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Equivalence and compositeness: Beyond 1iN, in four-fermion theories
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The equivalence between four-fermion and Yukawa models under the conditions Z3=Z4=0 is

rederived. These compositeness conditions are shown to be a simple self-consistent procedure for com-

puting beyond the usual large-N, or fermion bubble approximation. In the case of the two-Aavor

Nambu —Jona-Lasinio model the 1/N, - expansion is found to diverge for N, 24. The correct mass rela-

tionship and chiral-symmetry-restoration temperature T, are obtained as m =2m~ + m and T, =f .

PACS number(s): 11.15.Pg, 11.30.Rd, 12.50.—d

The relationship between Nambu —Jona-Lasinio (NJL)
type [1] four-fermion models and boson-fermion ("Yu-
kawa") theories has often been a subject of investigation.
The first systematic study was made by Lurie and
Macfarlane [2], who used the Schwinger-Dyson equations
to demonstrate the equivalence between four-fermion and
Yukawa models provided one imposes the condition
Z3 =0 in the latter. Subsequently, Eguchi [3] reformulat-
ed the equivalence using functional integrals, pointing to
Z3 Z4 =0 as compositeness conditions. Eguchi also
employed renormalization-group arguments to conjecture
on Z3=Z4=0 as eigenvalue conditions for finite radia-
tively generated couplings when the equivalent Yukawa
theory possesses nontrivial ultraviolet fixed points.

More recently, there has been a revival of interest in
the NJL-Yukawa connection with compositeness being
imposed as a boundary condition on the renorm-
alization-group equations [4,5]. These studies, which
were directed to dynamical electroweak symmetry break-
ing, are notable in demonstrating numerically the failure
of the customary large-N, or fermion bubble approxima-
tion in predicting mass relationships. Lattice methods
have also been brought to bear [6].

In this paper we will show the relevance of these ideas
to low-energy hadronic physics where NJL- Yukawa
models may be viewed as effective theories for QCD [7].
We formulate equivalence directly in terms of the com-
positeness conditions Z3 =Z„=O rather than as bound-
ary conditions. This has the advantage of avoiding some
subtleties in the renormalization-group approach (see
below) and more readily extending to finite temperature.
Further, we thereby easily obtain the relationships the
underlying four-fermion model imposes on the equivalent
Yukawa theory as analytic functions of N, and so may
address the convergence of the 1/N, expansion.

We begin by recounting some features of the Gell-
Mann —Levy linear o. model [8]. The approximately
chiral SU(2)-invariant Lagrangian density is

(o +n ) (Z —1) —(cr +s—r ) (2)

A straightforward evaluation of the one-loop renormal-
ization constants using an O(4) cutoff A and minimal sub-
traction at a scale M gives

A
Z, =Z2=1 — ln

4m

4g Nc ~
2 3X 2 A2+

8~ 4m

N, g
Z =1— '

ln
27T2

Z4 1 + 3k
2N, g 1 A

ln
2

The coupling constants obey the renormalization-group
equations (to one-loop order)

=P[tj5 g(o—.+ty5sr r)]P
+ , (a„~a~~-+a„~ a~~)
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(g +sr )
——(o +n ) +co,
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where g is an isodoublet of u and d-ty-pe quark fields
with color multiplicity N, and c is the small explicit
symmetry-breaking term generating PCAC (partial con-
servation of axial vector current). For p )0 and c =0,
the model is manifestly renormalizable, the counterterm
Lagrangian density being

5X =(Zz —1)gita/ (Z, ——1)gg(a. +i@so"r)g

Z3 —1
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M =P (g, A, )= g
4m

=p, (g, X)=,(3A, '+2Ar, g'A, —2+,g'),dk 1

2%.2

or, in terms of X=A, /g,
dXM =Px(g, X)= [3X +N, X 2Ã—, ] .

(5)

(4')

When p~ (0 and/or c & 0, the SU(2)L SU(2)ii symme-
try of X is spontaneously broken down to SU(2) v
through the vacuum expectation value ( o ) = u obeying
the (tree) tadpole equation v[p +A,u ]=c. Shifting the
fields by (o, m )~(v+cr, m ) in X, the fermions acquire a
mass mq=gu (=gf by the Goldberger-Treiman rela-
tion) and the cr field a mass m =2Xm +m, while the
pions are pseudo Nambu-Goldstone bosons: m =c/v.
As is well known [9], if the same shift is performed in
5X, the counterterms of (2) and (3) are all that is re-
quired to cancel the divergences in the broken symmetry
phase also.

Consider now imposing the conditions Z3 Z4 0;
then,

+5K =Z2gitJQ Zigg(—tr+iy5~ r)g
2+/ 2

(o +m. )+ca
2

(6)

Solving the Euler-Lagrange field equations, one finds the
meson fields as qq composites:

(c Ziggf, —Ziggi Ysr—g)
(o,n)=.

p +6p
Substitution of Eq. (7) into Eq. (6), or equivalently in-
tegrating o. and F7 out of the generating functional
W[il, ri] for fermion Green's functions, yields

(7)

+5K =P(iB m)g+— [(Qg)'+(Qi—y 5rf)'), (8)

where

GcG=(Z ) g, m=
p +$p Z)g

(9)

g (M)= ln
2~' M

(10)

and so

Z —Z =1— 1
1 2

C

As in Ref. [2] and contrary to Ref. [3], we stress that

which is nothing but the Lagrangian density X~iL of the
N JL model. Clearly, the normal (broken) symmetry
phases of the NJL inodel correspond to 6 ~ G, (6 )G, ),
with G, obtained by setting p =0 in (9). Note that (7)
and (9) yield the current-algebra relation

m (fQ) = f„m [1+O(m )] . —

Implementing the Z3 =0 condition,

Z3 =0 has nothing to do with divergences in the infinite
cutoff limit. Indeed, the renormalized coupling constant
vanishes for A —+ ~,' however, this is merely the triviality
disease of nonasymptotically free-field theories, to which
class the linear o. model belongs. More to the point, Z&
and Zz being cutoff and scale independent, (10) deter-
mines the running of the Yukawa coupling constant, in
which case A is a parameter playing the role of a dimen-
sionally transmuted coupling constant.

Using (10), the Z~ =0 condition reduces to the quadra-
tic equation

3X +N, X—2N, =0,
with positive root

N,
X=X~(N, )= +1+24/N, —1

(12)

(10')

Z(M) =g (M),

X(M) =A, (M)g (M) =Z(M)X(M),
(13)

one observes that X becomes a four-fermion theory at a
scale A if g(M~A) ~ oo with X(M~A) finite and posi-
tive. Then, by the multiplicative nature of the renormal-
ization group, the four-fermion model is identified with
the coupling-constant trajectories of the Yukawa theory
subject to these boundary conditions [4]. Indeed, in-
tegrating (4) thus also yields (10). Qualitatively similar
results for Abelian and discrete chiral models have been
obtained within the context of the renormalization group
by Hasenfratz et al. [6] and Zinn-Justin [13].

There is, however, a subtlety: As discussed by Bando
et al. [5], the consistent way to formulate coinpositeness

Note that X is also scale independent. While
X(iV, ~oo)~2 and m ~2m~+0(1/iV„m ), the usual
asymptotic value is approached only for N, ))24. In
fact, N, =3 lies outside the radius of convergence of
X+ (N, ). For the real world, X+ (3)= 1, and so
m = (2m~ +m )

' and the cr meson is a true resonance,
lying well below the qq threshold.

The compositeness conditions can be given another in-
terpretation: With Z3=Z4=0, L corresponds to start-
ing with X~JL introducing the composite fields, and then
adding and subtracting kinetic and self-coupling terms
for them to be determined self-consistently. Hence the
Z3 Z4 0 conditions may be viewed as a Hartree-
Fock-type procedure, extending the methods of NJL as
well as Eguchi and Sugawara [10] beyond fermion bub-
bles. It is the self-interactions of the composite mesons
which are responsible for the cr's binding energy.

In order to estimate the constituent quarks and o.-
meson masses, we use quark-counting rules and g„ to re-
late the meson-quark coupling to the pion-nucleon cou-
pling constant: g„=gN, g~. Taking the accurate experi-
mental values g =13.4+0. 1 [11],g~ =1.2573+0.0028,
f =92.5+0.2 MeV, and m =138 MeV [12], we find

g =3.55+0.04, m =328+4 MeV, and m =484+5 MeV.
The renormalization-group approach is fundamentally

different. By rescaling the meson fields in (1) as
(tr, m )~(cr, n )/g(M) and defining
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as a boundary condition is in terms of the Wilson renor-
malization group applied to the cutoff theory.
Discrepancies arise from the continuum (A~ac) treat-
ment unless (a) one adopts a mass-dependent renormal-
ization prescription to suppress fermion self-energy and
vertex contributions to the P functions or (b) they ac-
cidently cancel as in our example. A further complica-
tion is that to formulate compositeness boundary condi-
tions at nonzero temperature T requires the finite-T re-
normalization group [14].

Conversely, in our formulation we already have direct-
ly from Z3 =Z4=0 the maximal information that can be
extracted from the renormalization-group boundary con-
ditions. In addition, the extension to finite T is immedi-
ate, particularly in the real-time formalism [15]: Vacuum
expectation values & & are replaced by thermal averages

» and (fermion) Green's functions by temperature
Green's functions generated from W[g, g; T). Tempera-
ture does not modify the ultraviolet behavior of the
theory, and so the counterterms of (2) and (3) remain
sufticient to renormalize the linear o. model at finite T.
Then, under the compositeness condition Z3=Z4=0, we
have the identity W [g,g; T]= WN~„[g, g; T ]. Hence the
fermion-temperature Green's functions coincide.

Now, the thermodynamic quantities, pressure P and
energy density e, obtain from

« (T" +5T" )» =(e+P)U"U' Pg"— (14)

u[(3+N/~ —l)A, T /12+NIN, g T /12

+A(v —f )]=0, (15)

where U=U(T) and U(0)=f . The first two terms in (15)
represent the o. and m loops, while the third is the
fermion-loop contribution [17]. Keeping only the fer-
mion bubble part, with N&=2, N, =3, so that X=2g,
one finds T, =2f as the value at which (15) ceases to

where U" is the four-velocity and (5)T" is the stress-
energy tensor derived from (5)X. It follows that, under
the compositeness conditions,

« ( T:-+»:.) » =« TNL »
so also the thermodynamics of the two models are
equivalent when Z3 =Z4 =0.

Here we apply equivalence and compositeness to the
chiral-symmetry-restoration temperature T, and the T
dependence of the light-quark condensate [16,17]. Re-
stricting our attention to the chiral limit (m ~0), in the
high-temperature mean-field approximation the tadpole
equation for an arbitrary number N/ of fiavors in (1)
reads

(16)

and so the quark condensate melts as T approaches T, .
What we observe is that at lou temperature T «m, m,
only the composite pion loop contributes to the mean-
field tadpole equation,

U i [(NI —1 ) T /12+ v f ]=0—, T ((m, m

leading to (NI =2)
(17)

T2« le» =&1(y»—
8f„

T «m, m (18)

This result has also been obtained in the linear 0. model
by Contreras and Loewe [18] and is a general conse-
quence of chiral symmetry [19]. It is only through the
composite meson self-interactions that the NJL model
also satisfies the low-temperature theorem.

Of course, in the real world chiral symmetry is only ap-
proximate and only approximately restored, as signaled
by a minimum of m (T) near T, ; m (T) is an increasing
function of T, while the condensate never melts, but
merely fades away as T~ ~ [16,18].

Finally, as deconfinement takes place at or near T„one
should expect 6 to have significant temperature varia-
tions there. Hence the NJL and linear 0. models can only
be trusted in the low-temperature regime.

In conclusion, we have shown the equivalence of the
NJL model to a linear o. model, both at zero and at
nonzero temperature, when the compositeness conditions
Z3 Z4 0 are imposed. Equivalence and compositeness
comprise a simple self-consistent scheme for computing
beyond the customary large-N, or fermion bubble ap-
proximation in four-fermion theories. We have also
demonstrated that N, =3 lies outside the radius of con-
vergence of the 1/N, expansion. Finally, much of the
important physics, such as the cr meson binding energy
and the finite-temperature behavior of the quark conden-
sate, lies precisely in the "1/N, suppressed" composite
meson self-interaction.

The authors wish to thank M. Loewe for a useful dis-
cussion on the finite-temperature o. model. This work
was supported by the Foundation for Research Develop-
ment.

have nontrivial solutions vAO. In the real world where
N, =3 and the composite mesons contribute, A, =g for
NI =2, and one has instead T, =f .

In the chiral limit, from (7) and the T independence of
the renormalization constants,
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