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We have carried out a numerical study of the high-temperature behavior of lattice QCD with two
flavors of staggered quarks. Our simulations were performed on 16°X 8 lattices with a quark mass
m,=0.0125, in units of the inverse lattice spacing. By monitoring the Wilson-Polyakov line, the chiral
order parameter (1), and the average plaquette, we have determined that a crossover between the
low-temperature state of ordinary hadronic matter and the high-temperature quark-gluon plasma occurs
at a gauge coupling of 6/g2=5.54(2). Thermodynamic quantities do not show a large jump, although
the equilibration time becomes quite long in the vicinity of the crossover. We have measured the entro-
py densities in the neighborhood of the crossover and further into the plasma phase. Measurements of
the hadronic screening lengths and the Debye screening lengths were made which cast light on the
differences between the two regimes. Finally, we measured the topological susceptibilities to further ex-

plore the chiral properties of QCD.

PACS number(s): 12.38.Gc, 11.15.Ha

I. INTRODUCTION

An understanding of quantum chromodynamics at
finite temperatures is one of the major objectives of lat-
tice gauge theory. It is expected that hadronic matter
undergoes a rapid crossover or phase transition from its
ordinary low-temperature state to a high-temperature
state consisting of a plasma of quarks and gluons. The
nature of this crossover and of the high-temperature state
are important for an understanding of the dynamics of
QCD, particularly with regard to chiral symmetry and
confinement. Nuclear physicists hope to observe the
high-temperature state in heavy-ion collisions planned for
new accelerators such as the BNL Relativistic Heavy Ion
Collider. A detailed knowledge of the properties of this
state could provide experimentalists with guides to signa-
tures for identifying it. Immediately after the big bang,
the Universe was presumably in the high-temperature
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state, and therefore must have passed through the cross-
over region as it cooled. Thus, a knowledge of the prop-
erties of the quark-gluon plasma and the crossover are
necessary in order to understand the evolution of the ear-
ly universe.

We are carrying out simulations of lattice QCD with
two flavors of staggered quarks on 16°X8 lattices using
the connection machine (CM-2) at the Pittsburgh Super-
computer Center. In this paper, we present results for
the quark mass m,=0.0125 in lattice units [1]. We are in
the process of extending this work to m,=0.00625. Al-
though both of these masses are larger than the physical
values for the u and d quarks, it is hoped that they are
small enough to allow extrapolation to the chiral limit.
We are using the hybrid molecular dynamics algorithm
with noisy fermions [2] which allows us to tune the num-
ber of flavors to two. We have performed simulations in
the neighborhood of the crossover in order to study the
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nature of the transition. We have also carried out studies
of the quark-gluon plasma at temperatures well above the
crossover. We have not found evidence for a first-order
transition. This result is consistent with previous studies
on lattices with four and six time slices [3], and with
chiral spin models [4] which indicate a first-order transi-
tion for three and four flavors of zero-mass quarks, but a
second-order transition for two flavors of zero-mass
quarks. By combining our results with recent spectrum
calculations we have made an improved estimate of the
crossover temperature in MeV.

In addition to measuring the Wilson-Polyakov line, the
chiral order parameter {1 ), and the average plaquette,
we have studied the entropy density of the system and the
partial entropy densities, and have measured the topolog-
ical susceptibility of the system using the cooling method
[5]. We have studied the hadronic screening lengths for
those hadrons which are produced by sources local in the
quark field, as well as the screening length for the quark
itself. For these studies, we have used wall sources [6] to
enhance the signal. Our results are consistent with ear-
lier studies of screening lengths at larger lattice spacings
[7-9] and are similar to those for four light quark flavors
measured on the same size lattice [10]. For temperatures
below the crossover, the screening masses are similar to
the zero-temperature hadron masses. For temperatures
above the crossover, the screening masses become parity
doubled, suggesting the restoration of chiral symmetry.
The p-a, and N-N' screening masses appear to approach
the values 27T and 377, respectively, in the high-
temperature regime, which is consistent with the sugges-
tion of Irback [10] that these are unbound multiquark
states. The screening lengths are also consistent with the
scenario recently suggested by Gocksch [11]. However,
we know from the study of the spatial structure of screen-
ing propagators that there are strong correlations among
the quarks in the high-temperature state [12], and that a
nonzero string tension can be associated with purely spa-
tial Wilson loops (see Sec. II). Finally, we have studied
the correlations of Wilson-Polyakov lines, oriented both
in the time direction where these correlations are related
to the potential for static quarks and exhibit Debye
screening in the plasma phase, and in the spatial direc-
tions, where they measure properties of a three-
dimensional Yang-Mills-Higgs system with quarks, which
describes the high-temperature behavior of QCD. For
these studies we have used the “fuzzy” Wilson-Polyakov
lines of Teper [13] to improve the signal-to-noise ratio.

In Sec. II, we describe our runs and present results for
the simpler order parameters, Wilson-Polyakov line
correlations, and topological susceptibility. In Sec. III,
we discuss our results for the hadron screening lengths,
and in Sec. IV, we present our conclusions. Finally, in an
appendix we give a brief description of some of the order
parameters and the methods used to calculate and ana-
lyze them.

II. THE SIMULATIONS

We have carried out simulations with two degenerate
flavors of staggered quarks with a mass am,=0.0125 on
16>X 8 lattices. We have used the hybrid molecular-
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dynamics algorithm which is described in detail in Ref.
[2]. These simulations use code developed by the
HEMCGC Collaboration [14]. The algorithm includes a
numerical integration of the nonlinear equations of
motion for the gauge fields. This integration was per-
formed with a time step dt =0.01 in the HEMCGC nor-
malization [15]. One thousand molecular-dynamics time
units were collected at gauge couplings 6/g2=5.45, 5.60,
6.0, and 7.0, two thousand at 6/g*>=5.5 and 5.525, and
750 at 6/g2=5.575. Two runs of 1500 time units were
made at 6/g2=5.55, one beginning from a lattice in the
high-temperature state, and one from a lattice in the
low-temperature state. These runs appeared to be long
enough to allow the system to equilibrate at each value of
6/g2%, and to enable us to collect adequate statistics for
the simple order parameters, after equilibration. In addi-
tion, configurations were stored every 5 time units at
6/g2=5.45 and 5.5, every 10 time units at 6 /g%=5.525,
5.55, 5.575, and 5.6, and every 50 time units at 6/g2=6.0
and 7.0, for further analysis.

Table I shows the values of the Wilson-Polyakov lines
and () as functions of 6/g2, along with the length of
the runs and the number of time units discarded for
equilibration. These results are plotted in Fig. 1. Here,
in Fig. 1 and Table I, the results at 6/g%=5.55 are from
the run begun in the high-temperature state. They sug-
gest that the restoration of chiral symmetry occurs for
5.52556/g255.55. In Fig. 2, we plot the time histories
of the Wilson-Polyakov line and the chiral order parame-
ter (¢) for couplings in the range 5.45<6/g>=<5.575.
In Fig. 3, we show the Wilson-Polyakov line and (¢1)
for the two runs at 6/g2=5.55 with starts in the high-
and low-temperature states. These time histories indicate
that the equilibration time in the vicinity of the crossover
is quite long, but there is no evidence of the type of me-
tastability found close to a first-order phase transition.
Our results are consistent with a second-order transition
at zero quark mass as predicted by the chiral spin model
analysis [4], and a rapid crossover rather than a true
phase transition for small quark mass.

To help the reader draw his own conclusions from this
time evolution data, we give here a brief description of
the starting points for each of our runs. The high-
temperature run at 3=5.55 was started from an ordered
(B= ) configuration. The B=5.5 run was started from
an early (unequilibrated) configuration at §=5.55 (hot),

TABLE 1. Wilson-Polyakov line and (%) as functions of
6/g% on a 163X 8 lattice with m,=0.0125. Errors are from bin-
ning with extrapolation.

6/g* Wilson line () Time (discarded)
5.450 0.0101(39) 0.2546(51) 1000(200)
5.500 0.0306(45) 0.1805(30) 2000(300)
5.525 0.0356(34) 0.1570(25) 2000(300)
5.550 0.0702(17) 0.1146(20) 1500(200)
5.575 0.0817(21) 0.1029(30) 750(250)
5.600 0.0812(48) 0.0974(21) 1000(200)
6.000 0.2089(33) 0.05840(8) 1000(100)
7.000 0.4646(36) 0.04172(2) 1000(100)
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FIG. 2. Time histories of the Wilson-Polyakov line and () for (a) 6/g*=5.45, (b) 6/g2=5.5, (c) 6/g>=5.525, and (d)
6/g*=5.575. {41p) is the upper curve in (a), (b), and (c), and the lower curve in (d).
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number of time slices in the thermodynamics calculation,
eight in the present case. Although we have not carried
out a spectrum calculation precisely at the crossover cou-
pling, calculations have been made with values of 6/g2
and m, close enough to the values used here to allow an
extrapolation to 6/g2=5.54 [15,17,30]. Specifically, we
have spectrum studies at 6/g%2=5.415 and m,=0.0125,
at 6/g2=5.6 with m,=0.01 and 0.025, and 6/g2=5.7
with m, =0.015, 0.020, and 0.025. The p mass at
m,=0.0125 was estimated by linear interpolation at
6/g2>=5.6 and by linear extrapolation at 5.7. We note
that although there is a calculation at the weakest cou-
pling for quark mass 0.01, the four p masses do not fall
on a straight line. The lightest mass is the one most likely
to be affected by finite size effects. We have, therefore,
chosen to extrapolate using the three higher masses.
With the p mass in hand for three values of the coupling,
we estimate its value at intermediate values of the cou-
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FIG. 3. Time histories of the Wilson-Polyakov line for
6/g*=5.55. The upper curve is from a hot start, the lower
from a cold start. (b) Time histories of () for 6/g2=5.55.
The lower curve is from a hot start, the upper from a cold start.

pling by a fit of the form
In(m,)=a+b(6/g>)+c(6/g%) .

Using the p meson mass to set the energy scale, we find
T.=155+£9 MeV. An error of 9 MeV comes from our
uncertainty in the value of 6/g? at the high-temperature
crossover, a quantity which is not even precisely defined
if there is no phase transition. This quoted error is the
statistical error only; the systematic effects are much
larger. For example, using the nucleon to set the scale
gives a result lower by about 15%. In addition, there is
an uncertainty of around 6 MeV coming from the inter-
polation necessary to estimate the hadron masses. We es-
timate this error from the difference in the hadron masses
interpolated using the form above and those using a
linear interpolation.

In Fig. 4, we plot T, for two flavors of staggered
quarks as a function of N,, again using the p mass to set
the energy scale. The results from simulations with
dynamical quarks are denoted by fancy crosses, and those
from the quenched approximation are denoted by
squares. The dynamical quark points for N, =4 and 6 are
from Refs. [16] and [18], respectively. The quenched
points were obtained by combining the thermodynamics
studies of [19] with quenched spectrum studies of a num-
ber of groups [20]. In some cases, more than one
quenched point is shown because more than one
quenched spectrum calculation was available. All ther-
modynamics and spectrum calculations, except those
from the present study, were extrapolated to m, =0. Al-
though the dynamical quark calculations are not at small
enough lattice spacings to be in the perturbative scaling
regime, the fact that T, is quite insensitive to N, for both
the dynamical and quenched studies provides reason to
believe that these results are significant. At the very
least, it is clear that the value of T, for full QCD is con-
siderably below that for the quenched approximation, as
one would expect.

In Table II we give the energy plus pressure, or entro-

SO 1 1 T T T
ﬁ X Dynamical Quarks
300 — O Quenched Approximation™]
: % 1
= 250 |- —
[ r i
2 I % % ]
& 200 L 0 -
150 [~ B £ -
ool 1L ]

0 2 4 6 8 10 12

FIG. 4. The transition temperature 7T, as a function of N, in
laboratory units.
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TABLE II. Partial entropy densities for the gluons (s, ) and u
and d quarks (s, 4), including the one-loop [O(g?)] corrections,
but not the finite-volume corrections.
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TABLE III. Partial entropy densities for the gluons (s, ) and
u and d quarks (s, ), at tree level and average plaquettes.
P=1—L(P +P,).

6/g? sg/T° Sua/T°
5.450 —0.7(4.0) 0.7(1.0)
5.500 1.8(2.3) 2.7(7)
5.525 3.6(2.2) 2.5(6)
5.550 5.0(3.2) 6.3(6)
5.575 10.6(5.1) 7.6(9)
5.600 11.0(3.8) 5.7(7)
6.000 9.9(2.9) 8.3(6)
7.000 8.5(3.1) 9.1(5)

6/g* sQ/T? s24/T? P
5.450 —0.8(4.9) 0.8(1.4) 0.458 31(15)
5.500 2.2(2.9) 3.5(9) 0.449 20(9)
5.525 4 4(2.2) 3.3(8) 0.445 42(5)
5.550 .2(4.0) 8.2(7) 0.441 16(5)
5.575 13 0(6 2) 9.9(1.1) 0.43759(11)
5.600 13.4(4. 7) 7.3(9) 0.434 44(7)
6.000 11.9(3. 10.5(7) 0.405 19(4)
7.000 10.0(3. 11.1(6) 0.32242(3)

py, including the one-loop perturbative corrections
[21,22]. In an attempt to remove some of the effects of
finite spatial volume, we have divided each of the partial
entropies by the ratio of its free field value on a 163X 8
lattice to its continuum value in an infinite spatial volume
at T=1 (lattice units) [23]. These ratios are 0.991 36 for
the gluons and 1.597 18 for the u and d quarks. These
values are plotted in Fig. 5 and compared with the
Stefan-Boltzmann constant. We see that the gluon and
u,d values show a rapid increase from near zero as one
passes through the transition. The gluon entropy density
appears to overshoot the Stefan-Boltzmann value
(32772 /45) and to approach it from above for large 6/g2.
The u and d quark entropy density increases somewhat
more slowly with increasing 6 /g2 than on smaller lattices
[this is somewhat deceptive, since some of the published
data on smaller lattices does not include the O(g?)
corrections which decreased even our 6/g2=7.0 data by
18%], and will presumably approach the Stefan-
Boltzmann value (77n;/15) from below as 6/g>— o.
In Fig. 5(b) we have included the entropy of a heavy
(m;=0.25) quark calculated in the gauge fields generated
with two light quarks in the action. Although we have
labeled it “s” since its mass is 20 times that of our » and
d quarks, because our u and d quarks are unphysically
heavy, its mass is large enough that it does not really see
the transition. In Table III we present the zeroth-order
entropies [(A1l) and (A2) without the one-loop correc-
tions] together with the average plaquette values, so that
when the T'=0 plaquettes become available the reader
can extract the energy density and pressure, and for the
benefit of anyone with a nonperturbative estimate of the
coefficients.

We measured the topological charge by the cooling
method outlined in the Appendix (subsection 2). In Table
IV, we list values for the topological susceptibility Y
determined by the normal cooling method, using 25 cool-
ing sweeps, and by the underrelaxed method described in
the Appendix, subsection 2 using A=0.2 for 25 sweeps
followed by 25 sweeps of normal cooling. The results of
the two methods are clearly consistent. The two results
given for each method labeled EO and OE are the values
obtained when we chose to start with the even and odd
sublattice respectively for the cooling. The final column
labeled ‘“‘theory” gives the value predicted by Eq. (A3)
[24] using the values of (i) obtained on a 12°X 8 lattice

at m,=0.025 and m2q=0.0125 [25] linearly extrapolated
to m,=0. For 6/g” in the low-temperature (hadronic)
state, the agreement is excellent. For the high-
temperature (plasma) state, the extrapolated values of

m=.0125 16°x8 LATTICE

15
L(a) _
E
S S L
N r 4
mm5~ —
LR A

54 55 56 6 7
6/g”
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10 _(b)_ — ]
8 :_ X —— u,d _:
L O ——'s
6 $?
N
2 :— (I)—:
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FIG. 5. Entropy densities as a function of 6/g? for (a) the
gluons, and (b) the quarks. The dashed lines are the Stefan-
Boltzmann limit. In (b) the upper dashed line is that for the u
and d quarks, the lower for the “s” quark.
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TABLE IV. Topological susceptibility ¥ as a function of temperature. The four columns of mea-
surements use the methods described in the text. The column labeled theory gives results obtained
from the anomalous Ward identity using the values obtained for () on a 12%X 8 lattice [25].

x¥X10°

Normal cooling Underrelaxed
6/g? EO OE EO OE Theory
5.450 24.6(5.1) 25.6(5.1) 24.1(5.2) 23.1(4.5) 25.6(2.0)
5.500 13.9(1.5) 13.8(1.7) 13.6(1.5) 13.2(1.6) 12.8(2.5)
5.525 10.8(1.8) 11.3(1.6) 10.4(1.7) 10.6(1.7)
5.550 3.4(6) 3.0(6) 2.9(5) 2.9(5) —0.9(2.0)
5.575 1.8(5) 2.0(6) 1.5(5) 1.7(5)
5.600 2.3(6) 2.3(7) 2.2(6) 2.2(6) —1.6(1.4)
5.650 0.6(9)
5.700 0.1(2.0)
6.000 0 0 0 0
7.000 0 0 0 0

<1Z1/1) are consistent with zero, as they shiould be. The
values of y are small but nonzero (except for 6/g2=6.0
and 7.0). This is understandable since (A3) only yields
the term linear in m,, whereas theory predicts that
X < m/ in this phase [Eq. (A3)].

We have studied the correlations between “fuzzy” tem-
poral Wilson lines. We have measured correlations in the
z direction for lines with zero x and y components of
momentum. (See Appendix, subsection 3 for details.) We
have considered blocking levels from O (unblocked) to 3
(blocked link length 8), and found that, as is the zero-
temperature case, blocking greatly improved the signal-
to-noise ratio by enhancing the overlap of the line opera-
tor with the lowest-lying excitation, enabling us to esti-
mate the mass using correlations at shorter distances.
This is exhibited for a typical subtracted correlation func-
tion in Fig. 6. Hence, from now on, we will deal ex-
clusively with blocking level 3 propagators.

Since, in contrast with the case of pure Yang-Mills
gauge theories, the Wilson-Polyakov line has a nonzero
vacuum expectation value in both phases, we expect
screening for all values of the gauge coupling. Such
screening can be small, as it appears to be at zero temper-
ature. If so, an exponential falloff in the subtracted prop-
agator at intermediate distances might still measure the
string tension rather than the eventual potential screen-
ing at large distances. To decide what is the correct in-
terpretation, one needs to look also at the unsubtracted
correlation functions. If, as is the case at zero tempera-
ture, the subtracted and unsubtracted correlation func-
tions are very similar, one is probably in a region where
the string tension drives the exponential falloff [26]. If
the unsubtracted propagator rapidly flattens off to a
nonzero value determined by the magnitude squared of
the expectation value of the Wilson-Polyakov line, then
the exponential falloff of the subtracted propagator yields
the screening length [27].

In Fig. 7, we have plotted the unsubtracted Wilson-
Polyakov line correlations, normalized to one at Z =0 as
a function of the separation Z. In each case, we do ob-
serve flattening at large Z. It is interesting to note the
rapid change in behavior of these propagators between

6/g2=5.525 and 5.55 which marks the crossover. For
6/g2>5.55 one would clearly interpret an exponential
falloff in the subtracted propagator as screening. For
6/g2=5.45 an exponential falloff at short distances
might be associated with a linear potential which is
screened at longer distances. At intermediate values of
6/g2 (5.5 and 5.525) screening is very apparent at all Z,
but the screening lengths we have obtained for these
values of 6/g2 should not be trusted, since some of the
falloff is still probably due to the string tension.

We have studied the large distance behavior of the sub-
tracted correlation functions in the manner described in
the Appendix, subsection 3. The screening length was
determined by calculating the effective mass from Egq.
(A24). In order to obtain a reliable result, one must find a
plateau in u(Z) before the signal is obscured by noise.

THERMAL WILSON LINE CORRELATIONS 6/g2=5.525

L L e B
100} =
- BLOCKING LEVEL 3
L b4 & 4
~10~! © : % —
2 g o % l 1
A, r ]
= f ' l .
\N/ B % 9
D-‘10_2 — —
: i :
: g :
08 = e
0 2 4 6 8

Z

FIG. 6. Subtracted thermal Wilson-Polyakov line correlation
functions as a function of separation Z at 6/g2=5.525 for
blocking levels 0-3.



47 THERMODYNAMICS OF LATTICE QCD WITH TWO LIGHT . ..

UNSUBTRACTED WILSON LINE CORRELATIONS

1.0 % ¢ < < 4 < - $—
0.9 i
0.8
0-7 r * I T
0.6 *

0.5

T
!

0.4

03 b

c(z)/c(0)

02 b

FIG. 7. Unsubtracted Wilson-Polyakov line correlations as a
function of Z for various 6/g? values. The curves, from the
lowest lying to the highest correspond to 6/g>=5.45, 5.5, 5.525,
5.55, 5.6, 5.575, 6.0, and 7.0.

Our results are tabulated in Table V. The data shows
some evidence for a plateau, at least in the high-
temperature phase, which is where we argued that the
simple screening interpretation was clear. Using the cri-
terion that useful data should have errors <15% we see
that we are limited to using u(Z <3). Fortunately, our
data suggest that the plateaus are reached by Z =2, so
that we can estimate the screening mass from w(2) or
©(3). The quantity of interest is u/7, where here
T =1/8a. Using p(2) as our estimate of u, then in the
quark-gluon plasma phase, this quantity takes the values
5.3(5) at 6/g2=5.55, 3.6(4) at 6/g’=5.6, 4.0(6) at
6/¢2=6.0, and 4.5(4) at 6/g>=7.0. These values are in
good agreement with the N,=4 results [28], but a little
larger than those reported for pure SU(3) Yang-Mills
theory, possibly due to the extra screening afforded by
the quarks [27].

In addition to considering Wilson-Polyakov lines
oriented in the time direction, we have also considered

TABLE V. Effective masses [(Z)] from subtracted blocked
temporal Wilson-Polyakov line correlation functions (blocking
level 3).
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FIG. 8. Graph showing the 6/g2 dependence of the string
tension k calculated from spatial Wilson-Polyakov line correla-
tions.

those oriented in the x and y spatial directions. Here,
previous studies have indicated that the correlation func-
tions should obey an area law, i.e., should be confining,
for all values of 6/g2 [29]. Since these spatial lines have
small but nonzero vacuum expectation values coming
from the limited spatial extent of the lattice, we com-
pared the subtracted and unsubtracted correlation func-
tions. Again, blocking improves the signal-to-noise ratio,
so we will concentrate only on the level 3 propagators.
For all values of 6/g2 except 6.0 and 7.0, there are no
significant differences between the subtracted and unsub-
tracted propagators indicating the ‘“‘deconfinement in the
spatial direction® is relatively unimportant in this cou-
pling domain. For 6/g2=6.0, the difference between
subtracted and unsubtracted propagators is still small
enough that the difference between the effective mass es-
timated from the subtracted and unsubtracted propaga-
tors is still $10%. For 6/g2=17.0, the effect is larger, re-
sulting in a difference of =25% in the effective mass. At
6/g%=17.0 the lattice spacing is small enough that even
an N, =16 lattice would be in the deconfined phase, so we
should not expect to see ‘“spatial confinement.” For
6/g%>=6.0 we might be close to the deconfinement cou-
pling for an N,=16 lattice. The effective mass values
from the subtracted propagators are presented in Table
VI. Unfortunately, at 6/g2=5.45 the statistics are too

TABLE VI. Effective masses from subtracted blocked spatial
Wilson-Polyakov line correlation functions (blocking level 3).

Temporal Wilson-Polyakov line effective mass

Spatial Wilson-Polyakov line effective mass

6/g2 Z=0-1 Z=1-2 Z=2-3 Z=3-4 6/g> Z=0-1 Z=1-2 Z=2-3 Z=3-4
5.450  1.09(7) 0.63(8) 0.42(11) 0.49(22) 5450  2.90(9) 3.47(6.11)

5500  0.77(5) 0.49(6) 0.38(5) 0.30(8) 5500  2.13(5) 1.37(12) 1.66(73)

5525  0.66(4) 0.45(5) 0.41(7) 0.47(12) 5525  1.92(5) 1.18(10) 1.12(29) 0.25(30)
5.550  0.83(4) 0.66(6) 0.71(12) 1.1347) 5550  1.49(3) 0.84(7) 0.83(11) 0.33(14)
5575  0.83(8) 0.68(12) 0.69(23) 0.57(30) 5575 1.41(9) 0.99(21) 1.18(59)

5.600  0.63(5) 0.45(5) 0.45(9) 0.55(25) 5.600  1.32(6) 0.79(6) 0.78(13) 0.98(24)
6.000  0.63(5) 0.49(7) 0.48(10) 0.57(22) 6.000  0.55(3) 0.44(3) 0.45(6) 0.47(13)
7.000  0.61(3) 0.56(5) 0.61(11) 0.71(25) 7.000  0.20(3) 0.18(3) 0.17(3) 0.17(3)
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poor to extract a reliable string tension to compare with
zero-temperature results. In Fig. 8, we plot the quantity
V'k/m_ where k is the string tension calculated as the
effective mass calculated between Z =1 and Z =2 (which
appears to herald the onset of the plateau) divided by
N,=16. The p mass is estimated from interpolation
among spectrum calculations at 6/g°>=5.415, 5.6, and
5.7 [15,17,30].

III. HADRONIC SCREENING LENGTHS

We have made measurements of the propagators in the
spatial direction of color singlet hadronic sources, or the
“hadronic screening lengths” [7-9,18], using the wall
sources defined in the Appendix, subsection 4 to enhance
the signal. We are limited in this study by the fact that
we worked on lattices with a maximum spatial dimension
of only twice the Euclidean time dimension, so that we
could measure screening propagators only for distance
less than or equal to 1/7T. Therefore, there is some doubt
as to whether we have really found the asymptotic mass
in these propagators. In many cases, we were unable to
find fits with satisfactory x?, and there are not visible

m=.0125 163x8 LATTICE
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“plateaus” in the effective mass versus distance.

Figures 9(z) and 9(b) show our best estimates of the
screening masses for the scalar- and vector-meson chan-
nels, and Fig. 9(c) shows the baryon channel. In all cases,
we see parity doubling for 6/g2%5.55. For the vector
channels we see the p and a, become degenerate, while
the other pointlike p, the p,, becomes degenerate with the
b,. Both the p, and b, signals become very difficult to
extract as 6/g° grows.

Within the limitations of our small lattice, we find the
expected pattern of parity doubling at high temperatures,
characteristic of chiral symmetry restoration. Moreover,
as has been emphasized previously in Refs. [10,11], the
screening masses of the vector mesons are very close to
twice the Matsubara frequency. The screening masses of
the baryons are larger than three times the Matsubara
frequency. We note in passing that, if the baryonic states
were indeed states of 3 free quarks, the screening masses
calculated as if the baryons were one-particle states
would be expected to lie above 37T. This is due to the
finite spatial extent of the lattice; in particular, to the fact
that with dynamical quarks, as in free field theory, two of
the quarks can propagate forward (in z) from the source

m=.0125 16°x8 LATTICE
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FIG. 9. Hadron screening lengths as a function of 6 /g for (a) scalar mesons, (b) vector mesons, and (c) baryons.
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while the third quark can propagate backwards (the Ap-
pendix, subsection 4 and Ref. [10]).

In units of the temperature, the p and a, are already
quite close to their T— o value of 6/g2=5.55. In con-
trast, the scalar channels are still visibly below this value
even at 6/g2=7.0. (Of course on a 163X 8 lattice at
6/g2="1.0 we are measuring the screening propagators at
a physical distance of a small fraction of a Fermi.) It
should be noted that, if the transition is not first order,
the fact that the pion mass vanishes in the chiral limit in
the low-temperature phase, forces the -0 multiplet to be
strongly bound just above the transition where it becomes
degenerate for m,=0, since these masses must change
continuously across the transition.

To further examine chiral symmetry restoration we fol-
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low the approach of Ref. [8], defining chiral meson prop-
agators Mg, M5, and M, (for definitions see the Ap-
pendix, subsection 4). A signature for chiral symmetry
restoration is that in the chirally restored ‘‘phase”
Mg /Mg, M}y /My, and M}, /M, should vanish in the
chiral limit (m,—0) when the propagators are calculated
using a source with definite chirality. Figure 10 shows
these ratios as a function of 6/g? and hence T. Note that
the magnitude of My, is very small at even separations,
making the ratio in Fig. 10(b) very large and noisy at
these values of z for 6/g? in the low-temperature phase,
which is why these points do not appear in this figure. In
the chiral limit, chiral symmetry restoration should force
the nucleon propagator to vanish at even separations in
the plasma phase. This trend is clear in Fig. 11. Taking
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FIG. 10. Ratio of chiral meson propagators as a function of separation z for various 6/g2 values for (a) scalar mesons, (b) type-0

vector-meson propagators, and (c) type-1 vector-meson propagators.
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FIG. 11. Nucleon propagators as functions of z for z even
and various 6/g? values.

into account the fact that mq=0.0125¢0, Figs. 10 and
11 show good evidence for chiral symmetry restoration
for T>T,.

Finally we note that the propagators for the p-b; and
the a,-p, systems in both polarizations are very similar to
their free field counterparts by 6/g2=7.0 while those for
the 7-o system are still quite different.

IV. CONCLUSIONS

In agreement with previous studies [3,25], the transi-
tion from nuclear matter to a quark-gluon plasma for two
light quark flavors shows no evidence for being first or-
der. However, the long relaxation times observed in Fig.
3 suggest that the system is close to a critical point. Thus
our results are consistent with a second-order phase tran-
sition at m, =0 and a rapid crossover with no phase tran-
sition where the quark masses are finite. The transition
or crossover occurs at 6/g2=5.54(2) corresponding to a
temperature 7,=155(9) MeV with a systematic uncer-
tainty of ~15%, consistent with previous estimates but
far below the ~200 MeV found in the quenched theory.
However, in at least one case we have observed apparent
metastability over more than 1000 simulation time units.

The temporal Wilson-Polyakov line correlation func-
tions indicate strong exponential screening of the inter-
quark potential in the plasma phase. Perturbation theory
indicates that the screening mass y measured from these
correlation functions is related to the Debye screening
mass up by p=2up [27]. This yields a Debye screening
length A, at the transition of A, ~0.5-0.8 fm. This re-
sult, to the extent that the relation between u and up is
independent of perturbation theory, could be relevant to
models for 3 /J suppression at high temperatures. In
fact, simple potential models indicate that ¢ /J formation
should be suppressed for A, $0.4 fm [31]. Taken at face
value this would mean that we should expect to see ¥/J
suppression only for TR 27T,. However, as the authors of
[31] point out this ignores the temperature dependence of
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the coefficient of the Coulomb term in the heavy quark
potential. Taking this into account will increase the criti-
cal value of A, and decrease the temperature for the on-
set of suppression. It is thus important to obtain more
detailed predictions of the heavy quark potential in the
quark-gluon plasma.

The hadron screening length measurements show clear
evidence for chiral symmetry restoration in the plasma
phase. The screening masses are consistent with a
scenario in which the members of the 7-o chiral multi-
plet remain as bound states while the remaining states
with hadronic quantum numbers that we have measured
(p, ay, by, Ny and N’) appear as unbound states of free
quarks. However, measurements of the wave functions
(more accurately, the analogue of the wave functions for
propagation in a spatial direction) of these states show
that they are local, with a characteristic size similar to
the size of low-temperature hadrons [12]. Measurement
of a finite string tension from spatial Wilson-Polyakov
line correlation functions suggests that such states should
indeed be bound. This suggests that a true understanding
of the hadron screening lengths at high temperatures
might emerge from studying the three-dimensional
Yang-Mills-Higgs system which describes the high-
temperature behavior of QCD.

We have seen good agreement of the topological sus-
ceptibilities with the prediction of the Ward identities, in
the hadronic matter phase. Here, with only one mass, we
were forced to use data from other work in order to ex-
trapolate () to m,=0. With the simulations at a
lower quark mass, we will be able to make this extrapola-
tion ourselves. In addition, we will be able to determine
whether )(OCqu in the plasma phase, which would indi-
cate that we really do have two light dynamical quark
flavors.

When we have more realistic quark masses we will be
able to measure the kaon screening lengths, which are
also of some interest. We shall also measure the entropy
density associated with a strange quark with a more
physical mass, which should shed light on strangeness
production in the quark-gluon plasma. We really need a
lattice with a larger aspect ratio (N,/N,) to make the
finite lattice size correction factors closer to one and thus
reduce the systematic uncertainties involved in calculat-
ing entropy and energy densities and pressure. Such im-
proved aspect ratios are also what is needed to more ac-
curately extract the hadronic screening lengths. We need
the zero-temperature values of the plaquette observable
for the 6/g? values of our simulations to enable us to ex-
tract partial pressures and energy densities, in order to
determine the equations of state of hadronic matter. At
6/g2 we need to determine the zero-temperature hadron
spectrum to enable a more accurate determination of T,.
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APPENDIX: MEASURED QUANTITIES
1. Entropy

It would be extremely interesting to compare the
equation-of-state of high-temperature QCD to phenome-
nological models, or perhaps someday even to experi-
ment. In our simulations we have measured the raw
quantities necessary to compute the energy and pressure.
However, to compute the physical energy and pressure
we must remove divergent and regularization dependent
parts, which can be done by subtracting the energy and
pressure measured at zero temperature. In the absence of
the necessary zero-temperature simulations, we can use
Euclidean invariance of the zero-temperature theory,
which requires that at 7 =0 the energy and pressure be
related by e=—p. This means that (e+p)/T, or the en-
tropy density, can be computed without a zero-
temperature subtraction.

Computing the energy and pressure requires knowing
how the spatial and temporal lattice spacings depend on
the coupling constants in the theory, where different cou-
plings are used for the spatial and temporal directions.
This dependence can be calculated in perturbation theory
[32,21]. In principle, it is possible to use perturbation
theory in this context since it is the coupling at the scale
of the lattice spacing rather than the temperature which
is relevant. However, the empirical S function deter-
mined by the dependence of 6/g2 at the thermal cross-
over on N, differs from the perturbative B function by as
much as a factor of 2 for lattice spacings in this range.
Since, in the notation of Ref. [21], ¢, +c,=/3, where B is
the B function, we can be assured that the perturbative
corrections to the energy and pressure will suffer similar
problems. In the formulas for the gluon and quark parts
of the entropy density these perturbative corrections ap-
pear as multiplicative constants, so the reader can re-
move or rescale them as desired. The separation of the
entropy into the gluon part of the fermion part is not
really meaningful since the gluons and quarks are in-
teracting; it simply reflects the way the entropy is com-
puted.

We use the expressions:

_4 |, _1.022
s T=73 6/g% | g? T PP, (AD
1.279 - 1 -
Sy aT= 1——6/? (l/!Do'l/J)—?Z(iﬁD,-lﬁ)
(A2)

Here P and R are the space-time and space-space pla-
quettes,

Pss = < Tr(UUUU) >space—space plaquette » (A3)
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Pst = < Tr(UUUU) )space-time plaquette (A4)

and D, is the off-diagonal part of the fermion matrix in
direction u. Equations (Al) and (A2) are written in a
form which emphasizes their vanishing at zero tempera-
ture. In evaluating the fermion entroy, we have used the
identity

(v
where M is the complete fermion matrix and 3 is the

number of color components, to write the quark entropy
as

Dy +3D;+m, ¢>=<$M¢)=3, (A5)

1.279
6/g°

4
Su’dT=?

+ om (tlnb)

(A6)

2. Topological charge

Here we give a brief description of the cooling method
for topological charge and susceptibility, referring the
reader to the literature for more detailed discussions of
the method and its justification. The cooling method for
measuring topological charge on the lattice is based on
the observation that the physical topological charge is as-
sociated with large scale structures. However, lattice
gauge-field configurations also have contributions to their
topological charge coming from distances on the order of
the lattice spacing, which are artifacts of the lattice regu-
larization and should be removed.

In the cooling method, one removes these lattice ar-
tifacts by locally smoothing the gauge fields by locally
minimizing the plaquette action. This is done by updat-
ing each lattice gauge field using a Cabibbo-Marinari heat
bath with 6/g?=c0. If the lattice spacing is small
enough and the lattice large enough, the topological
charge rapidly approaches a plateau for which the ultra-
violet contributions to the topological charge have been
frozen out, and what remains is interpreted as the physi-
cal topological charge. Of course, if we continued this
cooling long enough, the gauge configuration would even-
tually become trivial and the topological charge zero.

The lattice topological charge of the cooled
conﬁguration is then measured as
€uvpo TT(U LU ) (A7)
32772 S%s woa T
where U, is the product of the SU(3) gauge-field ma-

trices around a plaquette in the uv plane. From Q one

obtains the topological susceptibility
12

=— , A8

A2 (A8)

where V is the space time volume of the lattice. In the

chirally broken phase, the leading O (m,) contribution to
X is predicted to be

M
X= nfz 4 <¢1,})7

(A9)
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where at infinite spatial volume we would evaluate ()
at m, =0 to avoid having to define a subtraction scheme
to remove its divergences for m,70. In the chirally un-
broken phase, (%)) evaluated at m, =0 vanishes, and x
is higher order in m,. In fact, for small m, we expect

xem,’, (A10)
where the constant of proportionality involves zero-
temperature quantities not measured in these simulations.

Because a parallel implementation of the cooling
method is less local than a serial implementation, there
was a greater chance of changing the global topology
during a cooling sweep than using a strictly local method.
To check that this did not unduly bias the results, we also
employed a method which cooled the lattice less rapidly
at the beginning. This was achieved by using an underre-
laxed version of the Cabibbo-Marinari heatbath method.
This worked as follows. If the usual implementation of
the Cabibbo-Marinari algorithm would require multiply-
ing a particular SU(2) subgroup by the SU(2) matrix

V=explia,o,) (A11)
we would instead multiply by
Vy=explira,o,) , (A12)

where A <1 is the underrelaxation parameter. In Table
IV, we list values for the topological susceptibility Y
determined by the normal cooling method, using 25 cool-
ing sweeps, and by first cooling the gauge fields slowly us-
ing the underrelaxed method with A=0.2 for 25 sweeps,
followed by 25 sweeps of normal cooling. The results of
the two methods are clearly consistent.

3. Wilson-Polyakov line correlations

If L (x) is the temporal Wilson-Polyakov line with spa-
tial coordinates x on an N2 X N, lattice then T =1/aN, is
the temperature of the lattice and

(L(x)L*(0))=Aexp[—V(r,T)/T], (A13)

where r=|x| and V(r,T) is the potential between two
heavy pointlike quarks. In the region where screening
occurs, A is usually chosen to be |[{L)|?> so that
V(,T)=0. Where screening occurs, we find that

[{L(X)L*(0))—|{L)|*| < AF(r)exp[ —u(T)r]  (A14)

for r sufficiently large, where F is polynomial bounded
and p(T) is the screening mass. This implies that the po-
tential is screened, viz.,

|V (r,T)]

< —
T =F(rexp[—u(T)r] .

(A15)
Studies of these quantities in Ref. [27] have yielded esti-
mates of u(7) in the plasma phases of pure gauge
theories.

We have adopted a slightly different approach based on
a method which has proved effective in extracting the po-
tential and string tension in zero-temperature lattice
QCD. In this method the simple Wilson-Polyakov line is
replaced by an extended ““fuzzy” Wilson line constructed
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of “blocked” links, defined recursively by

where the sum is over the four “staples” in the x and y
direction. This link matrix is then projected back into
SUQ@3). Our blocked link at the Nth level of blocking thus
has length 2¥. Our blocked temporal Wilson-Polyakov
line is defined in terms of these blocked links just as our
unblocked line was defined in terms of link fields. We
then define a state of zero-momentum in the x-y-¢ hyper-
plane by summing over the x and y positions of the line.
This fuzzy zero-momentum line we denote by W(z), and
define an unsubtracted correlation function
1

C(Z)=7<2W*(2)W(z +z>>

(A16)

(A17)

z
and a subtracted correlation function

1

P(Z)= v

<2W*(Z)W(z +Z)>—NSI( W>12J . (A18)

In the absence of screening { W)=0 and P(Z)=C(Z).
Then for Z large enough

P(Z)=C(Z)~exp[—V(N,)Z] (A19)

and if N, is also large the potential V(N,)=~«N,. The
blocking is designed to make this asymptotic form a good
approximation at relatively small Z.

When Debye screening occurs, { W)#0 and for large
enough Z

P(Z)~exp[—u(T)Z], (A20)

where again one expects blocking to enhance the ap-
proach to the asymptotic limit. C(Z) now behaves as

C(Z)~exp[—V(x,»,Z,T)/T], (A21)

Xy

with ¥ now the potential between smeared static sources,
so that for Z sufficiently large

SV x0,2,T)
T

(A22)

~exp[ —u(T)Z]

and this potential is screened. If the screening is relative-
ly weak, C(Z) may be well approximated by an exponen-
tial in Z for intermediate Z, defining a potential linear in
Z over this range, only becoming exponentially screened
for large Z. For full QCD with dynamical quarks, where
(W )70 even in the hadronic matter phase, it is impor-
tant to study both C(Z) and P(Z) to determine whether
exponential behavior of the latter really represents
screening or if it is just the reflection of the exponential
behavior of C(Z) indicative of a linearly rising potential.

To look for exponential behavior in our data, we have
calculated effective masses by fitting each propagator lo-
cally to the form

C(Z)= Af{exp(—uZ)+exp[ —u(N,—2Z)]} (A23)
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and calculating the effective screening mass p(Z) by solv-
ing

exp[ —M(Z —1)]+exp[ —-M(N,—Z+1)]  c(z—1)
exp(—MZ)+exp| —M (N, —Z)] C(Z)

(A24)

for M=u(Z). If n(Z)—>pu as Z— oo, pu is the desired
screening length.

We have also considered spatial Wilson lines oriented
in the x and y directions, with “fuzzy” or ‘“blocked”
forms created from blocked links defined by Eq. (A16),
only now the staples are oriented in the y and ¢, respec-
tively, x and ¢ directions and having zero-momentum
components in the x-y-¢ plane. Their correlations in the
z direction are defined in the same way as those for the
temporal lines. We have studied both the subtracted and
unsubtracted forms of the propagator. Here, previous
studies involving pure gauge theories without fermions
have suggested that these correlations obey an area law
defining a linear confining potential in both phases. For
high temperatures, the behavior of such correlations is
believed to be controlled by the three-dimensional Yang-
Mills-Higgs system which QCD becomes when N, is
much smaller than any correlation lengths of the system.
The area law behavior of these correlations is suggested
to be due to the monopoles this theory allows [33].

4. Hadronic screening lengths

The hadron screening lengths have been obtained using
a ““corner” type wall source [6] on the z =0 hyperplane.
On this hyperplane this source is C cosqt for x, y, and ¢
all even and is zero otherwise. C is a constant,
q=m/N,=nuT is the lowest Matsubara frequency and
the cos term incorporates the effects of the antiperiodici-
ty in ¢. Since such a wall source is not gauge invariant we
gauge fix to x-y-t Coulomb gauge to calculate our propa-
gators. Following Ref. [7], we define the finite-
temperature propagators for hadronic exitations obtained
with local sinks by

mz)= 3 |G(x,y,z,0)|*, (A25a)
X, )t

po(2)= 3 (—1)|G(x,p,2,0)|*, (A25b)
X, Pyt

pi(2)= 3 [(—=1)*+(—=1V]|G(x,p,2,0)|*, (A25c)
X,y,t
a(z)= 3 (=1 *G(x,p,z,1)|?, (A25d)
X,y,t
a(2)=3 (=1 (=1 +(—1P]|G(x,y,2,1)|?,
x,y,t
(A25¢)
o(z)=3 (=124 G(x,y,2,1)]?, (A250)
x,y,t
N(z)= 3 cosqt detG (x,y,z,1) , (A25g)
X,y,t

where G (x,y,z,t) is the quark Green’s function for the
above source. We fit our generic meson propagator M (z)
to the form

M(z)= A, {exp(—m z)+exp[—m  (N,—z)]}
+(—1VA_{exp(—m_z)

+exp[—m _(N,—2z)]}, (A26)

where A, are coefficients, m , is the screening mass of
the named meson, and m _ is the lightest opposite-parity
meson coupling to the same source. The nucleon propa-
gator is fit to the form

B(z)= A {exp(—m  z)+(—1)%exp[—m (N, —z)]}
+A4_{(—1)exp(—m_z)

+exp[—m _(N,—z)]} . (A27)

Finally it is convenient to follow [8] and define chiral
meson propagators, i.e., propagators for mesons which
are eigenstates of the U(1) X U(1) chiral symmetry which
remains exact on the staggered lattice. In terms of the
above these are

M (z)=n(z)*0o(z), (A28a)
My (z)=py(z)*alz), (A28b)
M (z)=p(z)ta,,(2) . (A28c¢)

In the chiral symmetry restored ‘“phase,” in the chiral
m,—0 all the M *’s should vanish while the M ~’s
remain finite.
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