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Scenarios for electroweak baryogenesis require an understanding of the effective potential at finite
temperature near a first-order electroweak phase transition. Working in the Landau gauge, we present a
calculation of the dominant two-loop corrections to the ring-improved one-loop potential in the formal
limit g «A, «g, where A, is the Higgs self-coupling and g is the electroweak coupling. The limit
A, «g ensures that the phase transition is significantly first order, and the limit g «A, allows us to use
high-temperature expansions. We find corrections from 20% to 40%%uo at Higgs-boson masses relevant to
the bound computed for baryogenesis in the minimal standard model. Though our numerical results
seem to still rule out minimal standard model baryogenesis, this conclusion is not airtight because the
loop expansion is only marginal when corrections are as big as 40%. We also discuss why superdaisy ap-
proximations do not correctly compute these corrections.

PACS number(s): 11.15.Kc, 05.70.Fh, 12.15.Cc, 98.80.Cq

I. INTRODUCTION

Recent scenarios [1—5] for baryogenesis via the
baryon-number anomaly of the standard model have
stimulated a Aurry of investigation into the details of the
electroweak phase transition in the hot, early Universe.
Sakharov's generic conditions for baryogenesis [6] require
(1) baryon-number violation. (2) CP violation, and (3)
disequilibrium. In recent scenarios, the source of baryon
number violation is a standard model effect, arising be-
cause baryon number has an electroweak anomaly and so
is violated by nonperturbative physics. The rate of such
violation is of order exp[ E, (T)/T) —where T is the
temperature, E,„(T) —~cr( T) /g is the electroweak
sphaleron mass, and cr(T) is the Higgs vacuum expecta-
tion value (VEV) at high temperature [7—10]. In almost
all scenarios, disequilibrium is provided by bubble nu-
cleation and expansion during a first-order electroweak
phase transition. The requirement that the first-order
phase transition be sufficiently strong then places con-
straints on models of the Higgs sector. In particular, it is
necessary that baryon-number violation be turned off
after the phase transition is completed; otherwise, the
Universe will simply relax back to equilibrium, where the
net baryon number is zero. Since the rate of baryon-
number violation is exponentially sensitive to the VEV
cr(T), it is important to study the minimum P=cr(T) of
the finite-temperature efFective potential V(P, T) just
after the phase transition. The purpose of this paper is to
study the extent to which two-loop effects modify the re-
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suits that have been found using one-loop approximations
to the effective potential.

In this paper, for the sake of simplicity, we shall focus
on the minimal standard model with a single Higgs dou-
blet. Many of our calculations should be easily extend-
able to more complicated Higgs sectors. Most scenarios
for electroweak baryogenesis are based on multi-Higgs
models because the CP violation required for baryo-
genesis can be incorporated by CP-violating interactions
in the Higgs sector, where it directly affects classical pro-
cesses involving the sphaleron. It has been suggested,
however, that the standard CP violation of the quark sec-
tor may by itself provide sufficient CP violation, so that
even the minimal standard model, with a single Higgs
doublet, could be viable [11]. In the minimal standard
model, and using the one-loop ring-improved effective po-
tential (which we review later), Dine et al. [12] have es-
tablished an upper bound of roughly 30—40 GeV on the
Higgs-boson mass mH(0) (measured at zero temperature)
if baryogenesis is to occur at the weak phase transition.
This scenario is then excluded by the experimental bound
of mH(0)) 60 GeV [13]. (These particular constraints
may be evaded by models with more than one Higgs bo-
son. )

An important question for such limits is whether they
are significantly modified by higher-order corrections. As
we shall review in the next section, the loop expansion
parameter in this context turns out to be formally of or-
der A, /g, or equivalently mH(0)/M~(0), where A, is the
Higgs self-coupling and g is the SU(2) gauge coupling.
For the upper bound of Dine et al. on mH(0) of 30—40
CreV, it is not a priori clear whether mH(0)/M~(0) is
small —it all depends on the exact numerical coefficients
in the loop expansion. Indeed, some of the earliest stud-
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ies of corrections to the one-loop potential found large
corrections, but these studies were subsequently shown to
be Sawed [12]. To resolve whether the bounds are reli-
able, we present an explicit computation of the dominant
two-loop corrections to the one-loop ring-improved
effective potential. Our objective is to compute the dom-
inant corrections as the Higgs-boson mass gets large, but
not so large that the loop expansion breaks down.
Specifically, we assume

g «A, «g
(As we shall review in the next section, the lower limit
g «A, simplifies the calculation by justifying a high-
temperature expansion. ) From the numerical results of
this calculation, we shall determine the significance of
multiloop corrections as a function of Higgs-boson mass;
when we find numerical corrections of order 100% or
more for a given Higgs-boson mass, we shall know that
the loop expansion has indeed broken down.

The computation of such corrections has been previ-
ously attempted in the literature using a superdaisy ap-
proximation [14]. Unfortunately, as we discuss in Ap-
pendix C, the superdaisy approximation does not correct-
ly compute the dominant corrections to the ring-
improved one-loop potential.

Naively, we expect that corrections to the baryogenesis
bounds should be small because the sphaleron is a classi-
cal solution of the effective high-temperature theory. The
actions of classical solutions [in this case corresponding
to the Boltzmann exponent E, ( T) /T for baryon viola-
tion] are generally inversely related to loop expansion pa-
rameters. So in any case where baryon violation is turned
off after the phase transition, we should expect that the
loop expansion will be under control. Our results only
marginally validate this conclusion.

The casual reader who is interested only in our final
numerical results should turn to Figs. 24—27 in Sec. VIII.

In Sec. II, we review the one-loop ring-improved po-
tential and discuss how to power-count diagrams to find
the dominant two-loop corrections for g «k «g . We
will be led to adopt the formal power-counting rule k-g
for the rest of the paper. In Sec. III, we warm up to the
problem of two-loop thermal calculations by first con-
cocting a scalar problem that is loosely analogous. We
shall review the equivalence of various prescriptions for
resummation of ring diagrams and we shall settle on one
that implements resummation only for the effective
three-dimensional theory obtained after heavy, nonstatic
modes have been integrated out. In Sec. IV, we turn to
the simplest gauge theory case —the Abelian Higgs mod-
el. As well as computing the two-loop potential near the
phase transition, we isolate which contributions are im-
portant for shifting the VEV at the phase transition from
its one-loop value. Section V is devoted to the contribu-
tions of chirally coupled fermions. In Sec. VI we discuss
non-Abelian theories using SU(2) as an example, and we
turn to the minimal standard model in particular in Sec.
VII. Numerical results for the size of two-loop correc-
tions in the minimal standard model are presented in Sec.
VIII. Most of the results for diagrams contributing to
the two-loop potential are collected in Appendix A. Ap-

pendix B gives derivations of the high-temperature ex-
pansions of some quantities discussed in the main text.
Finally, Appendix C contains our criticism of the super-
daisy approximation to the effective potential.

Throughout this paper we shall find it convenient to
work exclusively in the Euclidean (imaginary time) for-
mulation of thermal field theory. We shall conventional-
ly refer to four-momenta with capital letters K and to
their components with lowercase letters: IC =(ko, k). All
four-momenta are Euclidean, with discrete frequencies
ko =2nvrT for bosons and (2n +1)AT for fermions, un-
less stated otherwise.

II. POWER COUNTING AND REVIEW

A. Pure scalar theory

V,)(P)= ——v P +—A.P4 .1 2 2 1 (2.1)

For simplicity, let us temporarily ignore the gauge and
fermion sectors and review the effect of finite temperature
in a theory with a single, real scalar field. At high tem-
perature T ( T ))v), there is an additional contribution to
the scalar mass; the effective potential is approximately of
the form

V (P, T)=——v + A, T P +—AP
2 24 4~

(2.2)

which is the same as the zero-temperature potential ex-
cept that

v ~v g— ~~AT +v (2.3)

The addition of the thermal mass term above is responsi-
ble for symmetry restoration at high temperature
[15—17], and this approximation to the effective potential
describes a second-order phase transition at T, =24v /1, .2 2

Diagrammatically, the thermal mass term in (2.2)
arises from the quadratically divergent loop of Fig. 1. In
the temperature-dependent piece of a quadratically diver-
gent loop, the UV divergence is cut off at momenta of or-

FICx. 1. Quadratically divergent loop giving rise to the
therma1 mass.

The classical, zero-temperature Higgs potential is of
the form
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der T, and so Fig. 1 is of order A, T for temperatures
large compared to the scalar mass.

The thermal mass above is simply the dominant term
in a high-temperature expansion of the full finite-
temperature one-loop potential. The temperature-

dependent piece of the full one-loop potential is simply
the free energy of an ideal gas of scalar particles with
mass m (P)= V,'IlP), which is the mass associated with
Auctuations in the scalar field around a background field

d kV'"(P, T)= V„(P)+Tf ln( 1 —expI 13[k—+m (P)]'~ })+(one-loop zero-temperature result) .
(2m. )

In the high-temperature limit T ))m (P),

V"'(P, T)= V,&(P)+const+ m (P)T~ — m (P)T+0 (m )
1 2 2 1

24 12&
3/2

(2.4)

(2.5a)

1 2 1=const+ ——v + A, T
2 24

—v +—A,P
2 1 2

2
T+—AP +O(m ) .

4f
(2.5b)

The constants above are temperature dependent but P in-
dependent. Such constants are not relevant to studying
the mechanics of the phase transition, and we shall gen-
erally ignore them.

We have used the classical relation m (P )
= —v + —,'A, P above; however, the eff'ective value (2.3) of
v is quite different from its classical value at high tem-

I

m2 (y) v2+ & AT2+ t Ay2 (2.6)

which inserted into (2.5a) yields the ring-improved one-
loop potential [18—20]'

perature (T + T, ). It is therefore important to make the
replacement (2.3) and use instead

V'„'„' (P, T)=const+ ——v + A, T1 2 1 1

1277
—v+ AT + —AP

2 1 2 1 2

24 2

3/2

T+ —,AP +O(m, ) . (2.7)

This potential sums the dominant contributions of the
one-loop ring (or daisy) graphs shown in Fig. 2, where
each quadratically divergent ring has been approximated
by its high-temperature limit A, T /24. The substitution
of v,s for v corresponds to a resummation of the propa-
gator as in Fig. 3. We shall treat this resummation more
carefully and systematically in Sec. III.

The potential (2.7) appears to describe a first-order
phase transition, as shown in Fig. 4. At the temperature
To where the quadratic term vanishes, the potential is of
the form bA, P T +—c A,P and has a minimum at
nonzero P-&A.T. Just slightly above To, the small quad-
ratic term will generate a second minimum at /=0, indi-
cating a first-order transition. The symmetry-breaking
minimum at the phase transition, labeled P, in Fig. 4, will
occur at a point where all three terms of the potential
(2.7) are the same order of magnitude. One easily con-
cludes that

$,-&A.T, —, (vs, )-A, T (2.8)

In fact, the phase transition in the pure scalar theory is

)'= ( ) —g T pi.ece of

FIG. 3. Resummation of the propagator in the ring approxi-
mation.

FIG. 2. A generic example of a one-loop ring (daisy) graph.

tThis potential has an imaginary part at small P. A physical
interpretation may be found in Ref. [21].
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FIG. 5. Dominant contributions to the scalar thermal mass
in gauge theories with fermions, in addition to Fig. 1.

B. Gauge theories

FIG. 4. Qualitative form of the potential as a function of
temperature during a first-order phase transition. The poten-
tials have been normalized to be zero at the origin.

known to be second order. The conclusions from the
previous paragraph cannot be trusted because higher-
loop corrections to the one-loop ring-improved potential
are large at P, . As discussed earlier, loops with quadratic
UV divergences are of order A, T and are dominated by
large momenta of order T. These O(A, T ) contributions
are all absorbed by using ring-improved propagators. UV
convergent loops (and the nondivergent pieces of qua-
dratically divergent ones) are instead dominated by their
infrared behavior. In Euclidean space, this means loop
momenta are dominated by ko=0 and ~k~ —m. The
dominant ko =0 piece of the finite-temperature frequency
sum T gk gives such loops a linear, rather than quadra-

0

tic, dependence on T. Including a factor of 1/m, ff to
make a dimensionless quantity, the cost of each loop is
therefore kT/m, ff. Now consider the loop expansion
parameter A, Tjm, rr at the minimum P, —&A, T corre-
sponding to the apparent first-order phase transition of
the ring-improved one-loop potential (2.7). Equation
(2.8) implies that m, s(P, ) —kT, and so the loop expan-
sion parameter is of order 1, verifying that the ring-
improved loop expansion cannot be trusted to distinguish
between a first- and second-order phase transition in this
model.

v + jef v +ag T2 & 2 2 2 (2.9)

where ag symbolizes a linear combination of the squared
couplings in the theory. In the minimal standard model,
for instance,

ag X+—g +—g, +3g2 (2.10)

where gz, g„and g are the couplings for SU(2), U(1),
and the top quark Yukawa interaction. (We shall always
ignore all Yukawa couplings except for the top quark.
See Sec. VII for coupling normalizations. ) Diagrammati-
cally, these contributions again arise from quadratically
divergent loops, such as in Fig. 5.

The temperature dependence of the full finite-
temperature one-loop potential may again be interpreted
in terms of the free energy of an ideal gas. Now we must
sum contributions from all the various particles in the
theory with masses m, (P) induced by the background
Higgs field P:

The situation is quite different when the gauge sector is
included. As we now review, the first-order phase transi-
tion seemingly described by the ring-improved effective
potential is associated with a small loop expansion pa-
rameter if the Higgs-boson mass is sufFiciently small. The
phase transition is therefore indeed first order, and the
ring-improved loop expansion is a valid tool for studying
it.

As in the pure scalar theory, there is a thermal contri-
bution to the Higgs-boson mass. It is of the form

V'"(P, T)= V,&(P)+g+n, Tf ln(1+expI —P[k +m, (P)]' I )+(one-loop zero-temperature result)
d k

l 217 3

= V„(P)+g n, b, V, (P, T), (2. 1 1)

where the sum is over all particle species i, n, is the number of degrees of freedom associated with each species, and the
upper (lower) sign is for bosons (fermions). The high-temperature limit T ))m;(P) is [17]

See any textbook on critical phenomena. Concerning the order of the transition in the gauged case, see Ref. [22] for an analysis
more generally applicable than what we shall review below. For recent comments on this issue, see Ref. [30].

3An early discussion of this power counting may be found in Ref. [16].
Loops which are logarithmically UV divergent may cost a factor of (A, T/m, &)ln(T/m, &). We shall ignore the logarithms when

power counting.
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b, V, (Q, T)=const+ I, (P)T — m, (P)T+O(m; ) (bosons),
1 1

EV, (Q, T)=const+ m, (P)T +O(m, ) (fermions) .
I

(2.12)

As before, we shall generally ignore the P-dependent constants indicated by "const" above.
For gauge bosons and the top quark, m, (P) is proportional to gP where g is the appropriate coupling. Ignoring the

Higgs contribution for now, the high-temperature expansion of the one-loop potential is then schematically of the form

VI "((5,T) = —
( v+—ag T )P bg —

P T + 4—t
2 4I

(2.13)

where, for the standard model,

bg3$ T~[6Mw(P)+3M'(P)] = g2+ (gi+g2) (2.14)

T2 T2
6Mw($) to [4Mw($)+2MI w(P)]12& 12~

(2.15)

Because of the P term, the potential (2.13) describes a
first-order phase transition.

As before, we can ring improve the one-loop potential
to sum one-loop ring diagrams such as Fig. 6. In Eu-
clidean space, the small, hard loops are quadratically
divergent and contribute a thermal mass of order g T to
the Ao polarization of the gauge fields. This is the usual
Debye mass, and the ring improvement is implemented
by incorporating it into M(P) for that polarization [20].
For instance, the W contribution to the cubic term (2.14)
changes from

I

larization as the longitudinal polarization and the other
two polarization perpendicular to the four-momentum as
the transverse polarizations. The ring improvement of
the terms arising from the Z are more complicated due to
mixing with the photon [20], and we leave explicit formu-
las for Sec. VII.

We now estimate the order of magnitude of parameters
associated with the phase transition. Consider the
schematic form of the potential (2.13). (The ring im-
provement will not modify the following order-of-
magnitude estimates). As in the scalar case, the nonzero
minimum at the phase transition occurs when all three
terms are roughly the same order of magnitude, which
yields

where

Mw(4) 4gz. k M—iw—(4) .'gz0 + 6'g—2—T—(2.16)
(2.17)

For Euclidean frequency ko =0, which dominates the in-
frared (IR) behavior of loops, we shall refer to the Ao po-

Table I shows the order of magnitude of several other pa-
rameters. Of particular interest is the loop expansion pa-
rameter for loops involving massive gauge bosons; it is
order A, /g . We shall formally assume X((g (that is,
m~ ((Mw at zero temperature) so that the loop expan-
sion is well-behaved. (In Sec. III, we shall discuss in
more detail why the vector loop expansion parameter is
the relevant one for our calculation. ) Furthermore, to
justify our ubiquitous high-temperature expansion
T))M and m, Table I shows that we must also assume
g ((k.

Assuming g (&k «g, our goal is to consistently
compute the leading correction to the ring-improved
one-loop potential. It is cumbersome to compare orders
of magnitude of various corrections when there are two
coupling constants g and A, . Fortunately, the power
counting can be simplified by formally taking

(2.18)

FICx. 6. Generic one-loop ring diagram in a gauge theory
with fermions.

which is at the geometric center of the range
g « k « g under consideration. This simplification
seems to always order the relative size of corrections in a
way that is consistent over this entire range of k. We
henceforth always assume A. -g unless otherwise stated.
The simplified power counting is shown in the far-right
column of Table I. Note that the vector loop expansion
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TABLE I. Orders of magnitude of parameters in the /%0 vacuum at the phase transition. The far
right column gives the simplified power-counting rules, which assume k-g'. The entry for the two-
loop correction to the potential refers to the dominant P dep-endent corrections.

Scalar mass
Transverse vector mass
Vector Debye mass
Vector loop expansion parameter
Scalar loop expansion parameter

Barrier in V between minima
Two-loop correction to potential

P-(g'Il, )T
m —(g '/&k) T
M-(g" /X) T

(M2 M2)1/2 gT
g T/M-A, /g

A, T/m —(k/g )

(T, —To)/T, -g /k
V (g 12/g3) T4

(g T/M)V-(g' /X')T

T
g 3/2T

gT
gT

3/2

g 3T4

g4T4

parameter is g (rather than g, as it would be at zero tem-
perature) and that the Debye mass and the transverse
vector mass are formally the same order of magnitude.

C. Multiple loops and IR disasters

In studies of high-temperature QCD, it is well known
that the perturbative computation of the free energy
breaks down at three loops because of infrared diver-
gences associated with static (ko=0), transverse gluons
[23]. Though the longitudinal gluons pick up a Debye
mass of order gT at one loop, as discussed earlier, the
transverse gluons do not. These IR divergences are inter-
preted as a sign that the transverse gluons must have a
mass of order g T which is not perturbatively calculable,
corresponding to a finite screening length for static, mag-
netic fields in the plasma. The uncertainty in the free en-
ergy due to the incalculability of this effect is order

6T4 5

The situation is different in a spontaneously broken
theory because the gauge bosons corresponding to broken
symmetries are not massless. In pure electroweak theory,
for example, the transverse 8' and Z bosons are massive
in the symmetry-breaking minimum at the phase transi-
tion. One can compute to any order of perturbation
theory in this minimum without infrared singularities.
(A perturbative expansion is still not useful, of course,
unless the loop expansion parameter is small. ) However,
there is still a limit to how well the phase transition can
be studied, because determining the temperature of the
phase transition requires comparing the free energy of
the asymmetric /%0 minimum with the symmetric /=0
one, and all the familiar problems of high-temperature
QCD arise in the symmetric minimum. The calculation
of the free energy at /=0 breaks down at three loops and

III. WARMING UP WITH A SCALAR TOY MODEL

We now want to proceed to compute the dominant
two-loop contributions to the potential. To introduce the
basic computational method, we wish to start with as
simple an example as possible: a pure scalar theory of a
single, real field. Sadly, we saw in the last section that the
loop expansion cannot be trusted to study the phase tran-
sition in this model, because the loop expansion parame-
ter A, T/m, tt(P, ) is order 1. However, there is no reason
we cannot compute the effective potential at larger values
of P where m, (Ptr) is larger so that the loop expansion pa-
rameter is smaller. This region of the potential has noth-
ing to do with the phase transition in this model, but it
provides a simple example of the computations and ap-
proximations that we later implement in gauged models.
We shall take a classical Higgs potential of the form

V,)(P)= ——v P +—
(g tt'

2Z & 24 (3.1)

has an uncertainty of order g T"; there is therefore little
point in computing the free energy of the asymmetric
vacuum to any better accuracy. At the phase transition,
the typical size of each of the three terms in (2.13) is g T
and the size of n-loop corrections are suppressed by
(g T/M)" ', giving g"+ T . So there is no point com-
puting the free energy beyond three loops near the asym-
metric vacuum. Being unadventurous, we shall limit our-
selves to computing two-loop corrections.

In the full standard model, IR singularities are encoun-
tered even in the asymmetric vacuum because the elec-
troweak sector couples to the top quark, which couples to
transverse gluons. In the asymmetric vacuum, this prob-
lem does not manifest until five-loop contributions to the
potential are considered.

~We remind the reader of a simple mnemonic for this result.
The only scale in the effective three-dimensional theory, which
is the source of the IR divergences, is g T. So the free energy of
the three-dimensional theory, which will be incalculable by per-
turbation theory, is order (g T) by dimensional analysis. The
relation between the four-dimensional and three-dimensional
free energies is a factor of T, giving g T .

and shall study the potential for P of order

(3.2)

at temperatures T near the critical temperature T, ~ This
is supposed to be analogous to the k-g gauge theory
discussed in the last section insofar as (1) there is a zero-
temperature loop expansion parameter called g, and (2)
we examine the potential at P —T (see Table I). The
effective scalar mass is then of order gT and the loop ex-
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pansion parameter is order g T/m -g, both analogous to
the vector mass and vector loop expansion parameter in
Table I. We have named the scalar self-coupling g in
the toy model both to emphasize this analogy and to
avoid confusion with our A, -g convention used in the
gauged models. We hope that the reader's benefit from
seeing the techniques first presented in a simple model
wiH outweigh any confusion inherent in the temporary
change of conventions. Orders of magnitude are summa-
rized in Table II.

Let us apply our earlier review of power counting to es-
timate the two-loop contribution to the potential. Ignor-
ing quadratically divergent loops, which will be absorbed
by ring improvement, the dominant two-loop contribu-
tion should be order g T m, where there is an explicit
power of g, an explicit power of T for each loop, and
then I by dimensional analysis. Since m -gT, the two-
loop contribution is equivalently order g T . When com-
puting the two-loop potential, we shall always drop any
contributions smaller than O(g T ). In the region of P
under study, the contributions dropped are of the same
order as three- and higher-loop contributions, and so
there is no point in retaining them in a two-loop calcula-
tion.

A. The one-loop result without resummation

We shall leave the analysis of resumming rings for
Secs. III C and III D. For now, we focus on the details of
the unimproved loop expansion in this model and start by
carefully examining one-loop results. We need to keep
terms to order g T, which requires one higher order in
the high-temperature expansion (2.5a) discussed in the
Introduction. At this order the one-loop potential re-
ceives UV infinite contributions from usual zero-
temperature divergences, and so we must confront regu-
larization and counterterms. We shall regularize all our
calculations using dimensional regularization in 4—2e di-

By assumption:
EfFective mass at P
Debye mass
Loop expansion parameter
Two-loop correction to potential

7
m (P)-gT

~g7
g'T/m (P) -g

g474

mensions. Computing counterterms to one-loop order,
one finds that the bare potential expressed in terms of the
renormalized coupling constants is

1 2 2 2 41
Vbare(0) Vbare( bare+ gbare0bare2 41

= ——Z, v (t' + (p 'Z—
2

Z, =1+ g —+O(g ) .
1 21

32m

Z2=1+ g —+O(g ) .
3 21

32m

(3.3)

(3.4a)

(3.4b)

p is the arbitrary renormalization scale. We shall use
modified minimal subtraction scheme (MS) regulariza-
tion, which, we remind the reader, corresponds to per-
forming minimal subtraction (MS) and then changing
scales to p, by the substitution

1/2
eP=P
4 (3.5)

where yE is Euler's constant.
The next term in the high-temperature expansion of

the one-loop potential is well known (but we shall review
the derivation in Sec. III D) [17]:

TABLE II. Orders of magnitude of parameters in the scalar
toy model for P-T and T-T, . The entry for the two-loop
correction to the potential refers to the dominant P dep-endent
corrections.

Scalar toy model

p 'Vg"(p)=p 'Vb„, (p)+J[m(p)],

J(m)= —p '
x 1n(K +m )

1

(3.6)

1 2 2 1=const+ I T — I T—
24 12m

1 4 1
m —+ln —2c~ +O(m IT )+O(e),

64 ~ T
(3.7)

where

m2(rt ) = —v + gp 'P, cz =in—(4m') —yz,2 1 2 2e 2 (3.8)

and the integral-summation sign above is shorthand for
the Euclidean integration

definition of J(m) includes both the temperature-
dependent and zero-temperature contributions. Note
also that MS regularization does not get rid of all factors
of yE and 1n(4') as it would at zero temperature. The
subscript g above refers to the absence of resummation.

(3.9)

The sum is over ko =2~n T for all integers n.
The divergences in J(m) cancel against the counter-

terms in Vb„,(p). The reader should note that our

One often sees only the temperature-dependent piece in the
literature, which has an m ln(m /T ) term, which is not ana-
lytic in m . It is important to realize that in the full result,
which includes the zero-temperature contribution, the only
term not analytic in m is the m T term.
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B. The two-loop result without resummation

The two-loop diagrams are shown in Fig. 7, where the heavy dots represent one-loop, zero-temperature counterterms.
The propagators use the mass (3.8) appropriate in the presence of the background field P, and we shall usually refer to
m (P) simply as m . The crosses in the diagrams represent explicit factors of the background field P at vertices.

Figure 7(a) is the most straightforward of the two-loop diagrams, giving a contribution to the effective potential of

p 'V"= 'g [—I(m)] (3.10)

where

I(m) =p '$t,'x. (3.11)

I(m) is related to J(m) of (3.6) by I(m) =m dJ/dm, and so its high-temperature expansion is

I (m) = T — m T — m —+ln1 2 1 1 2 1 p
12 4m

2CB

+O(m /T )+Ei,, T +O(emT),1' l2
(3.12)

where we have now explicitly shown the leading term of order e. Though it will appear in results for individual dia-
grams, it turns out that

i,= ln +2yz —2 ln2 —2p g'(2)
T' g(2)

(3.13)

is an unimportant constant because it will cancel in our final result. (A sketch of the derivation of i,, may be found in
Sec. III D. g is the Riemann zeta function. ) Using the expansion (3.12) in the contribution (3.10) to the potential, and
keeping terms only up to 0 (g T ),

1 1 1
—2

p 'y"=const- g mT g ~pyz T
48 x4' 48(4~) T2

—2cii —6 +O(g T ) . (3.14)

(When we later address the resummation of rings, we
shall find that the first term, which is order g T, is ab-
sorbed by the resummation. )

Figure 7(b) is more interesting because it is logarith-
mically divergent in the three-dimensional theory (that is,
when all loop frequencies ko are set to zero). As a result,
it generates a logarithmic dependence on the mass m (P),
unlike the one-loop contribution or Fig. 7(a). As we shall
see when we later return to gauge theories, it is such loga-

I

p2ey(b) & g4 2ey2H( ) (3.15)

where

rithmic terms which are almost solely responsible, at the
order under consideration, for modifying the VEV at the
phase transition from its one-loop value.

Turning to specifics, the contribution of Fig. 7(b) is

H(m)=p '4~ 1

(P +m )(Q +m )[(P+Q) +m ]

The high-temperature limit of H has been evaluated by Parwani [24], who finds

(3.16)

1 2 1 p TH(m)= T —+i,,+ln +21n
64~2 e T~ Pl

+2—cH +O(m )+O(eT ), (3.17)

where

c~=5.3025 (3.18)

is a numerical constant which can be expressed in terms of double definite integrals of elementary functions. (See Ref.
[24] for details. ) Substitution into (3.1S) gives

2ey(b) 4 2~ 2T2 j
48(4~) T2

T2—21n
Pl

—2+cH +O(g T ) . (3.19)

Note the promised presence of 1n[m (P)].
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The two counterterm graphs [Figs. 7(c) and 7(d)] give

1 22 1
p 'Vg"= — g v I(m) —=const+0(g T ),4(4~)' (3.20)

2@y(d)
g g p'PI(m) =— g p'P T —+i, +O(g T ).

8(47r) E 96(477 ) E
(3.21)

Combining the results of this subsection with (3.6) yields the unimproved two-loop potential:

p 'V' ~= const — g mT +— —v (T)+ g (T)T —
craig v

48X47r 2 24 (4 )' ~

1
,g'T' 2ln

24(47r )

T2

m
—1 —

cia
—cH

1 3 1 2 3
127r 4! (47r )

m T+—g (T)+ ciig p +O(g T ), (3.22)

where

m = —v+ —'g (t (3.23)

choice is merely convention and lacks physical
significance.

4g (T)=g g —ln ~ +
32&2 T2

(3.24)

—2

v (T)=v 1 — g ln +
32772 T2

(3.25)

As it should be, the result is invariant under the renor-
malization group to the order we have computed. We
have chosen to write the answer in terms of the running
couplings g ( T) and v ( T). (At this order we need not
worry about the anomalous scaling of P.) The physical
scales in this problem are m and T, and so, when evaluat-
ing (3.22) in practice, we should choose the renormaliza-
tion scale p to avoid producing large logarithmic
enhancements, in(p/T) or in(p/m), of yet higher-order
corrections. Fortunately, since m -gT, m and T are not
drastically different scales. The difference between g (T)
and g (m) is of order g lng and is indeed small, and so
p- T and p-m are both adequate choices. We chose to
write (3.22) in terms of g (T) instead of g (m), but this

C. Resummation: Method I

2EZ 2y4 Z g2T2y21 1

41 48
(3.26)

where the thermal mass term has simply been added in
and subtracted out again so that nothing is changed. But
now interpret the first term as part of the unperturbed
Lagrangian Xo and treat the last term as a perturbation.
(We shall loosely refer to the last term as the thermal
"counterterm, " but we have not in fact changed the re-
normalization prescription from the usual zero-
temperature one. ) Nothing has changed if all orders of

How do I resum thee? Let me count the ways.
We now want to implement the resummation of the

dominant parts of ring diagrams by replacing m (P) in
our propagators by m, s(P) as defined in (2.6) to include
the thermal contribution to the mass. Parwani [24] (who
has computed the subleading correction to the scalar
mass at high temperatures) uses one method for doing
this systematically and consistently. Rewrite the bare po-
tential (3.3) as

2+1 22V„„,(P)= —Z, —v + g T

(b)

FICx. 7. Two-loop contributions to the potential of the scalar
toy model.

7These couplings are run with the usual zero-temperature re-
normalization group and do not represent the use of any sort of
temperature-dependent renormalization-group equations.

FIG. 8. Two-loop contribution involving the thermal coun-
terterm.
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perturbation theory are summed. However, order by or-
der, the g T pieces of quadratically divergent subloops
now cancel against diagrams involving the thermal coun-
terterm; the new perturbative expansion is controlled by
the convergent-loop expansion parameter g T/m.

In the case at hand, this resummation replaces m (P)
by

(y) v2+ & g2p2Ey2+ ) g2T2 (3.27)

in our previous calculations of contributions to the two-
loop potential and introduces the new diagram of Fig. 8.
The box represents the thermal counterterm —the in-
teraction generated by the last term in (3.26). Figure 8
gives

p'V' '= — g T I(m )
1

48 eff

=const+ g m, ffT +
2 &T +

2
2 3 1 2 2 2 1 p

48 X 4' '
48(4n )2 ' e T2

—2c~ +0(g T ) . (3.28)

Replacing m —+m, s in the original two-loop contributions (3.14), (3.19)—(3.21), and combining with (3.28) above now
gives

1V' '= const+ —.
2

—v (T)+ g (T)T — cog v — g T 21n
24 (417)' 24(4' )'

T2
2

me@
1 cg cH

m, frT+ —g (T)+ c~g Q +0(g T ) .12~ ' 4! (4~)2 ~ (3.29)

Compare this to the unimproved result (3.22). As prom-
ised earlier, the 0 (g mT ) term of the figure-eight dia-
gram (3.14) has disappeared, canceled by the thermal
counterterm diagram (3.28). The original 0 (g m T )
contribution arose from taking the subleading 0(IT)
contribution of one-loop integral times the leading 0 ( T )
piece of the other, and the latter is precisely what resum-
mation is intended to absorb.

D. Resummation: Method II

The implementation of resummation above is a little
less natural for gauged theories. The scalar ring diagram
in Fig. 1 is independent of momentum, whereas the qua-
dratically divergent diagrams of Fig. 6 for gauged
theories are not. Moreover, the polarization dependence
of these g T contributions to the vector self-energy
II„(K) also depends on momentum [23] and is simple
only in limits such as K~O, where only the contribution
to Iloo(0) is nonzero. Having computed the leading con-
tribution to the self-energy II(K), should one resum the
vector propagator Go(K) as I/[Go '(K)+II(K)] or
I/[Go '(K)+II(0)] or something else? The answer is

1

K+m+ag T
1

K +m

( gg 2 T2
)
2

+
(K+m )

ag T
(K+m )

(3.30)

The nth term is order g ". Every term, except the first,
gives contributions (inside any diagram) that cancel
order-by-order against insertions of the thermal counter-
term, as in Fig. 9. So resummation for K —T has no
effect on the perturbative expansion of the final result.
(We shall see this even more explicitly in a moment by
recomputing the two-loop potential in our scalar toy

that it does not matter. Resummation only affects per-
turbative expansions when II cannot be treated as a per-
turbation to the inverse propagator Go '. This happens
only when K « T, in which case II(K)=II(0).

To see more explicitly that resummation is irrelevant
when II «Go ', consider K —T . Then II(K)-g T
and Go '(K)- T . The resummed propagator for
K —T can then be expanded perturbatively in powers of
IIGO -g . For example, the resummed propagator of the
previous section may be expanded as'

This substitution may be made directly in the results of Secs. III A and III B except for the final formula (3.22) because the expan-
sion (3.8) of m (P) was used when putting the result in its final form.

We emphasize that we are working in Euclidean space, and so by II(0) we always mean II(kp =0 k~O) since kp is discrete. If one
analytically continues kp to real time and takes instead the limit II(kp~O, k=0), the limit is completely different, giving the plasma
mass for propagating waves A rather than the Debye mass for static electric potentials Ap.

OSince m -g T, we could expand the powers of m as well, but we have not bothered to do so.
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+ ~ ~ +

FIG. 9. Cancellations of resummation and thermal counter-
terms.

dimensional Lagrangian into an unperturbed piece Xo,
containing the thermal mass terms, and a perturbative
piece. In the language of the previous paragraphs, this
corresponds to choosing a resummed propagator
1/(Go '+P) with

model using a different resummation prescription. )

The circumstance where resummation is relevant is the
infrared region K ~ (gT) where II —Go '. Then all
terms in (3.30) are the same order. Any resummation
prescription which approximates II(0) in the infrared
region will do. In general, any resummation
1/[Go '(K)+P(K)] will work if (1) P(K)=II(0) when
K -(gT) and (2) P(K) Sg T for general K.

Since K 5 (gT) implies ko=0 in Euclidean space, the
resummation prescription for ko&0 modes is irrelevant
[as long as condition (2) is met]. Since resummation is an
infrared phenomena, we find it convenient to adopt the
following point of view, in the spirit of decoupling and
the renormalization group. When computing the
effective potential, first integrate out all of the heavy
ko&0 modes (ignoring the issue of resummation) to ob-
tain an effective, three-dimensional theory of the ko=0
modes. This will generate the thermal mass terms as well
as other interactions induced by the heavy modes, which
we compute to the desired order in perturbation theory.
Only then do we finally integrate the ko =0 modes after
deciding on a sensible partition of the effective three-

II(0), ko =0,
P'K'=

o, k,~o, (3.31)

where II(0) is the dominant 0 (g T ) term of II(0). [One
could alternatively replace II(0) by the full II(0) calculat-
ed to some order in perturbation theory, but perturbative
changes to P have no effect on the perturbation expan-
sion. ]

Though resumming only the ko =0 modes sounds a lit-
tle more cumbersome than resumming all the modes, we
find it algebraically simpler in the gauge theory case be-
cause 1/[Go '(K)+II(K)] and 1/[Go '(K)+II(0)] turn
out to have more complicated polarization dependence
for ko&0 than for ko=0. We also find it conceptually
simpler to apply resummation only to the modes which
require it.

As a paradigm for splitting calculations into heavy
ko&0 modes and light ko=o modes, and to emphasize
the fact that masses (or self-energies) may be treated per-
turbatively for heavy modes but not for light ones, we
shall briefly sketch the derivation of the high-temperature
expansion (3.12) of I(m) from its definition (3.11):

k 1 d k 1I(m)=p 'T
(2~)3—»e k»+m» (2 )3

—»e (2~iiT)»+k»+m»
+2pT»g

d 'k 1
co d3 —»ck ( )I »!

2E' g +2p2~+ ~
(2~)3—»e k»+ m» ~ ~ (2~)3—»e [(2~ii T)»+ k»]!+1

I (
—»+&) 4~ '

(4m) ~ m

T»
' ~ I (l —

—,'+e)

1 T—2

12

p2
mT — m —+In

4~ 16~2 g 7 2

r 'I
2I —3 tl

4~ T (2l)!!
(3.32)

where g is the Riemann zeta function. In the first line we
split the calculation into ko =0 and ko&0 modes; in the
second line we expand the heavy modes in powers of m;
in the third we first evaluate the momentum integrals and
then sum over n; and in the last line we take the e —+0
limit. [This derivation may be used to obtain the con-
stant i, of (3.13).] The point of this example lies not in
the mathematical details but in the fact that, in the sum
over heavy modes, we are able to treat m as a perturba-
tion; the expansion of the integrand in m for these
modes is equivalent to the high-temperature expansion in
m /T . The ko=0 tenn, on the other hand, produces
the only term not analytic in m —the m T term at 0 (e ).

I

[One may now also obtain the high-temperature expan-
sion (3.7) of J(m) by using I(m)=m 'dJ/dm. ]

We now demonstrate how the new method of resum-
mation works in our scalar toy model. For the scalar
case, the new method will seem more convoluted than the
previous one, but we find it simpler to use when we com-
pute in gauge theories.

The resummation of the setting-sun diagram of Fig.
7(b) is shown in Fig. 10. The ko%0 lines are marked
"heavy" and the ko =0 lines marked "zero." The double
lines represent resummed propagators. This expression
may be simplified by realizing that the second term is or-
der g T and hence ignorable; this term is of the form
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(leaving out e's to avoid clutter)

g T
4 (2~) (p +m, a. ) k &o (2m. ) (K +m )r(P+K) +m ]

1 4 2 0 P 1g—P TI 3 2 z IO(ln(T/P, ))+O(p /T, m /T )+O(p /T, m /T4)+ . . ]
4 (2') (p +m, tr)

gP—T[O(m ln(T/p ))+O(m /T )+O(m /T )+ ]
4

=O(g T 1n(T/P ))+O(g T )+O(g T )+ (3.33)

Note that we have implicitly used dimensional regulariza-
tion to make sense of UV divergent integrals such as

fd p p "/(p +m ) and estimate their order as m"+'. "
We may compute heavy-loop diagrams, such as the

first term in Fig. 10, by relating them to our results from
unresummed perturbation theory. Figure 11 shows such
a relation. None of the lines are resummed, and unla-
beled lines represent the sum over all values of ko. The
first term is the previous, unresutnmed result of (3.19),
the second term is O(g T ) as discussed above, and the
last term is a two-loop diagram in three dimensions.
Combining with Fig. 10, resummation of the setting-sun
diagram is therefore implemented by Fig. 12. We now
need the difference of two three-dimensional graphs, the

I

1
g P T const+21n

48(4m )

T2
(3.34)

with m replaced by m, ff in the third term of Fig. 12. The
total effect of the sum of terms in Fig. 12 is therefore to
simply replace m by m, ff in the unresummed, four-
dimensional result (3.19):

last two terms of Fig. 12, which differ only by the mass
used in the propagators. One may either compute the
three-dimensional integrals directly or note that the mass
dependence in the four-dimensional result (3.19) can only
come from the ko=0 term at this order. So the three-
dimensional graphs are each

1 12ey(, b)
g p 'P T —+t —ln +21n

48(4'�) E T
T2

+2—cH +O(g T ) .
~eff

(3.35)

1
I3(m) = — mT,

4~
(3.36)

The resummation of the figure-eight diagram is shown
in Fig. 13. The result is easily evaluated by referring to
the review (3.32) of the expansion of I(m). The three-
dimensional piece of I (m) is the m T term,

2CB

+O(m /T )+O(em ) .

The resummation of the figure eight is then

(3.37)

1
p 'V"= const— gmffT+48X4~

1 2 2 2
g meffT8(4')'

Iq(m)= T (1+@ )t— m —+ln1 2 1 2 1

12 64~2 ~ T'

and the contribution due to heavy modes is everything
else:

1 1
—2

g2m 2T2 —+~,+ln
48(4~)

+O(g'T") .

2CB

(3.38)

'The reader may be concerned by this. It is possible, but
cumbersome, to reorganize the three-dimensional (k0=0) in-

tegrals that we shall encounter in implementing resummation at
two loops so that they are UV convergent. For instance, the
difference between the resummed and unresummed results takes
the form f d'pp "[(p'+m, sl ' —(p +m') '], which is more

UV convergent. Also, we are only interested in the P depen-

dence of the potential, and so may instead evaluate did/ of the
potential, which makes the UV behavior even more convergent.
With enough care, one may draw the same conclusions about
which terms are negligible from UV convergent integrals.

re suxn
heavy ~ ~ heavy ~ ~ ~ rero

heavy zero aero

FICi. 10. Resummation of Fig. 7(b). Double lines are
resummed, "heavy" denotes ko%0 modes and "zero" denotes

ko =0 modes

Note that this is not simply the substitution of m —+m, ff

into the unresummed result.
Resummation of the counterterm diagrams of Figs.
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heavy

heavy

heavy

n,w n
heavy ~ ~ zero

re sum

heavy heavy

FIG. 11. Relation between a heavy contribution and the un-

resummed graph. heavy

7(c) and 7(d) do not change the unresummed results (3.20)
and (3.21) through O(g T ). The thermal counterterm
of Fig. 8 now only applies to the ko =0 modes, giving

2e'y(CT) 1
efI'g mefI (3.39)

p 'V'"(P)=p 'V „,(P)+J [m(P)], (3.40)

For the one-loop result of (3.6) and (3.7), resummation
affects only the I T term arising from the ko =0 modes:

FIG. 13. Resummation of Fig. 7(a).

mixing for all values of the background field P [17,25].
However, there exists a gauge choice, the Landau gauge,
where the mixing effectively vanishes, because in this
gauge the unphysical vector polarization does not propa-
gate. In order to avoid having to diagonalize propaga-
tor s, which increases the number and complexity of
Feynman diagrams, we shall restrict ourselves to Landau
gauge. Our gauge-fixing condition is therefore

1J (m)=const+ m TR 24
1

m eft-T12'
~.„=— ' (a ~)' —„-~'„, g 0, (4.2)

1 1m' —+ln
64~' ~ T'

—2cs +O(m /T ) .
where the ghost g is completely decoupled in this Abelian
model. The Euclidean vector propagator in Landau
gauge is

(3.41)

The sum of all these contributions reproduces the previ-
ous resummed, two-loop result (3.29), giving an explicit
example that the exact details of the resummation
prescription are unimportant.

IV. THK ABKLIAN HIGGS MQDKL

We now turn to the simplest example of a spontaneous-
ly broken gauge theory: the Abelian Higgs model,
defined by the Lagrangian

Z= —
—,'r'+ ~De~' —V(~e~')

6„—K„K /K
G, (K)=

K +M
(4.3)

M (P)=e P (vector),

m, (P) = —v + —,'XP (physical Higgs boson), (4.4)

In the best of worlds it would be nice to compute results
in a variety of gauges and check that physical quantities
are indeed gauge invariant, but we have not had the per-
severance to do so.

In Landau gauge, the masses of fluctuations in the
background P are classically

V(I@I )= v I@I + tlel1

3)

(4.1)
mz(P)= —v +—'AP (unphysical Goldstone boson) .

where 4& is a complex field and D„@=(B„—ieA„)@. We
shall typically express the potential in terms of /=&2%
so that it takes the canonical form (2.1). We now return
to the original power-counting rules of Table I and as-
sume A, -e .

Now consider the masses of particles in a background
field P. In most gauges, such a background field induces
mixing between the scalar and the unphysical (k„) polar-
ization of the vector, as shown in Fig. 14. When studying
effective potentials V(P), mixing arises even in (con-
sistently defined) R

&
gauges because there is no single, P-

independent gauge-fixing condition that will eliminate

We can now easily construct the (unresummed) one-loop
potential:

p 'Vg" I= p 'Vb„, (i')+(3—2e)J [M (P)]

+J [m, (P)]+J [mz(P)]+const (4.5)

(where the extra constant arises from the decoupled ghost
contribution). As before, the singularities in the expan-
sion (3.7) of J(m) cancel against those in the bare poten-
tial Vb„, . The explicit counterterms are given in Appen-
dix A.

re suzn

n
zero

zero

+ 0 (g5T4 }

FICx. 12. Rewriting of Fig. 10.
FICx. 14. Mixing between the k„polarization of A„and the

unphysical Higgs boson in a background field P.
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A. Two-loop results without resummation

The two-loop diagrams are shown in Fig. 15, where we have ignored purely scalar diagrams since they are suppressed
by k-e and are of lower order than e T . Ignoring resummation for now, we shall discuss how to compute the dia-
grams. Figure 15(a) contributes

4Q 4(—P Q) /P
(P +M )(Q +m )[(P+Q) +m ]

(4.6)

This may be rewritten in terms of integrals similar to I(m) and H(m) of the last section by repeatedly expanding fac-
tors in the numerator as sums of denominators, e.g. ,

2(P Q)=[(P+Q) +m2] —(P +M ) —(Q +m, )+(M +m, —m2),

and by noting that

(4.7)

1

P(P+M )

1 1

M2p2 M2(p2+M2)
(4.g)

In this way, (4.6) may be rewritten as

p, 'V&" = ——e I(M)[I(m
&
)+I(m2)] I(m

&

)I—(m2)+(M —2m
&

—
2m 2)H(m &, m2, M)2e (a) 1 2

m) mp
2 2 (m, —m2)2 2 2

+ [I(M)—I(0)][I(m&)—I(m2)]+ [H(m&, m2, M) —H(m&, m2, 0)] ',
M M

(4.9)

where I (m) is (3.11) as before and

H(m„m2, m3)=p ' 1

(P +m, )(Q +m2)[(P+Q) +m3]

H is simply a generalization of the H (m) of the last section to the case of unequal masses.
We now need a high-temperature expansion of H It is easy. to relate H to H(m) by considering the difference

4e 1H m„m, m ) H(m)=p '—
(P2+m, )(Q +m2)[(P+Q) +m3]

(4.10)

1

(P +m )(Q +m )[(P+Q) +m ]
(4.11)

for any choice of masses small compared to T. The difference is more UV convergent than either alone, and the contri-
butions to the difference involving heavy (go&0 or qo&0) modes are suppressed by the small masses. The dominant
contribution to the difference comes from the three-dimensional piece (pa=qo=0) and is of order T . The simplest
way to evaluate it is to switch to configuration space, ' and set e to zero since the diff'erence (4.11) is UV convergent in
three dimensions. The three-dimensional propagator is simply e "/4~r, and we obtain

T2
H(m&, 2,m3)mH(m)= —j [exp[ —(m&+m2+m3)r] —exp( —3mr) ]+0(m )

T
[
—ln( m

&
+m 2 +m 3 ) + ln( 3m ) ] +0 ( m ) .

(4m. )

Adding this to the result (3.17) for H (m) gives

(4.12)

H(m „m2, m3) =H m ) +m2+m3
3

1 2 1
—2

T —+z,+ln +4 ln
64~ ~ T

3T
m&+m2+m3

+2—cH +O(m )+O(eT ) . (4.13)

(4.9) may now easily be expanded:

' We thank Lowell Brown for this observation.
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2 3
2g~(a) e MT

12(4'�)
2M 2 T2 —2—+a+in +121n +6+4cz —3cH +0(e T ) .

24(4~)' e ' T' (4.14)

B. Resumrnation: Effective masses

We need to resum the propagators to include the dom-
inant thermal corrections to the masses. We shall use the
prescription of Sec. III D (method II) of only resumming
the static ko =0 modes. In the Abelian Higgs model, the
longitudinal ( Ao) mass at (po =0, p~O) becomes

M2 2y2+ t 2T2
3 (4.15)

while the transverse mass remains the same, which we
shall continue to denote by M:

M=eg (4.16)

The leading contribution to the scalar thermal mass
changes the m; of (4.4) to

T2
m;(P) =m; (P)+ —X+—

A, +3e
2 6 12

(4.17)

The resummation of the one-loop potential (4.5) gives
T

V' '= ——v + —X+3e1 1 2 2 2 T 2

2 3 12

(2M +ML)T+ —A,p
12m 4l

The 0 (e T ) comes from terms of order e mMT.
Though one could keep track of such terms in a two-loop
calculation, and so improve the error to 0(e T ), we
have not bothered to do so. We shaH focus only on the
leading correction to the one-loop potential for
e «A, «e .

The other graphs may be computed in similar fashion,
and the results are given in Appendix A.

I

of the loop expansion. [The following discussion is im-
portant for providing a well-behaved loop expansion but
will turn out to have little practical importance for the
actual computation of the two-loop potential to
0(e T ).I Consider the multiloop diagram of Fig. 16.
The cost of adding loop 3 to the diagram is e P T/M;
the e P comes from the vertices, the T because it is a
one-loop integral that is not quadraticaHy divergent, and
the 1/M to make a dimensionless quantity. More
specifically, the 1/M arises because adding the loop add-
ed three propagators to the diagram (two vector and one
scalar) and a loop integral d k which is dominated by its
infrared behavior. Both the new loop 3 and the loop it is
attached to are dominated by momenta of order M rather
than m, and so each propagator gives 1/M and the new
d k gives M . The total loop cost of e P T/M is the
same order as e T/M-e (see Table I), which is the vec-
tor loop expansion parameter that we identified in the In-
troduction.

Ignoring the dominant e T piece that is absorbed by
resummation, the cost of loop 8 is e Tm /M -e since
the loops are dominated by momenta of order m for the
scalar and M for the vector. Similarly, loop C cost
XT/m —e ~ after the dominant A, T piece is absorbed by
resummation. Adding line D cost e T/M-e. Adding
line E, however, cost e TM/m —1. So it would seem
that the loop expansion parameter is not order e but in-
stead order 1. The problem arises because of the
difference of scales between m and M. When we defined
the effective scalar masses m in (4.17), we only included
the dominant 0(e T ) or 0(A, T ) contributions of vector
or scalar loops to the self-energy. However, the sublead-
ing 0 (e MT) vector-loop contribution is the same size as
m itself since m -e T; it is not a perturbation and so

3M pln
64~ T

———2c +0(e T ).B

(4.18)

We can now proceed as we did in Sec. III. Before do-
ing so, we should dweH a little more on the convergence

(b) (d} (e)

QV
(a) (~. ) (b. )

FIG. 15. Two-loop diagrams in the Abelian Higgs model. FIG. 16. A generic multiloop diagram.
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must also be included in the resummation. (Yet higher-
order terms are perturbations and so do not need to be in-
cluded. ) The new procedure for resummation may be
viewed as follows: first integrate out all of the heavy
modes to obtain an effective theory for momenta ko =0
and k ((T; next integrate out the vectors (and scalars
with k -M) to obtain an effective theory for momenta
ko =0 and k «M; and only then finally integrate out sca-
lar loops controlled by k-m «M. This procedure is
equivalent to modifying our resummation prescription by
including the 0 (e MT) corrections to the one-loop scalar
mass (4.17):

m;(P) —+ m; (P)+ —I,+ —A, +3e—2 2 1 1 2 T
2 6 12

2 4 2

(2M+ML )T — +
4m. 4~ M M

FIG. 17. Generic once-iterated ring diagram for the Higgs-
loop contribution to the effective potential.

(4.19)

This result may be computed directly from one-loop dia-
grams or, more simply, from the second derivative
through 0(e T ) of the resummed one-loop potential
(4.18). Using the resummation (4.19), the cost of adding a
new loop will now always be ~ e.

Diagrammatically, this resummation corresponds to
the dominant pieces of a subset of "once-iterated" ring
diagrams, as shown in Fig. 17 for the improved scalar
contribution to the one-loop potential. ' The smallest
loops of the diagram are hard, with momenta of order T,
the next smallest are vector loops with momenta of order
M-eT, and the large Higgs loop is softer yet, with mo-
menta of order m —e T. Because of the hierarchy of
scales, it is a good approximation at each level of Fig. 18
to approximate resummed propagators I/[p +II(p)] by
1/[q'+ 11(O)].

Though the foregoing discussion was necessary to es-
tablish an adequate procedure for obtaining a controlled
loop expansion, the details of resumming the scalar
masses turn out not to be relevant at the order under con-
sideration. Though the results of some graphs have po-
tentially significant terms of the form e mT, which
would be affected by the details of how m is replaced by
m, all such terms cancel in the final potential. The m T
term of the one-loop potential is not modified to m T if
we only resum ko=o modes (method II of Sec. IIID).
A11 other terms involving m are of lower order than
0(e T ). [We would need to take care to use the correct
resummation (4.19) for m if we were keeping track of
0 (e T ) contributions to the potential. ]

The discussion of such diagrams appears in a related context
in Ref. [26].

C. Resummation: Two-loop diagrams

~ heavy heavy

+ heavy heavy

ze o zero

~ heavy he
z ro

+ heavy heavy + zero

zero

(b)
zero

FIG. 18. Resummation of Fig. 15(a).

Now let us turn to the resummation of actual dia-
grams. The resummation of Fig. 15(a) is depicted in Fig.
18.

In the last pair of terms of Fig. 18(b), resumming the
vector line makes no difference because the Ao polariza-
tion couples to the ko components of the scalar momenta,
which are zero. The only difference between the last two
diagrams is therefore the scalar masses. It is easy to see
by examining the general result (4.9) for the setting-sun

diagram, and remembering that the three-dimensional
version (3.36) of I(m) is simply I3(m) = mT/4n, —that.
these three-dimensional diagrams do not depend on the
scalar mass at 0 (e T"). So their difference is ignorable
and may be dropped.

In the other two pairs of terms of Fig. 18(b), the heavy
loops simply act as 0(e T ) mass insertions in the light
loops. For example, the first pair of terms contributes to
the potential
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1 q d p npn——e T
2 (2m) p +ML

npn~ (P+2Q)„(P+2Q),
p +M q ~0 (2') (Q +m )[(P+Q) +m2]

p v

2 T1

(2~r )

npn~

p +M~

n n d3 4
T g f " [1+O(p /Q, m /Q )+. ]

p +M @~0 (2~) Q

1 6 p 1

4 (277) p +M
1

p +M
—1

3
e T [1+O(p /T, m /T )+ ]

1
e (ML M)T—+O(e T ),12X4~ (4.20)

where n„=(1,0) and P =(O, p). It is the MT and mT terms that resummation is supposed to eliminate. This does
not occur on a graph-by-graph basis, but they cancel in the sum over graphs. The Mi T and mT terms cancel against
the counterterm graphs of Fig. 15(h). Evaluating the rest of Fig. 18(b) similarly, one finds

2e V(a) 2e V(a) 1
(M —M)T +O(e T ) .

12X4~ (4.21)

The results for the other diagrams may all be found in Appendix A. When added together, they give the full, im-
proved two-loop potential:

T

T2
V' '= —P ( T) —v ( T)+ —A, ( T)+ 3e ( T)

2 3 12
e T 3T 3T 29 2 32ln +4 ln + Cg CH
(4 )2 2ML 2M 9 3 2

4

12m 4I
(2M +Mt )T+—P (T) A,(T)+ cii+-

(47r )' +O(e T ), (4.22)

where

e4 T2
e (T)=e + ln +O(e~),

3(4ir)~ p2

18e T
&( T) =&+

2
ln +0 (e ),

(4~) p2

(4.23)

(4.24)

gauge invariant. (Actually, we suspect that the VEV may
be gauge invariant to the order we have computed, but
we do not know for sure. )

Normalize the potential so that V(P, T) is zero at the
origin. The VEV P of the asymmetric vacuum at the crit-
ical temperature T is then determined by simultaneously
solving

3e TP(T)=P 1+ ln +O(e3)
2(4'�) p~

(4.25) v(p, T) =0, a~v(p, T) =0 . (4.27)

v (T)=v +O(e T ) . (4.26)

It is important to remember that this result was derived
in the high-temperature limit, and the T~O limit of the
terms shown in (4.22) is not the same as the zero-
temperature potential. The T~O limit of (4.22) is trivial
since the A,(T)P term vanishes if the scale of A, is run to
zero. For the true potential at zero temperature, the
relevant coupling is instead k(P). This distinction is im-
portant to keep in mind when using the two-loop result
for numerical work.

v, (Q„T, ) =0, a~v, (Q„T, ) =0 . (4.28)

Linearizing the equations (4.27) in b, P and b.T, one finds

—AV
=a, v,

' (4.29)

Write V= V&+AV where V is the full potential, V& is
some approximation (say, the one-loop potential), and 6 V
is a small perturbation. Write P =Pi+ b,P and
T=T, +b,T where P, is the asymmetric vacuum of the
approximation V& at its critical temperature T&', that is,

D. The vacuum shift
ava, a, v, —(a,av)(a, v, )

b,P=
(a', v, )(a, v, )

(4.30)

How much do the two-loop corrections just computed
a6'ect the asymmetric vacuum at the phase transition?
The simplest quantity to examine is the vacuum expecta-
tion value. This VEV is not a physical, gauge-invariant
quantity [27], but the size of its shift due to two-loop
corrections will still give us a good test of whether the
loop corrections are small. In a companion work [28],
one of us has instead computed the magnetic screening
mass in the asymmetric vacuum, which is physical and

a V = TP+O(e T )—1
T 1 (4.31)

where all the quantities are evaluated at the VEV. Note
that b,fig is of order AV/V, where V is the typical size
of terms in the potential, and so hP/P is of order the
loop expansion parameter.

Now identify V& with the one-loop potential and note
that
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Plugging into the solution (4.30) for b,P,
r

~= —~ a +o( '").
m' ' (4.32)

It is important when applying this formula to remember
that b, V (P, T) should be replaced by b, V(Q, T) bV—(0, T)
if the potential is not already normalized to zero at /=0.
This result has the important property that it vanishes at
leading order if hV is proportional to P . So the only
two loop -contributions to the potential (4.22) which con-
tribute to the (leading-order) shift in the VEV are those
that involve logarithms of masses: the e T P lnM($)
and e T P lnMI (P) terms. (The e P terms, which
would also contribute if taken as part of 6 V, came from
the one loop -contributions. ) Equation (4.32) applies to all
the models we shall examine.

For the Abelian Higgs model, (4.32) reduces to

E.M' E..d
(&)

FIG. 19. Two-loop diagrams involving fermions.

1mI= . —gz(t,
2

(5.2)

We shall treat the Yukama coupling gz as being of the
same order as the gauge coupling e. The fermion mass in
the presence of a background field P is

(4~) mf Ml
(4.33)

and the one-loop potential now picks up the familiar fer-
mionic contribution

where ML, M, and m
&

are as usual the effective masses at
the phase transition given by (4.15), (4.16), and (4.19), and
where the one-loop approximation to the VEV P is
sufBcient for the right-hand side above. The one-loop ap-
proximation to P does not have a simple form in terms of
T, M~( T =0), and mH( T =0) (at least not for the whole
range e « A, « e ), and is best computed numerically.

V. FERMIONS

p EV~ i~@ V~ i+4JI(mI)

where [17]

J (m )= ——p '$ ' '1n(K +m )
1

f f 2 iK f
1= const+ m T

48
f'

(5.3)

Fermions are simpler to deal with than bosons because
they do not require resumrnation. This is because Eu-
clidean fermions have frequencies ko =(2n + 1)AT which
are never zero, and so their self-energies may always be
treated perturbatively. For the same reason, the two-
loop contributions to the potential that involve fermions
will never have a logarithmic dependence on the fermion
mass m&(P) and so will not affect the shift in the VEV.
Two-loop ferrnionic diagrams do contribute to the
effective potential at O(g T"), however, and so we shall
treat them here (and later in our discussion of the
minimal standard model) for completeness.

As a simple example of a theory analogous to the weak
interactions, let us chirally couple a single Dirac fermion
to the Abelian Higgs model:

X~X+g 8 ieA—

P

+ mf —+ln1 4 1 p
64~2

2CF

+O(m IT )+O(e), (5.4)

and where we have defined the constant

F =ln~ —XE=cB—2 ln2 . (5.5)

The superscript (f) on the integral indicates that the fre-
quency sums are over fermionic momenta ko
=(2n +1)m T. The factor of 4 in (5.3) corresponds to the
four components of a Dirac fermion. As is conventional
in MS regularization, we take the Dirac trace of one to be
trI =4 rather than 2

Our working definition of y5 in dimensional regulariza-
tion is the naive one that [29]

+gA' c'* 3 5

2
Iys y„]=0
y2 —

1

(5.6)

(5.7)

=X+/ 8 ieA—1 —
Xs

2
Fy—0+ —84i+iy A2) P .

2

(5.1)
I

This definition is adequate for calculations that do not re-
quire traces involving an odd number of y5 s. Additional
properties are

tr(y~y„y„y y, ) is antisymmetric,

tr(y~y„y„y y, ) = 4ie„,+0 (e) X ambiguity, on the four-dimensional subspace p, v, cr, v=0, 1,2, 3 .

(5.8)

(5.9)
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The anomaly is intimately related to the fact that the ambiguous term above cannot be explicitly defined. In our calcu-
lation, however, this term will never be relevant.

The new two-loop diagrams are shown in Fig. 19. As an example, take Fig. 19(i) and expand numerators in terms of
denominators as we did in (4.6)—(4.9) for the Abelian Higgs model:

5„—(P +Q)„(P+Q) /(P + Q)
p 'V"= ——e ' ' ' ' " " tr( iI—'+m )y(P + m&)(Q +m&)[(P+Q) +M ]

=e
I (1—e)[I&(m&)] —2(1 e)I&(m—&)I(M)+ [(1—2e)m& —(1 e)M—

]H&&(m&, m&, M) I .

I& and H&& are defined analogously to the bosonic I and H of previous sections:

1

2
(if+ m/)y

I m )= 1
f( f )2 fK'K +m~

14p
ff f2' f2' P K g(2 «2~ 2 )( 2~ 2 )((p ~())2~ 2)

The high-temperature expansion of I/(m/) may be obtained from (5.4) using I&= —
m& dJ/dm&.

—1

1 —
y5

2

(5.10)

(5.1 1)

(5.12)

I (m) = — T — m —+ln1 2 1 2 I P
24 16~

—2cF +0(m /T ) ei',I' —T +0(em ) . (5.13)

L',~'=L,—2 ln2 . (5.14)

We shall always make this substitution for L', ', and in this
way the L,'s will cancel in the final answer for the efFective
potential.

In our earlier calculations, it turned out that the
coefficient I,, of the eT term of I(m) was unimportant
because it canceled in the final answer. When fermions
are added to the theory, one finds that the final result
does depend on the combination L L, which it
behooves us to calculate. One may find by a derivation of
I& similar to that for I in (3.32) that

The leading 0(T ) contribution to H&& turns out to
Vanish, and

HI/(mI2, mI, ', m) =0(mT)+0(eT ) . (5.15)

A derivation is given in Appendix B. The consequence of
(5.15) is that the HII term in (5.10) may be ignored when
studying the effective potential through 0(e T ). H&f
terms are similarly ignorable in all of the diagrams we
shall calculate.

The high-temperature expansion of our result (5.10) for
Fig. 19(i) is then

(i) e MT + f + +1 P
3 e2m 2T2

12X4 4(4 )' e ' T'
2—1 —2c ——ln2F

e2~2Z 2
1

—2

12(4~)' e ' T'
—1 —2cz —2 ln2 +0 (e T4) . (5.16)

The results for the rest of the diagrams, and the results of resumming the ko =0 modes of bosonic propagators, are
given in Appendix A. The Anal two-loop potential is then

V' '= [Abelian Higgs result of (4.22)]

+—P(T)
1

2
2 2 gYT 1 1

g (T)T + ——cF ——ln2
(4~)' 2 3

e gyT+
(4~)'

1 1 e4T2 1 1 1 1 4——cz ——ln2 + + —cz +—ln2 +—
(t)

2 6 (4~)' l8 3 3 4!
12cFg y

(47r )' (5.17)

where the running couplings A, (T) and so forth in (4.22) now include fermionic effects. (See Appendix A for formulas
for the running couplings. )
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VI. NON-ABELIAN THEORIES

Extending our analysis to non-Abelian theories is fairly
straightforward; it merely involves the computation of
some new graphs, shown in Fig. 20. In Appendix A, we
give results for the SU(2) Higgs model with a single Higgs
doublet, defined by

r/
I \

F'—g '""+
~
D N

~

—V(
~
@

~ ),
4 P

+
(6. l)

(m) (n) (o)

FIG. 20. Additional graphs needed for a non-Abelian theory.

where @ is an SU(2) doublet and

D„@=(d„i,'g A—„.—r)N . (6.2}

We once again normalize P to P =2~@~ .
Reducing the graphs of Fig. 20 to simple scalar in-

tegrals such as I(m) and H(m„m2, m3) turns out to re-
quire the introduction of a new function:

(P Q)'
Q p2(p2+ 2 )g2(g2+ 2

)

(6.3)

One can derive a high-temperature expansion of this
function, which we give in Appendix 8, but it is unneces-

I

sary because terms involving L ( m „m 2 ) cancel exactly
between Figs. 20(m) and 20(o).

The only part of the calculation of the two-loop poten-
tial that is not a completely straightfoward extension of
our previous model calculations is the resummation of
Fig. 20(m). The resummation is shown in Fig. 2l. Recall
that only the longitudinal ( Ao ) polarization is resummed,
and split propagators into longitudinal (L) and transverse
(T) parts. By using the fact that the three-vector cou-
pling vanishes for LLL and LTT when all frequencies po
are zero, Fig. 21 may be rewritten as Fig. 22. The three-
dimensional diagram in the last pair of terms is easy to
evaluate, and the result is given in Appendix A.

The total ring-improved two-loop potential is given by

V' '= —P (T) —v (T)+ A.(T)+—g (T) +9 2 T g T
2 4» (4~)'

107 5 81 9 3T+—cz — c&+—ln

63 T 3 3T
16 M 8 2M

3 3T——ln
4 2M

3 2T2
2 2ML +M+

2 ML M 2M Dzbyp ln
(4m. ) Debye

(6M +3M')+ —P (T) A,(T)+ c~+—1

12% 4I 4(4~)
(6.4)

where we have introduced the notation

(6.5)MD by ML, M

for the P-independent thermal mass. Note that though
the MI M term above is linear in P as $~0, this linear
term cancels against the $~0 behavior of the
M~D, b„,ln(2ML +M) term.

We can now compute the relative shift in the VEV
from its one-loop value using (4.32}:

b,P g T 87 MDebye 3M
(4 }'I' 32 2M~M

9 2 T 3g MT
m =m + A+ —g

3g T M
(6.7)

16m Ml

Note that the MLM term in the potential contributes to

heavy heavy

ln
M Debye

(6.6)

where M, ML, and m j may be evaluated at the phase
transition using the one-loop approximation. m& is ob-
tained by taking the second derivative of the one-1oop po-
tential through O(g T ): FIG. 21. Resummation of Fig. 20(m).
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b,fig, whereas only logarithms contributed in the Abeli-
an case.

VII. THE MINIMAL STANDARD MODEL

heavy heavy

+
heavy heavy

Finally, consider the minimal standard model with a
single Higgs doublet, which differs from the previous
models only by the complexity of keeping track of the
various couplings. Our conventions for coupling con-
stants are such that

D„=()„+—,'g 3„~ + —,
' Yg, 8 (7.1)

g~qI .+t~ +H. c. , (7.2)

where 4 is the full complex doublet. gz is the top quark
coupling, which is the only Yukawa coupling that we
treat as nonzero. We shall also include QCD interactions

the hypercharge is normalized so that Q = T3+ Y/2, and
the Yukawa coupling is

FICx. 22. Rewriting of Fig. 21. The L and T lines represent
the longitudinal (Ao) and transverse polarizations of only the

po =0 contributions.

for the quarks, with coupling g, . The couplings g&, g2,
g~, and g, are formally treated as all having the same or-
der of magnitude g. nf represents the number of families
and is 3 in the minimal standard model.

At zero temperature, the mass matrix for the Z boson
and the photon, in the ( A I ', 8) basis, is

4gig20
]g2$2

cosO~ sinO~ Mz2

—sint9~ cosO~

cosOg —sin0~

0 sinO~ cosO~ (7.3)

When we include the Debye masses generated for the longitudinal ( Ao) components at finite temperature however, one
finds [20]

ML

1 5 nf
4 6 3

2p2+ + f
4g ig24

5nf
4 1 6 9
—g ~/~+ —+ f g2T

cos8 sinO ™I.z
—sinO cos0

cos0 —sinO

Ml &
sinO cosO

(7.4)

and we have diagonalized to define an effective mixing
angle 0(P, T) and effective longitudinal masses Mlz(P, T)
and MLr(P, T).

The result for the two-loop potential is given in Appen-
dix A, where we list the contribution from each of the
graphs of Fig. 23. Only those diagrams which give a P-
dependent contribution to the potential at O(g T ) are
shown. Note that there is a QCD correction in Fig. 23(i, )

which gives a potentially large contribution to the poten-
tial of order g, grg2T but which, like all fermionic con-
tributions, does not contribute to the leading-order shift
in the VEV from its one-loop value.

It is cumbersome to write down the total answer for
the two-loop potential, and we shall leave it in the form
of Appendix A where each diagram is given separately.
The reader should note that the relative shift in the VEV
is given by (6.6) in the limit that gi ~0. This is because,
as discussed earlier, the fermion contributions do not
affect the shift in the VEV except indirectly through their

I

effect on the one-loop values of M, ML, and m& at the
phase transition. For example, m, in this limit changes
from (6.7) to

2m =m + A+ —g+3g 3g MT
4~

3g T M (7.5)

VIII. NUMERICAL RESULTS

As a test of the size of loop corrections, we shall now
compute the shift hP in the VEV at the phase transition
due to the inclusion of two-loop corrections in the
minimal standard model. We do this numerically, by
running couplings to p, =T and then finding the phase
transition for both the one-loop and two-loop approxima-
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tions to the potential given in Appendix A.
As discussed in Sec. IV D, the relative size b,fig of

this shift is 0(g), the loop expansion parameter. This
means that we need to specify the original zero-
temperature parameters of the theory, such as A, and g,
to relative order g in terms of physical quantities such as
the zero-temperature Higgs-boson and vector masses.

Tree-level relations are adequate for most quantities,
since corrections at zero temperature are suppressed by

g instead of g. The exceptions are A. and v since they
are 0 (g ) by our power-counting convention and receive
0 (g ) corrections at one loop. To obtain A, and v in

terms of physical masses, consider the one-loop potential
at zero temperature:

6Mw(0)
V"I(Q, T=O)= ——v P +—kP + ln

4~ 64~'
Mw(4)

p

5

6

3Mz(P) Mz($)
ln

64~ p

5

6

3m, (P)
ln

16m

m, (P)

p
+0(m m ) .3 4 4

2 l~ 2 (8.1)

We shall refer to the zero-temperature VEV as o.. The physical Higgs-boson mass at the order under consideration is

just the second derivative of this potential at o.. ' Solving for A, and v in terms of the physical masses, one finds

3m~
02

3 3—g2 ln
32~2 2'2

2Mw 2 3 2+— + —(g, +gz) ln
p,

2 3 4

M2z
+ — —12g41n

p
—2 3

—2m, .+0(g ), (8.2)

2

(8.3)

where the overbars denote that masses are evaluated at
the VEV o. at zero temperature with renormalization
scale p, and where o. may be expressed as o. =M~/g.

Our numerical results for the shift hglg due to two-
loop corrections are shown in Fig. 24 as a function of
mH, assuming a top quark mass of 100 GeV. To get the
solid line, we computed P and T, independently for both
the one-loop potential and for our full result for the two-
loop potential. To help control errors of the one-loop
computation at very small mH, we have used exact re-
sults for the one-loop fermion and vector contributions
rather than high-temperature expansions.

Alternatively, the dashed line gives the simpler calcula-
tion of the pure SU(2) result (6.6) for the shift, which we
have evaluated using the minimal standard model results
for M~ and ML~ in place of M and ML. We have also
replaced m, by the complete second derivative of the
one-loop potential rather than by (7.5) because, due to
fine cancellations among terms, the assumption that
g, —+0 used in (7.5) turns out to be a very bad approxima-
tion if the one-loop VEV and critical temperature were

t

IQW~I

(&z )
Wr Zr7

(b, ) (b. )

Q C)
(ci) (c, ) (e)

Q

~E~,

(i3 )

j

~gi's'~
1

(i, )

'~&I&,~&I&

t
(i, )

(g) (& ) (1 )

~4The physical Higgs-boson mass is actually determined by the
pole of the Higgs propagator and so is given by the solution to
the real-time dispersion relation P —M =II(P ), where II is
the self-energy. The claim that it is given by the second deriva-
tive of the effective potential corresponds to the approximation
H(P )~H(0) in this dispersion relation. The difference
H(P )

—H(0) is order g o. and does not affect our derivation of
A, through O(g ).

E..d
)C

(&)

We
(m)

Tl

I
,, W,~Z,
w~r

(n)

W, Zr'f

(o)

FICx. 23. Two-loop graphs for the minimal standard model.
"q" indicates all quarks other than the top quark.
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0 I

20 50 100
m (H) I GeVj

150
0 I

20
0

I ---J
50 100
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FIG. 24. Relative shift XIII/p of the asymmetric vacuum at
the critical temperature plotted vs the Higgs-boson mass. The
solid line comes from using the full formula for the two-loop po-
tential derived in this paper; the dashed line should approxi-
mately match it, up to yet high-order corrections in the loop ex-
pansion. The high-temperature expansion used in this paper is
valid provided the dotted line (described in the text) is small
compared to one.

1v~=
2 (6caMw+3caMz 12c„m, ),

327T2

v6= (6MII, +3Mz —7X12m, ),
768~ T

(8.4)

and the dotted line is v6/v4~. One can see in Fig. 24 that
the high-temperature expansion begins to break down at
small m&.

Figure 25 shows the result for P/T at the phase transi-

1 a 5

computed with gI&0. The dashed line should approxi-
mately match the solid line when both (i) b,fig is small
and (ii) mH is not so small that the high-temperature ex-
pansion has broken down. This correspondence is evi-
dent in Fig. 24. The deviation of the lines at large mH is
a manifestation of the breakdown of the loop expansion.

The dotted line in Fig. 24 is a diagnostic of our ubiqui-
tous assumption (A, ))g") that we may use the high-
temperature expansion. It is the ratio of the O(M /T )

piece of the one-loop potential to the O(M ) piece. This
ratio is taken in the asymmetric vacuum at the phase
transition. More specifically,

FIG. 26. Same as Fig. 24 but for m, = 180 GeV.

tion, which is the quantity used in Ref. [12] to extract the
upper bound on the Higgs-boson mass for weak baryo-
genesis. According to Ref. [12], a necessary requirement
for a successful scenario of baryogenesis is that P/T) 1.
The dashed and solid lines show our one-loop and two-
loop results, respectively. At the experimental lower
bound of 60 GeV, the one-loop result of 0.47 is inade-
quate. The two-loop corrections boost P/T by 40% to
roughly 0.65. This remains inadequate. Unfortunately,
the corrections are large enough that this conclusion does
not impress us as airtight —the validity of the loop ex-
pansion is only marginal here. Note that, for a consistent
comparison at this order, the sphaleron mass and result-
ing limit on P/T should also be consistently determined
to the same order.

Figures 26 and 27 show our results for a top mass of
180 CxeV. In parting, we remind the reader that the
minimal standard model is only a specific testing ground
for these issues and that the particular constraints just
discussed are evaded in multiple-Higgs models.

Note added in proof. Shoftly after completion of this
work, related, independent work appeared by Bagnasco
and Dine [31]. In the limit that M «MI (which is nu-

merically a good approximation when deriving bounds
for minimal standard model baryogenesis), these authors
provide alternative and interesting methods for comput-
ing the most important two-loop corrections to the
potential —the lnM terms and the strong interaction
corrections. As discussed earlier, it is the lnM terms
which are responsible for the two-loop correction to the
VEV at the phase transition.

1.25—

~ 0.75—

0.5—

0.25—

0 I

30 40 50
m (H) [GeVj

60 70

1.5 I

1 % 2 5

~0.75—

0. 5 =

0.25—

0 30 50

m, =180 GeV

60 70
FIG. 25. The ratio p/T at the phase transition. The dashed

line is the one-loop result and the solid line is our two-loop re-
sult in Landau gauge.

m (H) [GeVj

FIG. 27. Same as Fig. 25 but for m, = 180 GeV.
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1 1—= —(1+e(,,), (A 1)

where i, is the unimportant constant of (3.12), and we
define

keep track of the dimensions of the potential V and the
field P; but every instance of V and P in this appendix
should be understood as p 'V and )M'P. Throughout this
appendix we adopt the notation

APPENDIX A: RESULTS FOR TWO-LOOP DIAGRAMS
1 2H3(m), mz, m3)= —

2
T 1n(mi+m2+m3)

(4~)
(A2)

In this appendix we collect two-loop results for indivi-
dual diagrams in the various theories discussed in this pa-
per. Since the theories involve many of the same dia-
grams, and differ only by group factors, we only compute
them once. The 2) functions defined at the end of this ap-
pendix are the results of diagrams where we have fac-
tored out a combination of coupling constants, symmetry
factors, and group factors. The subscripts of the 2)'s in-
dicate the types of particles involved in the diagram: S
for scalar, V for vector, f for fermion, and il for ghost.
Note that the effective potential and the sum over dia-
grams have a relative minus sign in Euclidean space. We
shall display only the P-dependent pieces of contributions
to the potential and shall not explicitly indicate the pres-
ence of temperature-dependent constants by "const."
For brevity, we shall drop the unimportant p ' terms that

to be the (nonconstant) three-dimensional piece of H, as
in (4.12).

To actually use the formulas of this appendix for com-
puting two-loop corrections numerically, sum the indivi-
dual contributions but (1) drop all 1/e terms, since they
cancel; (2) set )M to T and so drop all of the ln()M /T )

terms; and so (3) replace couplings g, masses v, and fields

P everywhere by g ( T), v( T), and P( T).
Unresummed results for the diagrams in Secs. A 1 and

A2 may be obtained by replacing all 2)'s by 2)"'s and
dropping V( '.

1. Abelian Higgs model

Counterterms:

1+, + . p, &b„,= 1—,+.
2(4~)'e "' 6(4~)'e

3(4m ) e '" (4~)~e
(A3)

2

1—,+-e . . . 2

(4vr) e

Multiplicative corrections are shown only through order e, and order A, corrections are left out since g-e by assump-
«nning couplings and fields may be found by replacing 1/e~ln(T~/p2) and p ~y(T), e2 ~e~(T)

above.
Masses:

M2 e2y2 ~ 2 2+ ] gy2 2 — 2+ i gy2

M2 e 2/2+ e2T2 m 2 m 2+ )(+3e21 — = 2 T2

3
~ g g 3 12

(A4)

We shall not bother showing the subleading corrections
to the thermal scalar mass, as in (4.19), since they cancel
out in the final result for the potential to 0 (e T ).

One-loop result: See Eq. (4.18).
Two-loop diagrams of Fig. 15:

~(d) eM T
24(4m. )

+O(e T ),1 2 5 4

3

(c) 1
e [2)sv(m „M)+2)sv(ma (A6c)

(A6d)

Cl) 1 2V"=——e 2)ssv(m„m2 M)

(b) 1 4 2V( )= e P &svv(m„M, M),

(A6a)

(A6b)

(,) 3e 4y'T'
8(4'�)'

V'f'=O(e T"),

+O(e T ),1 2 5 4

3
(A6e)

(A6f)
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4 2T2
V(g) — 4 +O (e 11/2T4)

2(417) e
2 3

(~) e MLT
24m

e'(m, +m2)T'+ +O (e9/2T4)
3277

(A6g)

(A6h)

2. Chiral Abelian Higgs model

Counterterms:

3e gy1+ + . .
(t), Ab„, = 1—

2(417) e

e2 + ~ ~ ~

2(477) e

2 2
gY gY1— + ' ' ' 1 JWL, bare

4(4 )2 wL»R, bare
4(4 wR

(A7)
2e bare

2 18e —6g Y1+ +. . . ep, k = A+ +' ' p(417) e (417) e

3e gY 2gY 3e
+bare 2

+ ~ g Y bare
(417) e 2(417) e

Formulas for running couplings may be obtained as in Sec. A 1.
Masses are as (A4) with

E
gYP

m =—g P M =eP+ eT m =—m + —A, +3e+g +=1 1 — = 2 T2
f 2 Y ~ L 2 ~ l l 12

(A8)

The one-loop result is

2
V' '= ——v + —A, +3e +gY p — (2M +ML)T+ —Ap

(1) 1 2 2 2 2 T 2 1 3 3 1 4

2 3 12 12~ 4I

3M4 I
2

ln
4(417) T

4mf———2c~ + ln
3 (417) T

—2c +O(e T ). (A9)

The two-loop diagrams of Figs. 15(a)—15(c) are the same as (A6).
The two-loop diagrams of Figs. 15(d)—15(h) are

2 2 2
V(d) eMT 1 2 +O(eT),

8(417) e

e2(3e2 g2 )$2T2y(e)— +O(e'T ),
8(417) e

V'f'=O(e T"),
(3e4 4

) 2T2
V(g) gY 1 + O ( 11/2T4)

6(417) e

e MI T (3e +gY)V' '= + (m, +m2)T +O(e T ) .
16m 96m

(Alod)

(A10e)

(A10f)

(A10g)

(A10h)

The two-loop diagrams of Fig. 19 are

() 12V e 2)ffv(mf mf M)
2

( )—~ 1 1 24gY+ffs( f mf m 1 gY+ffs f mf m2)4

(A10i)
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2 2 2

V(k) gYmf T 1——21n2 +O(e T ),
12(4n. )

y(~) —0

3. Gauged SU(2) Higgs theory

(A 101')

(A 101)

Take g, =gY=g1=e =0~=0=0; set Mz =Ma M MLz ML m=ML, g2=g; and ignore MLz in the minimal stan-
dard model results below.

4. Minimal standard model

Counterterms:

8'2 gi g)9 2+3 2 ]2 2

8(4') F

25
12

2nf
3

2

(4m) e

bare

10nf
12 9

2", +- 8.
(4n) e

2
gY + ~ ~ a gf]L, bare 4(4 ~L )

2
gY1— + ~ ~ ~

R, bare 2(4 )2 ~R

2
g 2, bare

43 4nf
6 3

2

+ '' g2P
(4m) e

(A11)

20nf
g1 bare

= 1+ + g1 +. . . g2p26
(4m) e

9 2 42 9 2 17 2 1
gY, bare 4gY gs

8
g2 24gl (4 2 gYI4' e

1+ g +—gg +—g —18g +27 4 9 22 9 4 4 1
bare 8 2 4 2 I

8 1 F (4

g 2+3g1 12gY 2+ ' V
4(4m. )~e

Formulas for running couplings may be obtained as in Sec. A1.
Masses:

(A12)

m&= —v +—AP, mz= —v + —A/2, (A13)

M2 g2y2+ + f 2T21 n
LW'

4 2 6 3 2 (A14)

m. =m + k+ —g +—g +3g +-—2 2 2 3 2

4 2 4 1 Y (A15)
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4glg2

cos0 ssnO MLz
—sin 0 cosO

cos0 —sinO
(A16)

ML sln0 cosO

The one-loop result is

9 2 3 2 2 T2V('= ——v+ X+—g +—g +3g
2 4 4 12

(4Mw+2Mz+2MI w+Miz+MLq )T+

3(2Mw+Mz ) pz 2 3mf pz
ln ———2~, +

4(4~) T 3 (4'�) T
—2c, +O(g'"Z') . (A17)

The two-loop diagrams of Fig. 23 are as follows.
cosO~ is defined below by the tree-level relation tanO~=g, /g2, and e is g2sinO~. We shall also use the short-hand

notation

AJM2=2MI w+MLzcos 0+ML sin 0—2Mw Mzcos Ow ~

AJR, =MLzsin 0+Ml icos 0—Mzsin 0~ .
(A18)

Take care to note that many of the graphs below are written in terms of the 2) instead of the 2). This is because of no-
tational complications caused by the diA'erence between 0~ and 0:

(a) 1 2 g 1 2 gV =
4 g2&s sv™l,m2, Mw) 4g2%ssv™z,mz, Mw)

2 2
1 g2 g 1

&ssv(ml, mz, MZ) z (1—2sin Ow) 2)ssv(mz mz Mz)
8 cos Ow cos 0~

T3——e 2)SSv(mz, mz, O) — (gzbAi 2+g Alit, ) +O(g i T ),
4

1 1 g2
gzX svv(m l yMwiMw ) + [2)svv(m l ~Mz iMZ ) 4H3 (m l &Mz &Mz ) ]32 64 cos Op

(A19a)

+ g2e tan 'gwl+svv(m2 Mw Mz ) 4H3(m2 w Mz ) ]16

+ gze [2)svv(mz, Mw, O) —4H3(mz, Mw, O)]+ (gzcos8+glsin8) H3(m l MLZ MLZ)

+—(gzcos8+glsin8) (gzsin6) —glcos8)2H3(ml Mlz MI y)8

+ (gzsinO —g, cos9) H3(m„ML, ML )+ gzg, sin OH3(m—z, MLW, MLZ)16 4

gzg leos OH3(mz, ML W, MI ) +0 (g T )
4

() 1 1 2
2g+sv (mz Mw) g2I +sv(m 1 Mw)++sv(mz Mw)14 '

8
2

2 2 g 1 2 g( —2 i Ow) 2)sv(mz, z) —— 2)sv(mz, O
cos Og 2

2 31 g2 g[2)Sv(ml Mz)+2)sv(mz Mz)] (gzbJN2+g lAJkl)g T 2 2

16 cos Ow 96~

T—gz+ —g, (m, —m, +3mz —3mz) +O(g T ),

(A19b)

(A19c)

T2 1 10nfg'M'»n'0 +
4(4~)' ' l2 9

—3g 2M~ 12

2nf
3

+O(g T ),1 2 5 4

3
(A19d)



47 EFFECTIVE POTENTIAL AND FIRST-ORDER PHASE. . . 3573

3A2T2
(A19e)

V'f'=0(g T ), (A19f)

(A19g)

5nf T3V'"'= g —+ (2MI w+cos BMIz+sin BML ) +g, —+ (sin BMLz+cos BMI ~)
8m

3 2 1
(A 1911)

2

V ' = 4g, l)ffv—(mf, mf, O)(i) 2 g
16 cos Ow

'2
8

1 ——sm Bw +1 [Sffv(mf&mf&Mz) +ffv(0&0&Mz) j
3

2
——gzrXffv(mf, O, MW) Xffv(O—, O, MW) j 2nfg22)ff—v(O, O, MW)

5 sII1 Ow
nfg 2 cos Bw +

2 2)ffv ( 0, 0,Mz ) — e2)ffv ( mf—, m f 0 )
COS Ow

gab&2+ —g, bAt, +0(g T ), (A19i)

(j) 3 2 3 2 3 2V gpss)ffs'( mf mf m
$ )

gpss)ffs(

mf ll1f m 2 ) gal)ff5'(mf 0 m p )
4 4 2

3gymf TV'"'= ——21n2 +0(g T ),
8(41r) e

(A19j)

(A 19k)

y(t) g
2

&2gvm kT' '

2 f. '
21n2 +0( 6T4

12 ' (4 )~
(A 191)

(m) 1 2 2 g 1 2 gV' '= — g~cos~BW2)—~vvv(MW Mw Mz) —e 2)~vvv(MW Mw 0}

1 2

2
g2cos Bwl+LLT(MLW&MLW&MZ ) &LLT™w& w& z ) I

1

2 I+LLT™LWMLW 0) +LLT™wMW 0) j

g2 cos BXLLT™Lw&MLz&Mw)+g2cos BwLLT™w&Mz&Mw )

2T'
g2 i B+LLT™LwMLT Mw)+g2 BwLLT(MLw»Mw) ~~2+

16m

2T'V'"'= 2g22P„„v(M—W)
—g2cos BOP„„v(MZ)+ bAl+0(g T ),

96m.

(0) 2 g 1 2 2 g 1 2 gV = gal)vv(MW Mw) —gzcos BW2)vv(MW Mz) —e 2)vv(MW 0)
4 '

2 2

2T3 2g T
bAi2+ MwbJR2+0(g T ) .

321T (41T )
2

(A 19m)

(A19n)

(A19o)

5. Results for resummed graphs in terms of unresummed graphs

2)slav(m„m2, M)=2)slav(m, , m1, M)+ (ML M)T +0(g' T )—,24~

2)svv(m, M1,Ml ) =2)SVV(m, M„M2 )+4H3(m, ML1, ML1) 4H3(m, M1, M2—)+0 (gT ),

(A20)

(A21)
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2)sv(m, M)=2)qv(m, M)+ (ML M—)T + (m —m)T3+0(g~i2T~),1

1
d8ffV(mf2 mf„M)=SffV(mf2 mf1, M)+ (ML ™)T+0 (g T )

24~
1

X)ffs(mf2 mf1 m):2)ff s(mf2 mf1 m)+ (rn m)T +0 (g T )
24m

1
XVVV(M1&M2&M3 ) 2) VVV(M1&M2&M3 ) + (ML1+ML2+ML3 Ml M2 M3 ) T8~

+ 2 [+LLT(ML1~ML2~ML3) +LLT( 1 iM2iM3 ) ]+1 3 4

2 perms

(A22)

(A23)

(A24)

(A25)

The sum above is over all six permutations of (M„M2, M3 ).

T (M, +M2)(M, —M2)
+LLT™1~M2&M3) 2 (Ml ™2)M3M1M2+(4' )' M3

(M, —M2)
+(M3 —2M1 —2M2)H3(M1, M2, M3)+ [H3(M1, M2, M3) H3(M—1,M2, 0)], (A26)

M3

2)„„v(M)=2)"„„v(M)— (ML M)T +—0(g T ),1

96~
1

2)VV(M, ,M2) = 2) VV(M1, M2)+ (ML1+ML2 —M, —M2) T
16m.

4T 3 4—[(MI 1 Ml )M2+Ml (ML2 M2 )1,+0 (g T ) .
(4~)

(A27)

(A28)

6. Exact results for unresummed graphs in terms of I, H, and L

This section is included only for completeness. The expansions for the 2)'s that give our final result for the effective
potential through 0 (g T ) are given in the next section. We have not bothered to keep track of the Hff terms in the
fermion contributions below because these do not contribute to the potential at 0(g T ). In the case of 2)ffz, these
terms in fact depend on whether the S is a scalar or a pseudoscalar —a distinction we are otherwise able to ignore:

2Pzzv(m1, m2, M) = I(M)[I(m1)+I (m2)] I(m1)I (m2)+(M —2m, —2m—
2 )H(m1, m2, M)

I i 1712
2 2 (m, —m2)2 2 2

+ [I(M)—I(0)][I(m, ) I(m2)]+ —[H(m, , m2, M) —H(m„m2, 0)],
M M

X)svv(rn, M, , M2)= . [I(M, )
—I(0)][I(M2) I(m)]—1

Mi
2

[I(M, ) I(0)][I(M2) —I(0)]+(5 4e)—H(m, M, ,M—2)

4
+ [H(m, M1, M2) —2H(m, M1, 0)+H(m, 0,0)]

2M, M2

Mi —2m+ [H(m, M, ,M2) —H(m, M, , O)] -+ [M, ~M2 },

(A29)

(A30)

Xlsv(m, M) = —2(3 —2e)I(m)I(M),

2)ffV ( m f2 m f„M) = 2 ( 1 e) [If ( mf 2 ) +If ( m—f, ) ]I ( M ) —2 ( 1 —e )If ( mf 2 )If( m f 1 )

M
[If(mf2) —If(mf1)][I(M) I(0)]+0(g T Hff ),

&ffs(mf2 mf1 m) =2[If(mf2)+If(mf, )]I(m) —2If(mf2)If(mf, )+0 (g 'T'Hff )

(A31)

(A32)

(A33)
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2P~~~(M„M2, Mq)= —g . — H(M, , O, O) —— [I(0)] —L(M), M2)
Mi 1 Mi

M)+ ( —4+4@) + ——4e
M

Mi
H(M, M, O)2MM2 3 .

M4,
I(M )I(M )

4 M'M'
1 2

9——4e
2

M)M2 1 M)+ — H(M„M2, M~) .

M~ 4 M2M~

(A34)

M M1 2

M 3

7 9 M& M3+ ——2e + ——4e
2 2 M M

M~ M2
1 M42

+ +— I (M I )I (0)
M2 M2 2 M2M2

Mi+ (
—8+6m)M +(4—4e) + ——+4@

1 M 3

The sum above is over all six permutations of (M&, M2, Mq ).

2)„„v(M)= —,'I (M)I(0)——
—,'M H(M, O, O),

2)fy( M ),M2 ) =2L (M ),M2 ) + ( —14+20' )I (M ) )I ( M2 ) .

(A35)

(A36)

7. Expansion of results for unresummed graphs

2)&zv(m &, mz, M) = — + —+ ln +lng MT M T 1 1 1 p 3T 1 1 1+—+—c~ ——cH +O(g T ),5/2 4

24m (4~)2 12 p 12 M 2 3 4

T2 5 1 5 P2 5 M1 M2 M1 M2 3T
2)+zan(m M&, M2) = ——+—ln +3——cH+ + + 10+ + ln

(4 )' 2e 2 M2 M) M' M' M +M

(A37)

M)
1n

M,
1n

M,
+0 ( 1/2T2) (A38)

X)ff~(mf2, m», M) =g

MT 11 1 p2)gv(m, M) = ——+—ln
(4vrj 2 e 2 T2

(mf~+mf, )T

(4'�)'

MT T———c~ + + +O(g iT),
3 8a 8~

11 1 p2 1 1
ln +—+—c~+—1n2

4 g 4 T 4 2

(A39)

MT 11 1 p
(4~)' 6 e 6 T2

(mfp+mff )T 1 1
+ffS mf2 fl m j 2(4'�) E'

————cz ——ln2 + +O(g T ),1 1 1 MT
6 3 3 24m

1 1 T3
ln ~ +—cF+ —ln2 + +O(g 7i'T'),

4 T2 2 6 24m

(A40)

(A41)

T
2P~~~(M, M, M~)= (2M +M~ )

(4m )

61 1 61 p 13 13
24 g 24 T2 8 12

11 25 9M 3+ MM~ M~+
3

M+ 4M2 +9M2
2M

M
2M~

4M~

M

M4
3

4M

M~
1n M+M,

4M',
+ —12M —17M + +

M~ 3T
1n + 1n

M 4M' M,
T3—(2M+M~) +O(g T ), (A42)
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2 2n",(M) =
(4'�)'

1 1 . 1 p2 1 1 1 1 3T
ln ——— c~+ cH ——ln

48 g 48 T 8 12 16 4 M
MT+ +O( 'T4)
96 g (A43)

2)" (M, M )= (M +M ) ——+ —ln
T '

2 2 9 1 9 P,
VV 1' 2 (4 )2 1 2

g g T2
——ci) — M, M2 + (M, +M2)T +O(g T ) .

(A44)

8. Some useful limits

M T
(M, M, O) =VVV»

(4 )2

61 1 61 p2 13 3T
ln

2
+3+ e~+4c~+ 12 ln2 —16 ln

12 g 12 T 6
+O(g'T ), (A45)

g T 5 1 5 p 7 3T
2)&vv(m, M, O) = ——+—ln +———cH+101n

(41r)2 2 e 2 T2 2 2 M
+g (g 1/2T2) (A46)

2)Li,r(M), M2, 0)— 2
—M1 —2M)M2+ —M2 —2(M1+M2 )H3(M), M2, 0) .

T' 1 1 2 2 2—
(4vr )' 2

(A47)

APPENDIX B: DERIVATION OF SOME HIGH-TEMPERATURE EXPANSIONS

1. Expansion of Hff
In this appendix, we shall derive the leading O(T ) term in the high-temperature expansion of Hff(mf2, m», m),

defined by (5.12). Because two of the three Euclidean momenta P, Q, P+Q are fermionic, Hff does not diverge in the
infrared if we set all the masses to zero. So the leading 0 ( T ) term is simply

1
Hff(mf„mf, m)=p" ~~. f) $). 1g) . . .+g(mT) .

p2Q 2(p + Q}2

The result found in this appendix is that

ql' (f) ql' ( ) —O (~)p'g'(p+ g)'
in dimensional regularization and so vanishes when a~0.

We begin by rewriting the integral in (B2) as

Using the symmetry of this expression, one may replace

XXX 3 XXX—XXX
odd odd even any any any even even even

(B4)

where we will restrict the triple sum on the right-hand side to exclude the case (n, j,1)=(0,0,0) where all the frequencies
are simultaneously zero. By scaling all three-momenta by a factor of 2 in the first term on the right-hand side of (B4),
we obtain

XXX
odd odd even

XXX
So we may relate Hff to something resembling the bosonic function H:

1 —6 5
q~( ) q| ( ) =e 4, In2+O(e)

p2g2(p +g)2 g~ Q p2g2(p +g)2
(B6)

The result will be nonzero when e—+0 only if the bosonic integrals on the right-hand side give a divergent contribution
of order 1/e. To relate this result more directly to the bosonic function H(m), we need to temporarily put in an in-
frared cutoA I:
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P Q (P+Q) ~ 0 (2m) ' (2n. )
' (p +m )(q +m )[(p+q) +m ]

(B7)

It is straightforward to compute the I/e term of the above three-dimensional integrals using standard techniques for
loop integrals. One finds that it exactly cancels the I /e piece of H (I ) shown in (3.17), from which (B2) then follows.

2. Expansion of L ( m &, m 2 )

Working from the definition (6.3) of L (m „m2 ),

P2(P2+m 2 )
+& Q2(Q2+m 2

)
+~ P2(P2+I 2

) + g2(g2+m 2
)

2 2 2
Po

p2(p2+~ 2
) g2(g2+ 2

) (3 2&) i g~ p2(p2+ 2
)

2

I(m2)— Po
p(p+ )

(B8)

2
Po

P2(p2+ 2)
2c +2—+O(m IT ) e(1, —2—) T +O(em ) .8 24

An expansion for the remaining integral may easily be found by the method of (3.32):

1 2 1 2 1 pT— m —+ln
24 64~ ~ T

The high-temperature expansion of L (m „m 2 ) is then

(B9)

(I,+m2)T
L (m „m z ) =const-

24X4~

2
—(m, +m2) —+i,,+in —2cs —1 +2 2 T 1 p ~lm2 T

+O(m T)+O(e) .3

48(4~) & T 3(4m )

(B10)

APPENDIX C: CRITICISM OF THE
SUPERDAISY APPROXIMATION

A previous attempt to compute corrections to the
ring-improved one-loop potential in Ref. [14] has relied
on the superdaisy approximation to simplify the calcula-
tion. In this appendix, we shall explain why the super-
daisy approximation does not correctly reproduce the
leading corrections to the one-loop potential. The super-
daisy approximation is an approximation to Dyson's
equations where the effective masses of particles are de-
rived at one loop (to any desired order in M/T) from dia-
grams such as Figs. 1 and 5, and then those masses are
used self-consistently to improve the propagators used to
derive the efFective masses in the first place. The result is
a set of coupled equations which may be solved for the
eff'ective masses. In pure scalar theory, for example, the
equation is given schematically by Fig. 28 (ignoring re-
normalization and counterterms):

Pl~a m + A$ p I' +m, ~

(Cl)

)'= (

FIG. 28. The one-loop approximation to Dyson's equation
for the self-energy.

FIG. 29. A generic superdaisy diagram in the pure scalar
theory.
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~ 0 0 + + i ~ ~ ~ ~ 0 + + 0 ~ ~

FIG. 30. A disastrous term in the superdaisy resummation of
the one-loop vector diagram.

FIG. 31. The tadpole version of Fig. 31, which is still prob-
lematical.

Computing the one-loop potential with these masses is
then equivalent to some approximation to the set of su-

perdaisy diagrams, such as shown in Fig. 29.
Superdaisy equations such as (Cl), however, do not

give adequate approximations to these graphs. (Cl)
should really read

II(Q)= m + —A,
1 1' P'+11(P)

[P +II(P)][(P+Q) +II(P+Q)]
(C2)

where II(P) is the one-loop self-energy. The approxima-
tion made in (Cl) was to replace II(P) by II(0) inside
loops. Thus, Fig. 29 has been approximated by first com-
puting the smallest (outermost) loops in the approxima-
tion that no momenta flows into them, then computing
the next smallest loops in the same approximation, then
the next, and so forth. At each stage, the approximation
is valid only if the momentum flowing through a loop is
small compared to the momenta of all the smaller loops
that decorate it. And therein lies the rub. Once quadrat-
ically divergent pieces have been accounted for (say, by
normal ring resummation as opposed to superdaisy
resummation), then most loops are dominated by momen-
ta of order M and there is no hierarchy of momenta in a
graph. So, for example, the O(g M T ) contributions of
Fig. 20(m) cannot be correctly computed in an approxi-
mation that replaces one loop by II(0).

The problem can be even more egregious if care is not
taken to avoid mishandling hard (P-T) thermal loops.
Consider the particular contribution to the superdaisy
improved one-loop potential shown on the right-hand
side of Fig. 30. The superdaisy approximation instructs
us to first evaluate the small loop assuming Q =0. This
small loop is then dominated by loop momenta P of order
M. When we replace the result II(Q) of the small loop by
an effective-mass insertion II(0), the large loop becomes

quadratically divergent and so is dominated by momenta

Q —T. But this is exactly the opposite hierarchy of mo-
menta from the one needed to justify the superdaisy ap-
proximation. Reference [14] sidesteps this disaster by
computing the derivative of the effective potential rather
than the effective potential itself. In the tadpole graph of
Fig. 31, the large loop never has momentum T when it is
decorated by smaller loops. But this does not save the su-

perdaisy approximation. The large loop is now dominat-
ed by momenta Q-M, and the O(MT) corrections from
the small loop are also dominated by momenta P-M;
the necessary hierarchy of momenta is still absent.

As discussed in Sec. IVB, there are a few diagrams
where there is a hierarchy of scales when the scalar mass
is much smaller than the vector mass. The resummation
discussed in that section does not benefit from the full su-

perdaisy approximation of (Cl) and was in any case ir-
relevant to our final results for the leading corrections to
the one-loop potential.

In Sec. IVD, we discussed how the most important
terms for shifting the VEV from its one-loop value are
those that depend on logarithms of masses. The super-
daisy approximation will never generate such terms be-
cause it always reduces multiloop diagrams to a hierar-
chy of one-loop diagrams (with some number of mass in-
sertions) and the result I(M) for a one-loop diagram does
not contain any lnM terms [see (3.12)]. Such terms do ap-
pear in many of the expressions in Ref. [14], but this is
because there I(M) is routinely split into separate zero-
temperature and temperature-dependent pieces. Though
each piece depends on lnM, the sum does not. Reference
[14] does consider one diagram in addition to the super-
daisy one-loop tadpole, and this one diagram will indeed
generate some lnM terms. However, the other lnM terms
from all those diagrams subsumed by the superdaisy
one-loop tadpole [such as the derivative of Fig. 21(m), for
example] are lost.
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