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Dynamical mass generation in (2+ 1)-dimensional QED with a Chem-Simons term
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We analyze the effect of a Chem-Simons term in the dynamical generation of masses for fermions in
(2+1)-dimensional QED in the large-fiavor (X) limit. When a Chem-Simons term is present, both the
magnitude and the critical flavor number for the parity-even (four-component) mass are reduced.
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One of the outstanding problems in gauge theories is to
understand nonperturbative phenomena such as dynami-
cal symmetry breaking or confinement. (2+ 1)-
dimensional QED has served as a field-theoretical model
to study such nonperturbative phenomena [1,2]. Recent-
ly, three-dimensional QED (QED3) has been extensively
studied in another respect. Namely, it might help to un-
derstand some interesting phenomena in planar
condensed-matter physics such as high-temperature su-
perconductivity, where a Chem-Simons term plays an
important role [3]. In field-theoretic contexts, the
Chem-Simons term is also responsible for a topological
mass for gauge fields in 2+ 1 dimensions [4,5] in addition
to changing the statistics of elementary excitations [6].

Being one of a few systematic field-theoretical
methods, the 1/N expansion has been a useful tool to
study nonperturbative phenomena that cannot be seen in
the usual weak-coupling expansion [7]. This 1/N method
has been employed to study dynamical symmetry break-
ing in QED3 without the Chem-Simons term [1,2]. The
spontaneous breakdown of the chiral symmetry of the
four-component fermions has been shown to occur when
N is less than a critical value N, [1,8], which was
confirmed by a numerical analysis [9]. The higher-order
corrections were shown to preserve the nature of this
symmetry breaking [10]. Also, the fermion mass has
been shown to be generated dynamically such that parity
is preserved [2].

In this paper, we analyze the effect of the Chern-
Simons term in dynamical mass generation for fermions
and spontaneous parity breaking tn QED3 by solving the
Dyson-Schwinger equation in the large-fiavor (N) limit.
When the Chem-Simons term is present, the parity is al-
ways spontaneously broken. The fermion condensate
(fg(x)) is, therefore, nonzero. The dynamical fermion
condensate, which may be generated even though the
Chem-Simons term is not present, can also be affected by
the Chem-Simons term in a nonperturbative way. We at-
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tempt to analyze this effect in our paper.
In general, when massive fermions are present, the

Chem-Simons term is generated by a one-loop vacuum
polarization [11,4]. The effect of the Chem-Simons term
on fermion mass was recently studied in the weak-
coupling expansion [12]. When the Chem-Simons term is
present in QED3, the photon will get a (topological) mass
[4] and it will induce a (parity-violating) mass term to the
fermions coupled to the photon, since the Chem-Simons
term violates the parity invariance that guarantees the
masslessness of the two-component fermions. In addition
to these perturbative effects, as we shall see later, the
Chem-Simons term affects a parity-preserving part of the
dynamical fermion mass in a nonperturbative way, and it
also modifies the critical Aavor number for the generation
of the parity-preserving mass, found by Appelquist et al.

The Lagrangian density that describes QED& with a
Chem-Simons term is given as

N
X = g P;(i8 eA )g; ——,'F„F""+t—re„i„A "c) A, (1)

i=1

where F„,=t)„A —c),A„and g is a two-component spi-
nor. The flavor number N is taken to be even. The three
2 X 2 Dirac matrices were chosen as y =o.3, y' = io.

&, and

y =io.2, where o.; are the Pauli matrices. Requiring the
kinetic terms to be parity invariant, we see that mass
terms mgttj and t~e„„iA "8 A are parity odd. But, when
the number of fermions is even, we may extend the
definition of parity by combining it with the Zz symme-
try which exchanges a pair of fermions:
(g„ttr2)~($2, $, ). This is just the parity symmetry for
the four-component fermions in 2+1 dimensions. With
this definition of parity, fermions can have a parity-even
mass term mf, g, —mgzg2 To have . a well-defined field
theory in the large-N limit, we keep a=e N and ~ to be
finite when N goes to infinity.

First, we will examine the pattern of the spontaneous
breaking of parity, and then elaborate on the dynamical
mass generation for fermions. An order parameter for
the spontaneous breaking of parity is the vacuum conden-
sate for the fermion bilinear, (gttj(x)), which can be
determined once one finds the asymptotic behavior of the
fermion propagator [13]. At the leading order in the 1/N
expansion, the Dyson-Schwinger gap equation is, in Eu-
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clidean notation,

—[Z (p) —1]/+X(p)
a I d k

D k
Z(k)It' —X(k}

N ~ (2~)' " "Z'(k)k'+X2(k)

fact, when there is no Chem-Simons term, the magnitude
of the dynamically generated mass is exponentially small,—4N/N
compared to the scale A of the theory: m =Ae
where N, =64/m [2]. So, we may assume X(p) «p. The
vacuum polarization tensor then takes a simple form:

where D„,' =6„'—II„and 6„ is the free Landau gauge
propagator. X is the dynamically generated mass matrix
for fermions. The vacuum polarization tensor is given as

II,„,„(p)=—
16 lpl,

N
II,~~(p) =—g M,

(9)

(10)
d k k —X(k)II =a tr y,

(2m )' "k'+ X'(k)

P+g —X(p +k)
Xy„"(p+k) +X (p+k)

(3)

where M; =X;(0},the mass of the ith fermion. [In gen-
eral X(p) will depend on the liavor but we will suppress
the index i for simplicity. ] Now, the gap equation be-
comes

v=11„,„(p) 5„.—,+II.«(p)e„.~, . (4)

The detailed form of II,„,„(p) and II,«(p) will be deter-
mined once we solve the above coupled Dyson-Schwinger
equation, Eqs. (2) and (3). Since the wave-function renor-
malization constant is Z(p)=1+0(1/N), we may take
Z(p)=1 consistently in Eq. (2). From Eq. (2), taking
trace over the y matrix, we get

X(p)=-
N (2m. ) (p —k) k +X (k)

a d k (p —k).k H2(p —k)+—
(2~)' lp

—kl' k'+X'(k) (5)

where H, and II2 contain the quantum corrections to the
parity-even part and the parity-odd part of the photon
propagator:

where

1 —11,„,„(p)/p'
[11,„,„(p)/p']'+ [~—11,«(p)]'/p' '

[II,„,„(p)/p ] +[a.—II,«(p)] /p2

In the large-N approximation the dynamically generated
mass will be at most of the order of 1/N, compared to the
scale of the theory, A. (A is of same order as a or x.) In

~ +(a/16+ p +k)
a +(a/16+ lp

—kl)
(14)

To study Eq. (14) analytically we break the momentum
integration into two regions and expand the logarithm
appropriately for each region as was done by Appelquist
et al. [1):

X(p) =—f,dk, , I, (p, k)» 4~' k'+X'(k) '

~ k+— dk I2(p, k)
N ~ 4~' k'+X'(k) '

with

f 2~ . 2 (p —k) +(a/16)lp —kl

(p —k) (lp —kl+a/16) +K

(12)

q ( k)
" gd(}(p

—k} k

lp
—kl' (lp —kl+a/16)'+~'

(13)
In the deep ultraviolet region, p ))a (or ~), the second
term in Eq. (11) is negligible. This is consistent with the
fact that at high energy the Maxwell term is dominant,
compared to the Chem-Simons term. One thing we
should note here is that the integration on the right-hand
side in Eq. (11) is convergent and we can expand it in
powers of p. We find, neglecting the second term, in the
deep ultraviolet region, p &&a,~:

X(p)
a

dk
k X(k)

4mNp 0 k +. X (k)

a p k X(k) 4k(a/16+p)Xp =
4~ Np 0 k +X (k) s +(a/16+p)

4k(a/16+p)
a. +(a/16+p )

'3

+ e ~ ~

+ a ~
k

kX(k) 4p(a/16+k)
4m Np t k +X (k) v +(a/16+k)

4p(a/16+k)
a. +(a/16+ k )

3

+ 0 ~ ~ (15)

For high momentum, retaining only the first term in the perturbative expansion of the logarithm, we may convert the
integral equation into a second-order differential equation:

d dX(p) p (t~ +(a/16+p) )

dp dp 2p +(5/16)ap +(1/64)a p+(a/16)(v +(a/16) )

a p X(p)
m Np +X(p)

(16)
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When p))a, a, Eq. (16) becomes a linear differential
equation:

X"(p)+3pX'(p) =0,
where a prime denotes differentiation with respect to p.
The asymptotic solutions are either

easily seen from Eq. (21) that any nonzero C, solution
has a lower energy than the perturbative vacuum solu-
tion, X(p)=0. Therefore, the parity is always spontane-
ously broken, whether the Chem-Simons term is present
or not, once such a parity-breaking solution is found.

To find the physical mass of the fermions, we have to
solve the equation

X,(p) = +0 p +X (p)=0 at p = —m h„. (22)

or

X (p)=C +0 1
e 2

(18)
But since X(p) is quite small, compared to the scale of the
theory, a or a, we may approximate m „=X(0). From
the gap equation (5), the fermion self-energy at zero
momentum is given by

To find the meaning of the solutions, we compare them
with the operator product expansion for the fermion
propagator in momentum space:

2II, (k}M;
X;(0)=—

(2~) k (k +M )

II~(k)

~k~(k +M )

(23)
W(p/~) C(p/W)m(~)(1)

p

D(ply)(hatt( )) +

where 2, C, and D are the coefficient functions. ' The
direct substitution of the self-energy in the propagator
gives

= —+ , +1 1 X(p)

P —X(p}
(20)

g2
V(X)= I p dp z

—ln 1+
z2~2 O p2+ g2 p2

(21)

The Chem-Simons term does not contribute to the vacu-
um energy, as it should, since it is a topological term. It
contributes to the vacuum energy only indirectly by
modifying the solution to the gap equation. It can be

'In general, gf(x} can get mixed with an operator e„„qA "O'A"
in renormalization. But we ignore this possibility.

As we can see easily, the constant C2 in the second solu-
tion in Eq. (18) corresponds to a renormalized mass m (p)
of the fermions. But this second solution X, (p), corre-
sponding to explicit parity breaking, is not compatible
with the homogeneous integral equation (14). It would be
a solution to the integral equation if we had included a
mass term in the Lagrangian. By comparing two equa-
tions, (19) and (20), we see that the first solution in Eq.
(18) corresponds to spontaneous parity breaking and C,
measures the magnitude of the vacuum condensate
(&PAL). This solution is compatible with the gap equation,
where no mass term is included. Thus, we have shown
that in the limit of m(p)=0 the parity is also spontane-
ously broken in QED3 with a Chem-Simons term. The
value C, is a parameter of the theory in a sense that it is
given as the boundary condition of the differential equa-
tion Eq. (18). But it should be chosen to give the
minimum of the effective potential, which is, in the
large-N limit,

where the Aavor index i is restored and the fermion self-
energy in the integrand is taken to be X;(k)=M;. The
first term on the right-hand side of Eq. (23) makes a nega-
tive or positive contribution to X;(0), depending on the
sign of M;, while the sign of the second term depends
only on that of the coefficient of the Chem-Simons term

We see that the parity is maximally broken when the
second term is dominant, which happens precisely when
the Chem-Simons term is dominant, i.e., v))a. The
mass is found to be, in this limit,

AM =
2~N ~

(24)

where A is the UV cutoff, which will be of order of ~. On
the other hand, when the Chem-Simons term is not
present, the mass will be generated in a parity-invariant
way. Namely, half the fermions get positive mass m and
the other half negative mass —m. Therefore, when both
of the Chem-Simons term and the Maxwell term are
present, we assume

M;=M+m;

with

(25}

m, i =1,. . . ,N —L,
—m, i=N —I +1, . . . , N.

We then find from Eq. (23), taking X;(0)=M, , that

a Adk
2M& k [ I+(a/16)(1/~k~ )]

2m2N ~ k +M (a/16) +a
a A

k
[a.—(M+8m)(a/4~k~)]k

2m. N ~ (k +M )[(a/16) +v ]
(26)

where, in the denominator, we approximate M; =M and
a —(a/4~k~ )(M+0m }=a, since the main contribution to
the integration comes from the high momentum. This
approximation is consistent in the leading order in the
1/N expansion. 9( = 1 —2L /N) measures the strength of
the parity violation when a =0. In (26), the fiavor-
independent part and the Aavor-dependent part of the
dynamical mass should satisfy separate equations, since,
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in the leading order, they are independent to each other.
We find, in the leading order,

M= dk
K

2~2N ~ k 2+M 2
( tr /16 )2+K2

X(p) will satisfy a separate equation, which is just Eq.
(14), since the second term in the gap equation (11) does
not contribute to the parity-even piece X, (p). For
X(p) «p « a, a, the parity-even piece satisfies

1 (a/16)~
m, =

vr N (a/16) +a m

16m, 64
Om (28)

2
dX, (p)

8p , 8p
p

16 (o./16)
rr N (a/16) +I~

For Eq. (27) to have a consistent solution,
0=0+0(1/N). In this case, we see, reshufiiing the
Aavor indices i, the fermion masses are

Equation (31) has solutions of the form

X, (p) = Ap',

where (32)

M,. = + ( —1)'A exp( 4N /—N, ),2' N (a/16) +a
(29)

where N, =N, /[ I+(16'/a) ]. The value for the parity-
violating mass M is a perturbative one in the 1/N expan-
sion, while the parity-preserving mass is nonperturbative.
The e6'ect of the Chem-Simons term is now clear. It in-
duces a parity-violating mass perturbatively and it de-
creases in a nonperturbative way the magnitude of the
parity-preserving mass m:

m (1~%0) 4N=exp
m (Ir=0) N, (a/I )

Since 0=0, half the fermions get (positive) mass M+m
and the other half M —m. The pattern of the Aavor-
symmetry breaking is same whether or not the Chern-
Simons term is present.

Finally, we mention brie Ay what happens when
N (N, . Since the parity-breaking mass M is perturbative
in 1/N, it will occur for any large value of N as long as
the Chem-Simons term is present. But, since the parity-
preserving (four-component) mass m is nonperturbative,
it is not clear at all whether it will be generated for any
large value of N. When there is no Chem-Simons term in

QED3, the mass is generated for N & N, [1]. To find what
will happen to the parity-preserving mass in QED3 with a
Chem-Simons term, let us go back to the gap equation
(14). Neglecting X(k) in the denominator in the in-
tegrand of the right-hand side, we get an approximate
linear integral equation. Then, the parity-even piece of

1 1a= ——+—
2 2

1/2
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where N, = N, [1 +(16'/a) ]. For N &N„, X.(p) oscil-
lates like sin[y ln(p/A)], where y=+N, /N —1. This is
the same pathological behavior found for the strong
QED4, where X(p) oscillates when the coupling is larger
than the critical coupling a, ( =sr/3) for chiral-symmetry
breaking [14,15]. As was argued in Ref. [8], for N &N„
chiral symmetry (of a four-component fermion) will be
broken spontaneously and the parity-even mass will be
generated dynamically. When there is no Chem-Simons
term, the critical number was N, =64/m =6.4. But with
the Chem-Simons term the critical number decreases;
N, ~N, =N, /[I+(16'/a) ].

In conclusion, we find that, when the Chem-Simons
term is present, the parity tends to be maximally broken;
the magnitude of the parity-even (four-component) mass
for the fermions gets smaller, and the critical number for
the generation of the parity-even mass decreases. But, in
the large-N limit, the pattern of the flavor-symmetry
breaking does not depend on the Chem-Simons term.
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