dependence of F~ol as well
as integrating over the full region of phase space of the
transverse momenta. This has been found to have pro-
found effects on the predictions for heavy-quark photo-
and electro-production [5]. (The cross sections can in-
crease by a factor of 3 when the effects of shifted anoma-
lous dimension are included. )

As x decreases, the singular z " behavior of f will
eventually be tamed by shadowing effects. These stop
f from growing with decreasing x and lead to an x-
independent saturation limit which grows linearly with
kz~ [8], that is,

f, i,(x, k~) R k~, (8)
where the radius R specifies the (transverse) region in
which the gluons are concentrated within the proton. As
before, the k& behavior requires that we must integrate
over the full domain of the transverse momenta.

The above two formulas (6) and (8) overestimate their
respective effects. The numerical solution of the Lipatov
equation shows, particularly when the effects of the run-
ning of n, are included, that the approximate analytic
form (6) considerably overestimates the actual solution
[9]. Secondly, the numerical solution of the Lipatov equa-
tion with the nonlinear shadowing contribution included
shows that the saturation limit (8) is approached rather

slowly and that it is irrelevant for the x 10 region
which will be probed at HERA [4]. In particular, we are
able to obtain more definitive estimates of the size of the
shadowing corrections than hitherto.

We have concentrated on using the Lipatov equation in
an attempt to make absolute predictions of Fz r.(z, Q )
in the small x region from perturbative @CD. As men-
tioned above, the Lipatov equation yields f(x, kz~, ) by
summing the leading ln(1/x) terms, whilst retaining the
full kz~, dependence (rather than just the leading ink@~,

contributions). However to ensure a reliable prediction
for the kYs, dependence we should really be even-handed
and also include leading ink@~, terms which are nonlead-
ing in ln(1/x). These contributions, which are beyond
the scope of this work, are discussed further in Sec. IV.

It is illuminating to consider the full content of the
factorization formula (1) for F~r, (x, Q ). The formula,

with the exact functions F&L arising from the quark
box and crossed box diagrams, does not describe just
photon-gluon interactions in which the exchanged quark
and gluon are constituents of the proton. For suKciently
small Q2, the formula also describes the situation in
which the exchanged quark is better regarded as a con-
stituent of the photon; that is when the quark lies in the
photon (rather than the proton) hemisphere and when

k&~ )) K&~ Q2, where the momenta are defined in Fig.
2. These kinematic conditions could also apply to the
gluon and then Fig. 2 would describe a semi-hard inter-
action between this gluon constituent of the photon and
a gluon constituent of the proton (the next gluon down

the chain with kz~ )) kz~, Q~). Since we shall integrate
over the full momentum phase space of the outgoing par-
ticles in Fig. 2 all these contributions are automatically
included. In practice, the gluon emissions are subjected

to a kinematic cutoff (kz, ) ko) and so part of the nonper-
turbative gluon content of the photon will be excluded.
Also formula (1) does not, of course, include the vector-
meson-dominance component of the photon.

The primary purpose of this paper is to use (1) to esti-
mate the deep-inelastic structure functions F2 and FL, at
small x using the exact solution f of the Lipatov equa-
tion (with and without the shadowing term) and using
the exact forms of the photon-gluon couplings F& &. In(o)

this way we are able to make "absolute" predictions for
the contribution to F2 and FL„ in the small z region, aris-
ing from the leading ln(1/x) gluon summation, which in
turn drives the sea quark contributions via g ~ qq. We
calculate the remaining ("background") contribution to
F2 using phenomenologically known structure functions
(and parton distributions) at larger x. The background
contributions to Fp and FL, turn out to be approximately
independent of x in the small x region, and to be small
for FL, . The "absolute" predictions, however, are subject
to several ambiguities: the choice of the infrared cutoff,
the size of the shadowing radius parameter R, etc. We
quantify these uncertainties in Sec. III.

It is worth mentioning that there are dynamical calcu-
lations of parton distributions [10] in which the sea quark
and gluon distributions at large scales are obtained by
evolving with Altarelli-Parisi equations from "valence"
quark (and "valence" gluon) distributions at some (very)
low Q2 scale. A similar attempt to calculate the gluon
and sea quark distributions entirely within perturbative
@CD is presented in Ref. [11]. These calculations are
ambitious and speculative in that they stretch the appli-
cation of perturbative @CD to very low scales, but since
they do not take into account the Lipatov leading ln(l/x)
terms implied by perturbative @CD they do not generate
the complete small x behavior of F2 and Fr, . The valid-
ity of using perturbative @CD to dynamically generate
parton distributions from valencelike input at low Q~ has
recently been questioned [12].

II. SMALL x BEHAVIOR OF Er AND F
FROM PERTURBATIVE +CD

We use the factorization formula (1) to evaluate the
small x behavior of the deep-inelastic structure functions

Fz —— 2xFg, (9)

FL, —— F2 —2xFg. (10)

The relevant diagrams are shown in Fig. 4, where the up-
permost gluon in the ladder couples to the virtual photon
through the quark box and "crossed box" diagrams re-
spectively.

Concentrating on the box diagrams it is convenient to
use the basic lightlike momenta q' and p where

q' = q+xp,
where, as usual, x = Q /2p q and Q = —q2. We de-
compose the gluon and quark four-momenta, A: and K
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For the charm quark, m is taken to be m, = 1.7 GeV,
whereas the light u, d, and s quarks are taken to be
massless. The first condition, Eq. (12), fixes c(.. If we
eliminate c(. from (13), we obtain

(a —x)P(1 —P)2p. q —PrT —(1 —P) (tcT —kT ) = m .

(14)
FIG. 4. Diagrams giving the small x behavior of the struc-

ture functions for deep-inelastic electron-proton scattering.

respectively, in terms of the Sudakov variables

k = ap —bq'+ kT,

r. = c(,p —pq'+ rT.

We must carry out the integration over the box diagrams
subject to quark mass-shell constraints which, in terms
of the Sudakov variables, are of the form

Next we remove the dependence on the azimuthal angle
by changing the variable rl to [5, 6]

rT —— rT —(1 —p)kT.

Then (14) becomes

(a —x)P(l —P)2p. q —P(1 —P)kT —r'T = m . (16)

This will allow the azimuthal integration to be performed
analytically.

We are now ready to evaluate (1), and in particular
the box contributions, F&c&. We may express the con-
tributions of the diagrams of Fig. 4 in the form [6, 13,
14]

2

FT(xq ) = 2) e dkT
~ k4

d2r'7 n, (~'T2 + m20)

Kx + 1—
1

KT (~2 —kT) m2

D D D

Fl.(x, q') = 2) e',
1

dp p~(1 —p)~ d ~' (2z~
T +IImIIo) ~

— f —„k~),Di D&D2 x'

where

K'2+ m2 kx' = 1+ P(l —P) +

The requirement that 0 ( x' ( 1 is clearly satisfied. Of
course the integration regions of (17) and (18) must be
additionally constrained by the condition

x'(p, ~pi, kT2, Q2)» (20)
1

Di = rT + P(l —P)q'+ m',

D2 = (rT —kT) + p(1 —p)Q + m,
with rz = rT + (1 —P)kT in (17)—(19), see (15). The x'
integration of (1) is implicit in the d r& and dP integra-
tions. Indeed x' is fixed in terms of K& and P by (16). If
we note that a = x/x' then (16) gives

so that the argument z = x/x' of f satisfies the require-
ment z & 1. The argument of a, has been taken to be
r&2 + m02 in (17) and (18), which allows integration over
the entire region of K~, since for small ]cT the "mass"
mo serves as the regulator by "freezing" the coupling to
c(.p(m02). For the light quarks we take m20——1 GeV2;
the results are not very sensitive to variations of mo
about this value. For the charm quark contribution we
set mz ——m, . One final point to note is that the choice of
argument of a, has the advantage that in the strongly or-
dered configuration with large Q2 we have o., (rT, ), while
for kT, )) rz we have essentially c(., (kT ).

Expressions (17) and (18) for the deep-inelastic struc-
ture functions are the explicit realization of the factoriza-
tion formula (1). Therefore, provided the gluon distribu-
tion f (z, kT ) is known, we can calculate FT and Fl, . For
small z the function f (z, k&~) is calculated in the leading
ln(l/z) approximation from the Lipatov equation, which
may be written in the integro-differential form

0f(z, k~2) 3c(., (kT2) 2 dkT f(z, kg) —f(z, k~2) f(z, kT2)
(21)
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zg(z, kz )
T f( k/2) (23)

with k02 ——1 GeVz [4]. Equation (23) is the inverse (2).
The additional term, quadratic in g, in (22) is the leading-
order shadowing contribution, the negative sign leading
to a suppression in the growth of the gluon density with
decreasing z, which arises from the recombination of glu-
ons. It is the iteration of (22) that generates the "fan"
diagrams in which the lines correspond to the Lipatov
ladders [8]. For investigations of shadowing, the crucial
parameter is R, which specifies the size of the region in
which the gluons are concentrated within the proton.

Finally we mention a possible simplifying assumption
that could be considered for the factorization formula
(1). To leading ln(1/x) accuracy we may ignore the x'
dependence of f(x/x', kT) in (1). This is justified since

ln —, = lnx "1+01 lnx

The technical advantage of using this approximation is
that the constraint (20), which requires x/x' ( 1, does
not have to be imposed on the region of integration. For
example, in a recent calculation by Levin and Ryskin
[15], which motivated the present study, the saturation
limit (8) was used for f (at least for low Q ). In such
a case f would be independent of x and the sirnplify-
ing approximation is reasonable. In general the simplify-
ing approximation f(z/x', kT) —+ f(x, kT) is expected to
overestimate the magnitude, but to lead to a satisfactory
prediction for the shape of the small x behavior of FT
and FL, . For instance, if f (z, k72, ) z " then the approx-
imation would amount to the omission of a factor x'~ in
the implicit x' integration.

III. NUMERICAL @CD PREDICTIONS
FOR I"g AND Eg

We calculate the leading ln(l/x) contributions to Fz =
FT + Fr, and FL, using Eqs. (17) and (18). We first
solve the integro-differential Lipatov equation (22) for
f(z, kT) by evolving down in z from boundary condi-
tions at z = zp ——10 specified in terms of the known
gluon distribution g(zo, Q ). The procedure is described
in detail in Ref. [4]. Above zo, where the Lipatov effect is
expected to be negligible, we simply use the known gluon
distribution to calculate f(z, k&2) via (2). The "known"
parton distributions that we use for z & zp are those of
set Do of Ref. [3]; to be precise, we use Do-type distribu-
tions which have been obtained by a global leading-order
fit [16] to the deep-inelastic data, rather than those ob-
tained in the next-to-leading-order analysis of Ref. [3].

If we incorporate the effects of parton shadowing the
equation becomes [8, 4]

z ' = K C3 f —
2 n, (kT ) [zg(z, kT)],0f(z, kr) 81

z "T
(22)

where

In summary, the gluon distribution f (x, kT2), or
g(x, Q ), is determined from the Lipatov equation for
x Q xp, and from deep-inelastic data via the Altarelli-
Parisi evolution equations for x & xp. Though the conti-
nuity of g at x = xo is assured, there can be a mismatch
of the derivatives on account of the different rates of Q2
evolution in the two regions (see ref. [4]). We take up
the discussion of this point in Sec. IV. However, it turns
out, fortuitously, that the smoothest matching across the
x = xo boundary occurs for Q2 10—20 GeV [4], the Q2
region most pertinent to investigate the small x behavior
at HERA.

We show results for the structure functions F2 L, at Q
= 10 and 20 GeV2 corresponding to two choices (koz ——1
and 2 GeV ) of the lower cutofF of the integration over
the transverse momentum kr of the gluon in the Lipatov
equation (21) and in the convolution formulas (17) and
(18). Also, we present results with the shadowing term
(quadratic in g) omitted from (22), and with it included
for two difFerent choices of R, where vrR is the trans-
verse area within which the gluons are concentrated in
the proton. We chose either R = 5 GeV (correspond-
ing to gluons uniformly spread across the proton) or R
= 2 GeV i (gluons concentrated in "hot spots" within
the proton). We then calculated F2 and Fr, from (17)
and (18) using the different solutions that we obtained
for f(z, kT).

Before we present the above @CD predictions for F2
and FL, we must note that they are not the only contribu-
tions to the structure functions. They simply represent
the leading ln(1/x) gluon contributions, which we denote
Fz~ and F&~. These contributions are indeed expected to
dominate at small x, but they decrease rapidly with in-
creasing x. The remaining contributions to the struc-
ture functions (which we denote Fz" and Fr" ) are cal-
culated from the Altarelli-Parisi equations with the 1/z
term omitted from the splitting function P~g(z). Again
we use the "Do" set of parton distributions [3, 16]. The
results at Q = 10 and 20 GeV are shown in Figs. 5 and
6 respectively. The background contributions F2' and
Fl" are shown by the dot-dashed curves.

The agreement between the curves and the available
data for F2 shows that our input distributions for x )
xp ——0.01 are satisfactory. The main purpose of this
work is to use this "experimental" input to make theo-
retical extrapolations of Fz(x, Q ) and Fr, (x, Q ) into the
small x region based on perturbative @CD. The results
are shown by the continuous curves in Figs. 5 and 6 if
shadowing is neglected, and by dashed curves if shadow-
ing eKects are included. Two examples of shadowing are
shown: conventional shadowing corresponding to gluons
uniformly distributed through the entire proton (R = 5
GeV i) and a more extreme scenario in which they are
concentrated in "hot spots" (R = 2 GeV i) within the
proton. Recall that the shadowing term in (22) is pro-
portional to 1/R .

We may compare the results of Figs. 5 and 6 with
extrapolations based on sets of partons obtained from
global analyses of deep-inelastic data (see, for example,
Martin, Roberts, and Stirling (MRS) [3]). We see that
the unshadowed predictions are similar to the paramet-
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F2 (Q =10GeV )

I I I I I III I

1.5 i NMC
& BCDMS

ric extrapolation based on the D set of partons [3], see
1Fi . 1. Recall that for the D set an x & factor was spe-

cially incorporated into the gluon and sea quark "start-
ing" distributions [xg(x, Q0) and xq(x, Q0)] to moc up
the shape due to the Lipatov effect. The magnitude o
the Lipatov effect in F2 obtained from the D set is
simply the result of extrapolation of a phenomenologi-
cally determined parametric form to small x; in contrast,
in this work we solve the Lipatov equation in the small

with phenomenologically determined boundary
conditions at x = x0. From Figs. 5 and 6 we see that our
predictions of the shadowing corrections are significantly
smaller than those obtained in MRS [3] [or Kwiecinski-
MRS (KMRS) [19]].The present calculation has the ad-
vantage that it does not depend on assumed input para-

f ms at Q = Q02 in the small x region. Rather,
our extrapolation is based on the known phenomenologi-
cal behavior for x & xo and follows directly from solving
the Lipatov equation with shadowing terms incorporated.
In this sense it may be regarded as an "absolute" predic-
tion.

The origin of the larger shadowing corrections found in
the MRS [3] (and KMRS [19]) structure function analy-
ses can be traced to the assumption that the sea quark
"starting" distributions in the region x ( xo are taken to
have shadowing corrections proportional to those of the
gluon, that is

gshad (*,Q0)
2

Eshad(X Q0) Eunshad( Q0)

see Eq. (35) of Ref. [19]. It could be argued that a more
reliable estimate would have been to take the argument
of x in the gluon to be significantly greater than that of
the sea quark to allow for the effects of the g —+ qq convo-
lution. In contrast, in the present calculation the effects
of the g ~ qq convolution are automatically included, by
construction, and so the shadowing predictions should be
more reliable than previous estimates. Actually, even the
shadowing of the gluon distribution calculated dynami-
cally turns out [4] to be smaller than that found in the
parametrization adopted by KMRS [19] and MRS [3].
This explains the weaker shadowing corrections in the
longitudinal structure function than that found in Refs,

Our perturbative @CD estimates may appear to be
parameter-free and to give, in principle, "absolute" ex-
trapolations of F2 and FL, into the small x region. In
practice there are significant ambiguities associated with
the infrared (or nonperturbative) region. There is a de-
pendence on the choice of cutoff k02 in (21) used to ca-
culate f(z, kT, ) and in the convolution formulas (17) and

0.5 2.5

0
I I I I I I I I I I I I I I I I I

F IQ =10GeV j
L

~ NMC

~ BCDMS

0.3

0. 2 0.5

01
I I I I I ~ I I I I I I I I

0
10

I I I I I I I I

10 10 10

I I 7 l J I I ~

0.4

FEG. 5. Perturbative @CD predictions of the behavior af
the structure functions E2(x, q ) and Er, (,q ) Q

2

GeV and small x. The continuous curves are with shadowing
l t d while the upper (lower) dashed curves have shad-negece, w ie e

owing effects included with R = 5 GeV (R = e ).
For the upper three curves the infrared cutoff in (21) is cha-

b k = 1 GeV while the lowest continuous curves
hedgive the unshadowed result for ko ——2 GeV . The dot-das e

curves are the background (non-Lipatov) contributions. The
data are fram the New Muon Collaboration (NMC) [17] aud
the BCDMS collaboration [18].
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2FEG. 6. As for Fig. 5 but for q = 20 GeV .
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0.3 in the form

f @F() (24)
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FIG. 7. As for Fig. 6 but showing only the cc contribution
to F2(z, Q ) at Q = 20 GeV .

IV. DISCUSSION

In principle, the factorization formula (1) can give an
absolute prediction of the deep-inelastic structure func-
tions F, at small x, using the phenomenologically de-
termined parton distributions at larger x, that is in the
region x & 0.01 or so. The procedure we followed is to
first solve the Lipatov equation to determine the (un-
integrated) gluon distribution f in the small x region
and then to convolute the result with exact gluon-virtual
photon couplings F,. ~ as determined by the quark box
diagrams. Symbolically, formula (1) may thus be written

(18). For example, the lower continuous curves in Figs. 5
and 6 show the reduction in the estimates of F2 and Fl.
arising from increasing Jt"o from 1 to 2 GeV~. The reduc-
tion can be traced equally to (i) the change of effective
slope and magnitude of the solution f (z, kT) of the Lipa-
tov equation, and (ii) infrared effects in the convolution
integrals (17) and (18).

Moreover, our estimates depend on contributions from
low values of rT in (17) and (18). To quantify this de-
pendence we introduce a nonzero mass mq for the light
quarks. For example if we were to change mq from 0 to
1 GeV our predictions for F2 at x 10 would de-
crease by about 20'Fo. This latter uncertainty is absent
in the cc coritribution, which we show separately in Fig.
7. Further discussion of heavy-quark production, which
incorporates the small x Lipatov effects can be found in
Refs. [5—7, 20] (see also [21]).

withi =2or L.
The above determination of the structure functions

F, at small x should be compared with the extrapola-
tions based on the Altarelli-Parisi equations alone. The
Altarelli-Parisi equations give the lnQ evolution of par-
ton densities in terms of a set of "starting" distributions
at some scale Qii )) A&&D, chosen sufficiently high for
perturbative @CD to be applicable. In this way the z, Q
behaviors of parton densities are given in terms of para-
metric forms at Qz = Qozwith the parameters deter-
mined by fitting to the deep-inelastic structure function
data. At present, however, the data do not extend into
the small x region (for Q )) A&cD), and the predictions
for the structure functions at small x are therefore en-
tirely dependent on the particular parametric forms that
are assumed for the x ~ 0 behavior of the gluon and sea
quark distributions. The parametric forms, although the-
oretically motivated, are to a large extent arbitrary. Con-
sequently, extrapolations into the small x domain from
the region of the available data can, at best, just indicate
general trends.

In contrast, the small x behavior of the structure func-
tions obtained via the factorization formula (24) results
directly from @CD dynamics, at least in principle. Here
the (unintegrated) gluon distribution f is calculated at
small x by evolving the Lipatov equation in ln(1 jx) from
boundary conditions at x = xo = 0.01 which are spec-
ified by parton distributions determined from data at
z ) xo. We therefore have, via (24), a theoretical predic-
tion of the small x behavior of the structure functions
F2 L(x, Q ) with the normalization determined by the
data at larger x. In particular, we are able to make,
for the first time, a quantitative prediction of the size of
the shadowing corrections to F2 and Fl, . These correc-
tions are found to be smaller than previous estimates and
are almost certainly undetectable from structure function
measurements at x 10

Although the procedure to calculate F2 and Fl, is well
defined, in practice there are ambiguities (which, how-
ever, do not alter the conclusion concerning the relative
size of the shadowing corrections). First we have the
dependence on the lower cutoff ko2 required for the in-
tegration over the transverse momentum in the Lipatov
equation (21) for f(x, k72, ). The exchanged gluons along
the ladder are required to have transverse momenta of
magnitude greater than ko. The value of A in the ef-
fective x " behavior which emerges for f at small z is
sensitive to the choice of A:0. Moreover, the same cutoff
is necessary in the kT convolution integrals in (17) and
(18). The ko-dependent ambiguity is displayed in Figs.
5 and 6. The uncertainty is a reflection of uncalculable
nonperturbative @CD effects.

A second ambiguity has its origin in the different Q2

dependences which occur in the small and larger x re-
gions. It is well known [4] that the Q2 dependence of
the gluon distribution which emerges from the Lipatov
equation is more rapid than that which results from the
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Altarelli-Parisi equation. However, we have required the
solution of the Lipatov equation to satisfy boundary con-
ditions at x = xo ——0.01, which are obtained from
the Altarelli-Parisi equation. Although the continuity
of f(x, Qz) is ensured at x = xo, the differing Q depen-
dences lead to artificial structure in the x dependence
just below the boundary, x = xo. Only for a small region
of Q~ will smoothness across the boundary be obtained
[4]. Fortunately, the region is Q = 10—20 GeV2, the re-
gion most pertinent to experiments at HERA. Since Fz is
a relatively small contribution at x = 0.01, the artificial
structure would be barely noticeable in F2(x, Q ) at the
other values of Q2. The main reason to draw attention
to the deficiency is that it points to other contributions
which could be important. The source of the problem is
that the Lipatov equation is based on the leading ln(1/x)
approximation, while to obtain a reliable Q2 dependence
it is necessary to include nonleading ln(1/x) contribu-
tions. Eventually it should be possible to overcome this
problem by solving a more general evolution equation [22]
for the gluon distribution which embodies both Lipatov

eEects and the complete Altarelli-Parisi equation.
In summary, we have formulated a procedure, based on

perturbative @CD, which makes predictions of the struc-
ture functions F21,(x, Q ) for deep-inelastic electron-
proton scattering in the small x regime. In principle,
the procedure overcomes the considerable uncertainties
associated with the conventional parametric extrapola-
tions to small x. In practice, we have seen it has its own
ambiguities. The predicted values of the structure func-
tions at Q = 10 and 20 GeV, including the effects of
shadowing and displaying the theoretical uncertainties,
are shown in Figs. 5—7.
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