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Third-order spin polarizabilities of the nucleon
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We study the structure-constant (polarizability) coeKcients of the spin-dependent terms of the nucleon

Compton scattering amplitude which are third order in the frequency of the incoming photon. It is

shown that these spin-polarizability coefficients can be related to sums of products of electromagnetic
transition moments of the nucleon, involving the electric and magnetic dipoles, the electric and magnetic

quadrupoles, and the charge electric and magnetic dipole mean-square radii. Three sum rules involving

products of the electric dipole transition moments emerge from the calculation.

PACS number(s): 13.60.Fz

I. INTRODUCTION

As is well known, to second order in the frequency of
the incoming photon, the nucleon Compton-scattering
amplitude is described in terms of nucleon static elec-
tromagnetic properties (charge, magnetic moment, and
corresponding mean-square radii) and two additional pa-
rameters or structure constants that cannot be fixed by
low-energy theorems. They represent the electric (a) and
magnetic (P) polarizabilities of the nucleon [1—4]. Baldin
[2] has shown that a can be expressed in terms of sums of
products of dipole transition moments of the nucleon. A
first contribution to the magnetic polarizability, involving
products of magnetic dipole transition moments, was ob-
tained by Petrun'kin [4], and afterwards we have ob-
tained its complete expression, containing a second, di-
amagnetic, term involving moments of the current com-
mutators [5]. The recent experimental and theoretical re-
sults have been reviewed by L'Vov and Petrun'kin [6(a)],
and by Friar [6(b)].

In this paper we study the structure constants which
appear at third order in the frequency of the incoming
photon. Their interest lies in the fact that it is at this or-
der that structure constants related to the spin of the nu-
cleon first appear. Lin [7] has studied the third-order
low-energy theorems in nucleon Compton scattering. To
that order one has six structure-constant coefficients in
the amplitude tensor T, , all of them connected to third-
order spin terms of the amplitude. Because of the
transversality condition, only four of these structure con-
stants will be present in the amplitude 3 =c'T; c~. We
shall refer to them as spin polarizabilities of the nucleon.

The electric and magnetic dipole polarizabilities
characterize the induced dipole moments of hadrons sub-
jected to external electromagnetic fields and have a classi-
cal counterpart easy to grasp. Under the action of an
electric field E, a classical system acquires an induced
electric dipole moment due to a deformation of the
charge distribution, which is proportional to the field,
p=uE, giving rise to an interaction energy proportional
to p.E=uE . The quantity a, called the electric polari-
zability of the system, measures its response to deforma-

tion. In the case of an electromagnetic wave, we have
E= —d A/dt, where the vector potential A=gk Ak, in

a plane-wave decomposition, is a sum of terms

At, =aAokexpi (k r tot)+c.c. —where a is the polariza-
tion vector, k is the wave vector (a.k=o), and co= ~k~ is
the frequency of the wave. The electric field will then be
a sum of terms Et, =icoaAokexpi (k.r cot)+c—.c. There-
fore the crossed term of the interaction energy of the two
waves, c,k and c', k' will have the form +coco'c.c', which
is quadratic in the frequency. Similar considerations ap-
ply to the magnetic field 8=V X A. Under its action the
system acquires an induced magnetic dipole moment

p =PB, giving rise to an interaction energy proportional
to PB . The quantity P is called the magnetic polarizabil-
ity of the system. In the case of our plane-wave decom-
position, the crossed interaction energy term will be pro-
portional to 13(k'Xa') (kXa), which is also quadratic in
the frequency. This term and the previous electric one
are exactly those that appear to second order in the
Compton amplitude where the unprimed (primed) vari-
ables refer to the incident (outgoing) photon. We shall be
working in the Breit frame, where ~'=co.

For effects that depend on the spin S of the system, the
discussion is a little more involved. A possible form for
the induced electric dipole vector carrying information
about the spin S is p=yV(S 8). The quantity y may be
called a spin polarizability of the system. In the case of
our plane-wave expansion, the crossed interaction energy
term for a spin- —,

' system (S=o /2) is then

@co[a.k'cr (k'Xs') —a' ko"(kXa)], where we have taken
co'=co. This term, of order co, has exactly the same form
of one of the four third-order terms of the Compton am-
plitude that cannot be fixed by the low-energy theorems.
This will be discussed in Sec. II, where all spin polariza-
bilities and their corresponding phenomenological in-
teractions will be presented. Because of this correspon-
dence, the four associated structure constants will be
called spin polarizabilities of the nucleon. The experi-
mental determination of these quantities probably will
have to wait some time, since the main efforts in the near
future will probably be directed to a better experimenta1
determination of the dipole polarizabilities [6]. On the
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theoretical side a quark-model calculation may come to
mind and for that purpose expressions of the spin polari-
zabilities in terms of the nucleon electromagnetic transi-
tion moments can be of help. This is the main motivation
for this paper. It is shown here that these spin polariza-
bilities can be related to sums of products of electromag-
netic transition moments of the nucleon involving the
electric and magnetic dipoles, the electric and magnetic
quadrupoles, and the charge electric dipole and magnetic
dipole mean-square radii ~ We have obtained also three
sum rules which relate the static electromagnetic proper-
ties of the nucleon to sums of products of electric dipole
transition moments.

A calculation of these multiple transition moments to
low-lying nucleon resonances could be attempted by us-
ing available experimental data allied with the recent
determination of the nucleon transition amplitudes in the
context of the relativized quark model [8] or of the nonre-
lativistic constituent quark model [9]. On the assumption
of dominance of the low-lying resonances, we would then
be able to estimate the spin polarizabilities. In turn, the
three sum rules could be used as a test for the low-lying
dominance hypothesis.

In Sec. II we give a general discussion of the scattering
amplitude. Then, by using gauge invariance, we will
show how the structure constants can be related to prod-
ucts of the electromagnetic current transition matrix ele-

ments. Section III is devoted to the expansion of the
transition matrix elements to the order needed in our dis-
cussion. First, by means of a Lorentz transformation, we
bring each intermediate excited state to rest and then ex-
pand the resulting nucleon transition moments in the nu-
cleon variables. The relation of this expansion to the
electromagnetic multipole transition moments is then es-
tablished. The whole procedure is rather long but
straightforward. In Sec. IV the expressions of the third-
order spin polarizabilities are written down together with
the three sum rules involving the electric dipole transi-
tion moments. The results are discussed in Sec. V.

II. SCATTERING TEMPI.ITUDK

In the transverse gauge (so=so=0, e k=e' k'=0), the
scattering amplitude of light by the nucleon can be writ-
ten as

A =e 'T;, e'= c. '( U;, +E; )sj, (2.1)

where c. ' and c.
' are the polarization vectors of the incom-

ing and outgoing photons with momenta k"=(a~, k) and
k "=(a~, k'), respectively. Following Low [10], we have
separated out the contribution U; of the one-nucleon
on-shell intermediate state. U, is called the unexcited
part of T, and the rest, E, , is called the excited part. U;
is the space-space component of

& p'I J„lp+k & & p+kl~, lp & & p'I J.lp —k'
& & p —k'I J„lp &

U =V +E (p+k) E —co E—(p+k) E (p —k') E+co'—E (p —k') (2.2a)

where ~p+k & and ~p
—k'

& are one-nucleon on-shell intermediate states with energies E(p+k) and E(p —k'), respec-
tively, and an invariant density has been used. A summation over the spins of these intermediate states is implied. The
nucleon matrix element for the electromagnetic current operator J„ is given by

1

&pal j„lpi&= —eu(p, ) F, (q )y + Fz(q )o„,q' u(p, ),
V 2m

(2.2b)

with q =pz —pi and the normalization uu =1. V designates the normalization volume and p (p') is the momentum of
the initial (final) nucleon with energy E (E') and mass m. The Breit frame, where

k —k'
p — p—,E —E, co —ct) (2.3)

and E (p+ k ) =E (p —k'), is the frame where the requirement of T invariance achieves its simplest form as used by Pais
[11]to find the minimal basis B,', ' in which E,, is to be expanded. To order co we have

=[a,(0)+a»k.k'+a,
&ran ]6, +iai(az, +a& ~k.k'+yield )e," o +P( —k;k'+k k'5; )

+a~(0)k,'k +a~(0)(k,'k'+k;k )+icoy2[o (k'Xk)6; —k.k'e; o ]

+icoy3[k;(o Xk) —
A:,'(o. Xk'), ]+icoy~[k;(o Xk') —k~'(o Xk), —2k k'e~ cr

+in)a9, [k,'(o Xk') —k, lo Xk);]+irma, o, [k (o. Xk), —k, (o Xk'), ], (2.4)

where we have used the indication a2 3
=y i for what we

shall call the first third-order spin polarizability of the
nucleon, a3(0) =P for the magnetic dipole polarizability,
and a6, —a8, =y2 —

y4 for the other three spin polariza-

bilities, so-called for reasons to be discussed below. The
expansion of the coefficients is in accordance with the
even-crossing-symmetry property of E, , that is, invari-
ance under the transformation i+ j, k~ —k',
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co~ —co'= —co. For convenience, we have used parity-
and time-reversal-invariant basis elements 8,' ' for
N=7 —10, of which the corresponding basis elements
E,-' ' of Pais, there numbered N =8—11, are linear corn-
binations. With the basis elements that we have chosen,
the contraction with k ' automatically gives Anal terms
which are independent of each other, as they are written
in Eq. (2.11). The coefficients a„a», a2, , a2 2, a4, and
a~ are the ones that obey low-energy theorems [10—13].
We quote their values, here calculated in the Breit frame:

2

a, (0)=— (2.5a)

and

2 1P 2
2, 1

2m
2

4m

a~(0) =0,

(0)—t P(1 — )e2

4m

(2.5b)

(2.5c)

(2.5d)

(2.5e)

P e2
2, 2

8 4 (2.5f)

where p is the magnetic moment of the nucleon in units
of e/2m. Equation (2.5a) is the frequency zeroth-order
low-energy theorem first derived by Thirring [12] and Eq.
(2.5b) gives Low's first-order result, associated with the
term of order co in Eq. (2.4). Equation (2.5c) gives the
second-order result derived by Singh [13],here calculated
in the Breit frame (in the laboratory frame it would give
zero), and Eq. (2.5f) gives the third-order result of Lin [7],
associated with the first term of order co in Eq. (2.4). Be-
cause of the transversality condition, a4 and a~ will actu-
ally not be present in the amplitude, and so they do not
give interesting low-energy theorems. However, as will
become clear later, one needs the value of a5 to disentan-
gle the known part of the second-order coefficient a, 2,
whose unknown part a represents the electric polarizabil-
ity of the system. We have, in the Breit frame,

+P(k' X a'). (k X a)

+t~e (y,B"'+),8'"+y,B"') e, (2.6)

where a dyadic notation has been used in the last three
terms. Note that we have the two unknown second-order
terms a& 2' s' s and 13(k'Xs') (kXe), which correspond
to the first two phenomenological interaction terms men-
tioned in the Introduction. This is what motivated the
names electric and magnetic polarizabilities given, re-
spectively, to a

& 2 (or, as has become common, to its un-
known part a) and P. Next, we have the four other un-
known terms of third order, y, —y4, which correspond to
the four classical phenomenological interactions men-
tioned in Sec. I. One can see that y3 corresponds to the
one discussed there y3cos' 8' 'c-y3E V(S B), and the
other three are related to an equal number of independent
phenomenological interactions according to the following
scheme:

y, co s' 8' 's —E [SX ( V X B)],
y2(oe' (28' ' —8' ') s-B.V(S E),

y ~cue' 8 ' 'c y~B -[V X ( V X E ) ] .

This correspondence is the motivation for the name spin
polarizabilities given to y, —y4.

To get information about the third-order coefficients,
we consider one of the gauge conditions associated with
each photon, k "T„=T & k =0. From here we obtain,
with T = U+E,

k 'E; +co'Eo = —k 'U; —co' Uo (2.7)

coefFicients yi —y4, a», and aio 1. Actually, again by the
transversality condition, the last two coefficients will not
be present in the scattering amplitude. However, we
shall need the expression for a9 ~

to obtain one of the sum
rules. From Eq. (2.4) we have

s'E~s'=(a, +a~ ik.k'+a~ 2' )a' e

+ i'~(a, , +a, ,k.k'+), ~')~ (e' X a)

2

ai 2 =a+
22p, 1

4m
(2.5g)

Eo = —k'I; (2.8)

The time-space component Eo satisfies the relation [14]

where F', =[dF, (t)ldt],
We shall be concerned with the third-order unknown

where, with an invariant density for the intermediate
states,

& p'I J; (~,p+k & & ti, p+k(&, )p &

[E„(p+ k) —E'][E„(p+k) —E —co] E„(p+k)
& p'~ J, ~

n, p —k'
& & n, p —k'I J; ~p &

[E„(p—k') E][E„(p —k') E—+ co'] E„(p—k—')

(2.9)

which is odd under crossing in the Breit frame, p'= —p, since here E'=E, co'=co, and E„(p+k)=E„(p—k'). Expand-
ing I;~ in the basis elements 8 ' defined in Eq. (2.4) and using (2.8), we shall have the general form of Eo . As we need
E,~ to order co, Eo will have to be considered to this same order, and Eq. (2.8) tells us that it is enough to consider I,"
to order ~ only. As I", is odd under crossing, we then have, to order co,
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1;. =Qb~(k,k ')B;)

10
=b& &co5&+i [bz(0)+b 2&k k'+b2 &co ]E; o + g b&(0)B,'. ' .

N=6
(2.10)

The basis elements B ' are absent because their coefficients should start with a factor co, giving terms of order co .
Substituting Eq. (2.10}into (2.8), we shall have the general form of Eo/. Taking it into Eq. (2.7) and making use of Eq.
(2.4), we obtain

—k&'[a&+a& &k k'+(a& z+a5 b& &

—)co ]—kj[a4co +a5k k']

ico(—cr Xk') [a~, b2—+(a~ ~ y—2 y—4 b—2, +b6+bs)k k'+(y, +a9, b2 2
—b9)c—o j

i co(cr—X k) [(y3—b~ )k' k+ (a,o, —
b, 0) co]

icocr—-(k'Xk}k'[yz+y~ b6 —bs] —icocr —(k'Xk)k, (a9, b9)—

[ & p'I J, I p+ k & & p+ k
I J, p &

—
& p'

I J, I p —k'
& & p —k'

I JO I & ],

where use has been made of the equation of continuity to
rewrite the right-hand side of Eq. (2.7) in a convenient
way. Calculating the right-hand side of Eq. (2.11), we
shall obtain the values of all coefficients in its left-hand
side. Without performing any calculation, it is easy to
see that a2 1

—b2 and all the next coefficients that are as-
sociated with terms of even order in cu will be equal to
zero. This is because the right-hand side of Eq. (2.11) can
produce only terms of odd order in co because of the fact
that the nucleon matrix element of Jo can produce only
even terms in m and of J- only odd. We then have from
the last three even terms on the left-hand side of Eq.
(2.11) the relations

Eoocu+ Eo ~~ Uooco —Uo (2.17)

where [10], with an invariant density for the excited in-
termediate states,

&p'IJ, In, p+k) &n, p+kIJ, Ip')

E„p+k E —co—

I

From here we get the result in Eq. (2.5g) by making use
of the value of a5 and of the relation b1, =a, which will
be shown below, in Eq. (2.21).

Next, we will show that three sum rules will appear
when we make use of the second independent gauge con-
dition To&k =0. This gives us the relation

and

21 b2 22 21

y, =b22 .

y2+ y4 b6+ b8

a9 1=b9, a1o 1=b

and, from the one before,

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.18)

Here c.t. stands for the crossed term. The general form
of EGO is provided by Singh's lemma [13] according to
which Eo =k 'k~A, , where A, . is even under crossing.
Being so, its expansion in terms of the basis elements
defined in Eq. (2.4) is

A;i =cc5;, +ic2, coE; cr +O(co ),
which gives, to order co,

The results of (2.12), (2.13), and (2.16) pave the way for
the derivation of the multipole expressions of the spin
coefficients. By expanding the current transition matrix
elements in Eq. (2.9) in terms of multipole moments, we
shall have I," in terms of them. Then, from Eq. (2.10),
we shall have all the b's in terms of the transition mo-
ments and, by making use of Eqs. (2.12), (2.13), and
(2.16), we shall have the spin polarizabilities in terms of
them. The method cannot give y2 and y4 separately. We
shall come back to this point later. Performing the actual
calculation of the right-hand side of Eq. (2.11), we obtain,
together with Eqs. (2.12)—(2.16), the low-energy results
quoted in Eqs. (2.5a) and (2.5c)—(2.5e) and the value of
the coefficient of k'co in the left-hand side of (2.11),

Zoo= k 'k'(ao;, +icoc~, e, o). . "(2.19)

Using this result and Eq. (2.8) in Eq. (2.17), we obtain

co(a —b, , )k' k —i [bz(0)+bz, k k'

+(b~2 —c~, +2b9)co ]cr (k'Xk)

= V [&p'IJOIp+k&&p+kIJOIp& —c.t. ],F. p+k
(2.20)

where use has been made again of the equation of con-
tinuity to rewrite the right-hand side in a convenient
form. Calculating the right-hand side of this equation,
we obtain

a& &+a5 b&
&
=(e /m)[2—F'&+(p +p —1)/4m ] . b11=a, (2.21)
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b, (o)= " e',2 1

2m

p1 —2
2, 1 sm4

and the relation

(2.22)

(2.23)

only need those of b~ z and b9 to get the sum rule associ-
ated with Eq. (2.24).

III. EXPANSION OF THE
CURRENT MATRIX ELEMENTS IN

MULTIPOLES

m Sm

(2.24)

where F,' = [dF, (t) Idt]t
The result in Eq. (2.21) could be anticipated by noting

that, as the nucleon matrix element of Jo can produce
terms of even order in co, the first term of Eq. (2.20) has
to be zero. Substitution of Eqs. (2.22) and (2.23) into Eq.
(2.15) will give us the two remaining low-energy results
quoted in Eqs. (2.5b) and (2.5f). In the course of the cal-
culation, we have then recovered all the low-energy
theorems to order co . By having b~(0), bz, i bz, z cz, i

and b9, in terms of the multipole transition moments,
Eqs. (2.22) —(2.24) will give us three sum rules involving
these quantities. The expression for c2, can be obtained
very easily by just pushing Baldin s calculation of E00 in
Eq. (2.18) to the next order. Following Baldin, we ex-
pand the transition matrix of Jo, here to order co:

I'&p'IJolrt, p+k&=ik'&Old;In, o&+O(co', g;, , m),

(2.25)

where d; is the electric dipole moment operator taken be-
tween the nucleon and the excited state at rest (indicated
by IO & and

I n, 0 &, respectively) and the last term, which
is of order ~, contains the quadrupole moment, charge
mean-square radius, and magnetic dipole transition mo-
ments. A complete discussion of this term will be given
in Sec. III [Eq. (3.56)]. Here we just need the fact that
both g; and m; have opposite parity to d, . Being so,
there will be no cross products in the numerators of Eq.
(2.18), the first one being given by

In this section we shall expand the current matrix ele-
ments in electromagnetic multipoles to the same order
co, which we need for I; . We start by relating the ma-
trix elements present in Eq. (2.9) to those in which the in-
termediate state n is at rest. Call L the Lorentz transfor-
mation with velocity

p+k k'+k
E„(p+k) 2E„[(k'+k)l2] (3.1)

which brings the intermediate state n at rest in the Breit
frame. Then, calling U the state unitary transformation
corresponding to L, we have Uln, p+k&= In, o& and, for
the matrix element of the current, having the nucleon
state with momentum p and z component of the spin A,

[15],

&n, p+kl Jlp, A&=g &n, olUJ„U 'Iq, o &D i(R),

(3.2)

where q is the transformed of p by L,

q=p+v ('Y 1) 'Y&(p)

k' —k yE k'+k
2 E„2 (3.3)

where y=(1 —v )
' and we have used the relation

p v=o. D(R)=exp( iBn o/—2) is the rotation matrix
corresponding to the rotation of the nucleon momentum
p, with On given by p X pz =p sinOn, where

pti =[E(p)+my][E(q)+m] 'q+ymv

is the rotated vector. To order co we have
v'& p'I J, In, p+k & & n, p+klp &

=k 'k'& old; ln, o & & n, old l0 &+O(co ) . (2.26)

io"(vXp) iver (k'Xk)
4- '+ 8-M. (3.4)

Expanding the denominators of (2.18), we will have a
term of order co symmetric in i and j, and another of or-
der co antisymmetric in i and j, with exactly the same
structure of Eq. (2.19), with

l Odin, &0& ldOln, o&+(i,j )
(2.27)

Hence, to order co,

&n, p+klJ lp& =&n, olJ +v ( —,'v J+Jo)lq&

i o"(k' Xk)
SmM„

Likewise,

(3.5)

which is the result of Baldin, and

&old, In, o&&n, old, lo& —(t,j)
'~2, 1~iJm™= J2

(M„—m )

(2.28)

&, IJ, I., +k&= 1+', k
SmM„

X &q'IJ;+v;( —,'v J+Jo)ln, o&,

where q is the transformed of p'= —p by L,

(3.6)

where (i,j) stands for the preceding term with i and j in-
terchanged. Now that we have the expression for c2 1, we

k' —k yE k'+kq'=
2 E 2

(3.7)
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Equation (3.6) follows from (3.5) when the Hermiticity of
the current is used together with the fact that we go from

p to p' by exchanging k and k', which will take us from q
to q'. To simplify the notation, an index n has not been
attached to v, y, q, and q' to show their dependence on
the state n.

We shall perform now the multipole expansion of
& n, ol J Iq) and (n, ol Jolq). We shall start with the last
one. According to Eq. (3.5), we shall need the expansion
of (n, ol Jolq) only to first order, but we shall extend it to
third order to show how the various electric transition
moments that we are interested in can be calculated from
the charge density matrix element. As

Jo(r) =exp( —iP r)JO(0)exp(iP. r),
where P is the momentum operator, we have the identity
used by Baldin,

Next, we expand the various matrix elements in powers
of the nucleon momentum q. Introducing the notation

. &nolxlq&
Bq' q=O

=(& nOIXlq&, ) (3.18)

we obtain, to third order

v( n 01JO I q ) = iq'( n 0
I d, I

o )

,'q—'q—'(nOI Q,, 10)

——'q'q'q'& n 0
I o...I

o &, (3.19)

( nOIQ, , 10) = ( nolq;, 10) —i [( ( n old;10), a)0+ (i, a)],

where the second matrix element on the right-hand side
is defined by

(n, o(ldo(0((lq) =—n, D Jdo(r(e '&'dV
q)

=1

Expanding the exponential, we have, to third-order,

(3.8)
(3.20)

which is symmetric in i and a, and the third by

& nolo, .„10& =
& nolo, 10) —i [((nolq, , lq) b ),+c.p. ]

Jo r e ''i'dV= +iq'd, —
—,'q'q'q;, —[( & nold, lq&, b )0+c.p. ], (3.21)

q q q Oiab

where Q is the charge operator,

d;= f Jox;dV

is the electric dipole operator, and

q;, = Jox,x,d V=q, , + —,'p5, ,

(3.9)

(3.10)

(3.11)

which is completely symmetric in i, a, and b. In Eq.
(3.20) we have a contribution of the moving dipole to the
electric multipoles contained in q,„and in (3.21) we have
contributions of the moving electric dipole d, and of
those in q;, to the multipoles contained in o;,b. We intro-
duce the (traceless) generalized electric quadrupole tran-
sition moment

contains the (traceless) electric quadrupole moment

q,, = f Jo(x,x, —
—,'r 5,, )dV (3.12)

(q', =0) and the charge mean radius

& noIQ;, lo& =
& noIQ, , 10) + —,'5;, & n 010,'10),

and the generalized charge mean-square radius

& oIRIO&= —
& 010 Io&,

(3.22)

(3.23)

p= f Jor'dv .

Also,

o,,b
—f Jox,x,xbd V

=
oiab +

g (s(5~b +C. p. )

(3.13)

(3.14)

with which

& noIQ;. Io& = &noIQ;. Io&+ —,'5;, (nOIRIO) . (3.24)

We also write

(nolo;, b 10) = (nolo;, b 10)+—,
' [(nols, 10)5,b+c.p. ],

(3.25)
where c.p. stands for cyclic permutation of the indices of
the previous term, contains the completely symmetric
(traceless) octopole moment

o,,b
= f Jo[x,x,xb ,'r (x,5,b+c.p.—)]— (3.15)

and the electric dipole mean-square radius

s = Jor xdV. (3.16)

Substituting Eq. (3.9) into (3.8) and noting that the charge
operator is diagonal in the baryon states, we obtain (in
the sequel we shall drop the comma between n and 0 in
the n excited rest-state vector)

where

(nolo;, b 10) = (nolo;, b 10) + —,
' [(nolo'„10)5,b+c.p. ]

( n 0
I S; 10 ) = —( n 010'„.10 ) (3.27)

is the generalized electric dipole mean-square-radius tran-
sition moment. From (3.19) we have the relations

(3.26)

is the (traceless) generalized electric octopole transition
moment and

V ( n 01Jo I q ) = iq '( n 0
I d; 10 ) —

—,
'
q 'q '( n 0

I q;, I q )

——
q 'q 'q ( n 0

I o;,b I q ) . (3.17)

V((nol Jolq);)0=i (nold;10),

v((nolJolq&;, )o= —(nOIQ, , lo) .

(3.28)

(3.29)
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V(&nol~alq&, ;,&)0= i &nolO;, & 0&, (3.30) iq~& no D (
—q)lq &

= V& no Jalq & . (3.35)

by means of which we can calculate all the previous mul-
tipole transition moments in terms of the charge density
transition matrix.

We come now to the multipole decomposition of the
current transition matrix. Here it is simpler to start from
the following identity due to Foldy [16],which is a conse-
quence of the equation of continuity,

M, (
—q)=p + —q'A, , (3.36)

where

This relation together with (3.34) is equivalent to Eq.
(3.17). It also shows that the equation of continuity is ob-
tained again when we contract Eq. (3.31) with qj. Ex-
panding the exponential in Eq. (3.33), we obtain

v& «I J, Iq& =i[E.(o) —E(q)]& «ID, (
—q)lq& p= —,

' f rX JdV (3.37)

where

—iE, '"q, & noIM„( q)lq& (3.31) is the magnetic moment operator and

A,, = f (rXJ),x, dV

D ( —q) =f ds f J0(r)x, e "~'d V (3.32) hja + Cja~ (3.38)

and
contains the (already traceless) magnetic quadrupole mo-
ment symmetric operator

M ( —q)= f sds f (rXJ) e " 'dV . (3.33)
h,, =

—,'(k,, +A,„), (3.39)

Expanding the exponential in Eq. (3.32) and recalling
Eqs. (3.10), (3.11), and (3.14), we obtain

and the magnetic dipole mean-square radius i is given
by

D, (
—q)=d, + —q'q, , —,'q'q o,,b

—.
J J (3.34) (3.40)

We note that Eq. (3.32) gives the relation

iq'D, (
—q)= f JD(r)exp( iq r)d—V .Q, —

and, as the charge Q is diagonal in the baryon states,

or

i= —,
' f (rXJ) XrdV . (3.41)

Substituting Eqs. (3.34) and (3.36) in (3.31), we obtain, to
second order in q,

V&nOIJ&lq&=i M„—m—
2

n0 d +—q'q, ——'q'q o I, q
—ic. '"q, n0 p+ —

q k& q
~

~ (3.42)

2

v&noIJ, Iq&=i M„m —q—
& nold, Io& —(M„—m)[ —,'q'& nolg~, 0&+ q'q "& noIO, I, Io&—

]

Now we expand the various elements in powers of q. Recalling Eqs. (3.20) and (3.21), we obtain
r

—iE, '"q, & nolm, IO&+ —
q "& nOIL„~ IO&

3
(3.43)

where we have introduced the new transition matrix elements

& nolm„lo& =
& nolp„lo& —

—,'(M„—m )E„'"(&nold. Iq& „)0, (3.44)

which is the generalized magnetic dipole transition moment, which contains a contribution from the moving electric di-
pole moment, and

& noIL„&10& =
& nOIX„& IO&

—3i( & nolp„lq & & )0 i 6„I,( & nO—lp'Iq &, )0

—(M„—m )E„"[i( & n old, I q &,„)o—
—,'( & n0lq, ~ lq &, )0], (3.45)

which contains contributions of the moving magnetic di-
pole moment and of moving electric multipoles to the
magnetic multipoles contained in k,&. We have added
the term proportional to 6„b in the right-hand side of
(3.45), which does not contribute to the last term of Eq.
(3.43), to make & n OIL„& Io& traceless. The symmetric and

antisymmetric parts of Eq. (3.45) gives, respectively, the
generalized magnetic quadrupole transition moment

&nolH„& lo& =-,'[&nolL„& lo&+(r, i )] (3.46)

and the generalized magnetic dipole mean-square-radius
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transition moment

& noir, lo& = —
—,'e, '"& nolL„lo) .

We have

(3.47)

We also have

&noIL;, lo& = —«;"'(&nolJ, lq&, „),
——'s,,'(nOld, IO), (3.50)

&nolL, „„lo&= &nola„, lo&

+E„,'(noir. lo) . (3.48)

from which we can calculate both (346) and (3.47) from
the current matrix element. The transition electric mo-
ments can be calculated either from (3.28)—(3.30) or, us-

ing (3.43), from
From (3.43) we see that the generalized magnetic dipole
transition moment can be calculated from the current
matrix element according to

V(nol J, lo) =i (M„—m)(nold, lo),
V[((nol J lq);) +(j,i)]

(3.51)

(nolm IO&= ——VE,
' ((nolJ, lq) ~), (3.49)

and

= —(M„—m )(no Q,"IO), (3.52)

v ((nol J~ lq), b ),+—'( nold, lo), +c.p. = i (M—„—m)(nOIO, ,~IO) . (3.53)

Using Eqs. (3.17) and (3.43) in Eq. (3.5), we obtain our final desired complete multipole expansion to order co,

2

V(n, p+kl J, Ip) =i (n, oldjl0) M„—m — + (M„—m) i (n—,old, I0) [—,'u'(M„—m ) q']u-,8mM„

—(M„—m) —,'q'& n, ol Q,, Io&+ q'q'& n, o—l0,.b IO)

i c, '"q.—(n, , olm„lo &+ —'q'(n, olL„, lo &

3
(3.54)

Also, from the Hermiticity of the current operator and from the fact that we go from p to p' by exchanging k and k',
which will also take us from q to q',

V(p'I J, In, p+k) = i M„—m—— + (M„—m) (Old;In, o)+iu, [ ,'u'(M„——m)—q '](Old, ln, o)q io".(k' Xk)

—(M„—m) ,'q'&OIQ;, ln, o—&——'q''q' &OIO;,bin, o&

+iraq,

'"&O,'lm„l n, o& ——'q'"& OIL„„ln, O)
3

(3.55)

We can easily justify Eq. (2.2S) by making use of the fact that the matrix element of J, can be obtained by the equation
of continuity,

&n, p+kIJOIp) = — k'& n, p+kIJ, Ip& .1

E„p+k E—
Using (3.54), we immediately get (2.25).

(3.S6)

IV. MULTIPOLK EXPANSION OF I;J

Now we substitute Eqs. (3.S4) and (3.55) in Eq. (2.9) and pay attention to the fact that there are no cross products be-
tween matrix elements of multipoles of opposite parities. Also, by (3.1), (3.3), and (3.7), the interchange k~ —k leads
to the transformations

v —+ —v, q~ —q' .

Finally, from Eqs. (3.3) and (3.7), we have q =q . We then obtain

(4.1)
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3Mn+I
[&old, Ino&&nold, Io& —(i,j)]2(M„—m)M„

co +k k'

2
I; =T 1+

(M„—m )

(Old;Ino)(nold IO)+(i,j) a

[& old, Ino & & nold. Io &
—(i,a)]—c.t. ,

n

—g. v, —,
'v'—

n

—
6 &Iq'q'[& old; ln0 & & nolO. , IO) —

& ol o.„ln 0) (n old; lo) ]
—c.t. ]

1
I k'Xk+i+ [(Old;Ino)(nold~lo)+(i j)]+i+ [(Old;Ino)(noldjlo)+(i j)]8mM„ 8mM,

+ ,' g [-q''q [&olg,.lno&&nolg~blo& —&olgzblno&&nolg;, lo&]]

&olg;. Ino&&nolm„lo&+ &olm, lno&&nolg;. Io&+
n n

, &old, ln, & & nolL„, lo&+ &OIL „,Ino& & nold, lo&

n n

(Olm„lnO) (nOlm, Io) (r,s)—
(M„—m)

—c.t.

—c.t.

(k,'kb+—k, kb ) 1 — +k,'kb 1—

where c.t. stands for the crossed term (i~j,q~ q', v+—+ v)—
Now, from Eqs. (3.3) and (3.7), we have the following relations to order cv:

2 2I
4q, qb =k, kb 1+

M„

(4.2)

(4.3a)

4q,'qb =k,'kb 1+
M„

2 2—(k,'kb+ k, kb ) 1 — +k, kb 1—
2

(4.3b)

and

I
q =q =—'co 1+2 Mn

——'k. k' 1—
Mn

(4.3c)

Next, we note that on reducing (nolOJ, bio) according to (3.25) the octopole can give no contribution since
(Old, lno)( onlO~ , lob)=0. . In fact, as d; has spin parity J =1 and O~, i, is a 3 object, the state n in the first matrix
element can be nonzero only if it is a —,

' or —,
' state and in the second it can be only a —', or —', state. Also, on reduc-

ing (Olg, , Ino) according to (3.24), the mean-square radius can give no contribution to the term of Eq. (4.2) containing
products of Q's. This is due to the fact that in the first place

&olzlno&(nolg„lo& =o

because, for the first matrix element to be nonzero, n has to be a —,
'+ state (R has J =0+) and for the second it has to be

a —', + or —,
' + state ( Q;, has J =2+). Second, the product

&olzlno&&nolzlo&|';, n b

will be canceled by the crossed term. Together with (2.29) and (2.30), we introduce the following quantities which will

be all present in the right-hand side of Eq. (4.2) when we make use of Eqs. (4.3a) —(4.3c):

y[&Old, lnO&&nOldj. lo) —(i,j)]=iAiE;,. cr (4.4)

3M„+m
, [(Old;lno&&nold, lo) —(i j)]=iAze; o„(M„—m )M„

[(Old lno)(nold lo) (i j)]=i~1

n M„

(4.5)

(4.6)

Note that the right-hand side of these relations is dictated by the fact that their left-hand sides are quantities antisym-
metric in i,j between nucleon states at rest. Also,
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[(Old;Ino)(nold IO)+(i j)]=3451
mM„

(4.7)

22

n n

(4.8)f,„= 1+
n

The first set of relations is, with a convenient numerical factor,

is symmetric in i,j Next, we have various sets of relations whose writing will be simplified if we call f~„(N =1,2, 3)
the three M„-dependent coefficients in (4.3a) and (4.3b),

2

—,', g f&„[(OId;lno)(nolS~ IO) —(OIS Ino) (nold; Io) ]=iB~E;„o", . (4.9)

with N =1,2, 3. A B&5; contribution is excluded by the fact that under time reversal the left-hand side of (4.9) changes
sign (since (Old, I

no) goes into ( n Old; IO) and similarly for S;), as does o.„on the right-hand side. Next, we define

,', g f~„[—& Ol Q,.I
«& (no l Q,, lo &

—(ol Q,, I

no�

& & n0l Q,, Io & ] =iC~[5,,c,b„+5.„E,,„+5,.,E„„+5,,eb„]cr",

which is symmetric and traceless in (i, a) and (j,b) as are the Q s. A term

C~[5;J5,b+5;b5„—,'5;, 5)~ —]

is excluded by T invariance. Next comes the set

&ol~lno&&nolm„lo& —&olm„lno& &nolzlo&
24 Nn M„—„—m

N~r

and the set

(OI Q;. I «) ( «lm„lo) + (Olm„l «) ( no l Q;. Io)
,', &fx. —

M, —rn

which is symmetric and traceless in i and a, as is Q,,
Then we define

Olm, lno)(nolm Io) —(L,j)
lFN CiJ'm(M„—m )

Finally, on reducing ( n OIL„b Io) according to (3.48), will appear the set

(Old;IO)(nOII IO)+(OII no)(nold;IO)
Nn GN~ijm ~

n n

(4.10)

(4.1 1)

(4.12)

(4.13)

(4.14)

(a contribution G&5," is excluded since under time reversal the left-hand side changes sign because ( nOII IO) goes into
—(OII I no), with a minus sign not present for d, ) and the set

(Old, Ino)(nOIH„bio)+(OIH ~lno&&nold; Io&
(4.15)

M, —I

which is symmetric and traceless in r and b, as is H,b.
Also, we shall make use of the following identities (just

start by expanding o" [ [(p X q) X a] X b ] in two diff'erent
ways):

After a rather long but straightforward calculation, the
final result that follows from (4.2) is that I'; will have the
form (2.10) with the following values for the b's:

(4.17)
(4.16a)cr.(k'Xk) +cr (k'Xk) =8" ' 8' '+28'—

1 J J V 1J ij b~(0)= A, , (4.18)

(k-o k'+k' ~ k)= —8'."—8'"'
ijm ij ij

and

(4.16b)

(k cr k+k™ok')= —8;) ' 8'+2' 8' ' (4.—16c)

b~, = A4+48~+4C, —2D3+2E3 —2G~ —2Hq, (4.19)

b2 2 =C2 ) 222 B& B3 2C2 6E2

—2Fq+2G, +2G3 —2Hi —2H3 =pi, (4.20)



47 THIRD-ORDER SPIN POLARIZABILITIES OF THE NUCLEON 3767

66 = A 4 + C& C3 3E& +3E3 +F) F3

b 7 A 3 B3 C2 +D2 +2E2 +F2

(4.21) 2 2e, , 2p 2@+1

PPl
P & 2

Sm

—G3+ 2H, +H3 =y3, (4.22)

68 = A2+B2+C] D3 2E3 F) +62 3H

69 A 2 B
& C2 +D2 +2E2 +F2

6) +H] +2H3 =09

b]o A 3 +B2+C3 D& 2E]

(4.23)

(4.24)

2p 1

2m 2

or, from (4.4),

. 2 —1
e2~, . ~m

IJm

(4.26)

=g[(O~d, ~nO)(nO~dj ~0) —(i,j)] . (4.27)

From the second pair, we get

1 —2p4" e'= A4+4B2+4C1 —2D3+2E3 —262 —2H2

(4.28)

and from the third pair in conjunction with Eq. (4.24),

F3+—G~ —3H~ =a )o ), (4.25)

where use has been made of Eqs. (2.13) and (2.16) for the
last steps in Eqs. (4.22) and (4.20), respectively. From
(2.12) we find that yz+y4 will be given by the sum of the
right-hand sides of (4.21) and (4.23).

Equations (4.20) and (4.22) and the sum of (4.21) and
(4.23) give us the relation between the spin polarizabilities
and the multipole transition moments. The method can-
not give y2 and y4 separately. This could be settled if we
analyze E, directly. We intend to come back to this
point in the future. The result (4.17) was already ob-
tained in Eq. (2.21). The next three relations, Eqs.
(4.18)—(4.20), will give rise to the three sum rules when
we compare with the results obtained in Eqs.
(2.22) —(2.24), respectively, with the help of (4.24). The
comparison of the first pair of equations gives

=3Bt +B3+4Cq —2Dq+2Eq —2G3 —2H3 . (4.29)

V. DISCUSSION

We have studied the terms of the excited-state part of
the nucleon Compton amplitude that are of third-order in
the frequency of the incoming photon. Their interest
comes from the fact that it is at this order that effects de-
pending on the spin of the target first appear. These
quantities cannot be expressed in terms of the elec-
tromagnetic static properties of the nucleon, as given by
the low-energy theorems. There are four of them present
in the scattering amplitude scalar. We have shown that
there is a correspondence of these four terms with phe-
nomenological interactions describing the inhuence of
electromagnetic fields in a medium with spin in terms of
polarizability effects, and this correspondence justified
the name of spin polarizabilities given to them.

Following the approach that has been used for the
second-order electromagnetic dipole polarizabilities [2,3],
we have tried to express the third-order spin polarizabili-
ty in terms of multipole nucleon transition moments. Us-
ing gauge invariance, we have obtained a closed expres-
sion for two of them (y, and y3) and for the sum of the
other two (yz+y4) in terms of products of electromag-
netic transition moments of the nucleon involving the
electric and magnetic dipole, quadrupole, and dipole
mean-square radii. Three sum rules arise from the calcu-
lation involving products of electric dipole transition mo-
ments. The method cannot give separate expressions for
two of the spin polarizabilities y2 and y4. For that pur-
pose one would have to analyze the excited-state contri-
bution E," directly. Work in this direction is in progress.
These closed expressions can be of help for an estimate of
two of the spin polarizabilities and for the sum of the oth-
er two, on the assumption of dominance of the low-lying
nucleon resonances, using available experimental data al-
lied with the recent determination of the nucleon transi-
tion amplitudes in the context of the relativized quark
model [7] or of the nonrelativistic constituent quark mod-
el [8]. The three sum rules could be used to test the low-

lying nucleon resonance dominance hypothesis.
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