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Staggered fermions and chiral-symmetry breaking in transverse lattice regulated QED
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Staggered fermions are constructed for the transverse lattice regularization scheme. The weak pertur-
bation theory of transverse lattice noncompact QED is developed in the light-cone gauge, and we argue
that for fixed lattice spacing this theory is ultraviolet finite, order by order in perturbation theory. How-
ever, by calculating the anomalous scaling dimension of the link fields, we find that the interaction Ham-
iltonian becomes nonrenormalizable for g'(a) & 4~, where g (a) is the bare (lattice) QED coupling con-
stant. We conjecture that this is the critical point of the chiral-symmetry-breaking phase transition in

QED. Nonperturbative chiral-symmetry breaking is then studied in the strong-coupling limit. The
discrete remnant of chiral symmetry that remains on the lattice is spontaneously broken, and the ground
state to lowest order in the strong-coupling expansion corresponds to the classical ground state of the
two-dimensional spin-2 Heisenberg antiferromagnet.

PACS number(s): 11.15.Ha, 11.10.Ef, 11.15.Me

I. INTRODUCTION

Staggered fermions [1] for lattice gauge theory [2,3]
have the desirable property of preserving a discrete rem-
nant of chiral symmetry, and are therefore useful for
studying nonperturbative chiral-symmetry breaking in
gauge theories. Staggered fermions have been construct-
ed for the four-dimensional (4D) Euclidean formulation
of lattice gauge theory, and for the Hamiltonian formula-
tion of lattice gauge theory, based on a three-dimensional
spatial lattice and one continuum time variable. In Secs.
II and III, we construct staggered fermions for the trans-
verse lattice formalism of Bardeen et al. [4,5], which is
based on a two-dimensional spatial lattice and two con-
tinuum space-time coordinates. Wilson fermions for the
transverse lattice were constructed in Ref. [4].

The transverse lattice construction is a minimalist's
nonperturbative regularization scheme for gauge fields
[4]. After choosing an axial gauge and imposing the
Gauss constraint, the degrees of freedom of the gauge
field are reduced to two spatial components, and these
can be regulated by mapping them to link fields on a
two-dimensional lattice. The link fields are nonperturba-
tive excitations of the gauge fields, and are scalars with
respect to the two continuous space-time coordinates per-
pendicular to the lattice, so their ultraviolet (UV) behav-
ior is softened.

The basic disadvantage of the transverse lattice con-
struction is the breaking of (3+1)-dimensional Lorentz
invariance down to (1+1)-dimensional Lorentz invari-
ance plus discrete 2D lattice translations and rotations.
This means, for example, that pure (3+1)-dimensional
gauge theory has three bare coupling constants when re-
gulated this way, as dictated by 1+ 1 Lorentz invariance
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[5]. One assumes that the full 3+1 Lorentz-invariant
theory is recovered in the scaling region of the lattice
theory for a line of tricritical points of the coupling con-
stants. The tricritical points are determined by examin-
ing 3+ 1 relativistic dispersion relations.

Weak coupling perturbation theory of transverse lat-
tice noncompact QED (TLQED) is discussed in Sec. IV.
After gauge fixing in light-cone gauge, the UV properties
of the theory are studied. We argue that the usual di-
agrammatic UV divergences are cut ofT' by the finite
transverse lattice spacing. The transverse lattice con-
struction converts a four-dimensional field theory into a
two-dimensional field theory with a finite (for finite sites
on the lattice) number of "flavors" which is then UV
finite, diagram by diagram, for fixed lattice spacing.

In Sec. V we calculate the anomalous scaling dimen-
sion of the link fields on the lattice, and find that the in-
teraction Hamiltonian becomes a nonrenormalizable in-
teraction for g (a) ) 4m. , where g (a) is the bare QED cou-
pling constant. The anomalous scaling dimension is cal-
culated by normal ordering the link fields and is nonper-
turbative because the link fields are exponentials of the
gauge fields.

The relationship between this phase transition and the
phase transition of the sine-Gordon model, the quenched
ladder approximation of QED, and quenched noncom-
pact lattice QED is discussed. Based on these analogies,
we conjecture that this critical point corresponds to the
nonperturbative chiral-symmetry-breaking phase transi-
tion in QED.

Recent interest in chiral symmetry breaking in QED
was generated by Miransky [6] who used the ladder ap-
proximation of the Schwinger-Dyson equation to argue
for the existence of a nontrivial UV renormalization-
group fixed point of the QED coupling constant. This
phenomenon is closely related to the collapse of the Dirac
wave function in supercritical (Z ) 137, for which
a=Ze /4') 1) Coulomb fields [6]. The fixed point is
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II. STAGGERED FERMIONS FOR THE
TRANSVERSE LATTICE

In this section, we construct staggered fermions for the
transverse lattice, and in the process, introduce lots of
notation that will be used in later sections.

The initial strategy is to write the Dirac equation
(iy"d„m)/=0—in appropriate component form, and
find a fermion equation on the transverse lattice which
reproduces these equations in the continuum limit. We
use the chiral representation of r matrices,

0 —1

—1 0
0 o' 1

i 0. & r5 0

the boundary of the chirally symmetric ladder QED
phase and its strong coupling phase which has spontane-
ous chiral symmetry breaking [7]. That the strong cou-
pling phase of QED breaks chiral symmetry spontaneous-
ly is understood analytically via the strong coupling ex-
pansion of lattice gauge theory [1,8,9], and via lattice
gauge theory Monte Carlo simulations [10—12]. It is not
clear, however, that lattice gauge theory data support the
existence of a nontrivial UV fixed point for full QED. It
may be the case that the renormalized charge of the con-
tinuum theory vanishes at the critical point [13].

In Sec. VI, we study the strong coupling limit of
TLQED by calculating the energy shift of the infinite
coupling vacuum states to lowest order in the inverse
coupling 1/g. We find that the discrete remnant of chiral
symmetry on the transverse lattice is spontaneously bro-
ken and that the chiral condensate ( gP) is nonvanishing
for the lowest energy state. We discuss our results fur-
ther in Sec. VII.

d P =P, (x, )d,g+P, (x )b, ,P+P, (x, )&,P, (2.5)

where P„P2, and P3 are unknowns to be determined by
matching to the continuum equations (2.4) with zero
mass, and 6 is the symmetric lattice derivative

6,j'(xi) = [f(xi+a) —f(xi —a) ] .1
(2.6)

Since Eq. (2.5) is linear in lattice derivatives, there will be
fermion doubling in each lattice direction [1];i.e. , one lat-
tice fermion will correspond to four fermion components
in the continuum. In lattice coordinate space, this means
that different linear combinations of four adjacent sites
will correspond to four different fields in the continuum.
We will see how this explicitly occurs in momentum
space at the end of this section.

To be more specific, introduce a lattice parity
Pr [xi]=(—1) ~. If PL [xi] is +1(—1), then xi is an
even (odd) site. For the moment, consider the fermion at
even or odd sites to be different continuum fields, labeled

P,„,„and P,dd. Making the ansatz P, =PL, the equatio~
of motion (2.5) becomes

&Za y,„,„=P,~,y.„+P,~,y.„,
&Za y.„=P,S,y,„,„+P,a,y„,„. (2.7)

If we select P, = 1 and P2 = —iPL, then Eq. (2.7) are just
the massless continuum equations for the Dirac fermion
components y of Eq. (2.4). This is not the complete re-
sult, however, because we know that there should be four
continuum components. The full result is obtained by
breaking up the lattice further into sublattices graded by
(
—1) '. The full result is that with the Pi, Pz, P3 selected

above:

(&)

(2)

In light-cone coordinates,

~(&)
X= (2)

.x

and define the fermion P components:

(2.1)

(2.2)

y"'= —,'[P(xi)+P(xi+s)], xi even,

y' '=
—,'[P(xi)+P(xi+s)], xi odd,

y" '=
—,
' [P(xi)—P(xi+ s) ]( —1), xi odd,

y' '=
—,'[P(xi) —P(xi+s)]( —1) ', xi even,

(2.8)

(x'+~'), a = (a,+a, ),
2

' — 2

the component equations are

&28 y"'=imp'"+[8, iB ]y' —'

&2B 7t' =imp& +[Bi+iB2]y ",
&2d+y"'=imp'" —[8, i 32]y' ', —

/2B q
"'=imp'" —[a, +ia, ]q

"' .

(2.3)

(2.4)

Now consider a complex one-component fermion field
on a discrete square lattice of points xi=a (n, n ), with
lattice spacing a and basis vectors a= (a, O) or (O, a). We
will also use the notation x=(a, O) and y=(O, a). In this
section, the lattice is taken to be infinite. The fermion
field P is a continuous function of the light-cone coordi-
nates x —,and satisfies the equation

a,y —( —1) a,y —b, ,y+ i ( —1)"" " a,y =0 . (2.9)

We can see more explicitly how the continuum com-
ponents arise by doing a momentum space mode expan-
sion of the fermion. A fermion mode in momentum
space is given by

where s =a ( 1, 1 ). One can easily check that these fields
obey the massless version of Eqs. (2.4). Each continuum
field is associated with the face of the lattice with center
x~+ —,

' s. Label each point on the lattice by
n n

(( —1) ",( —1) '), so that there are four types of points
with respect to this grading. Then g(",y' ' are associated
with type A faces, and g' ', y' ' are associated with type
B faces, where the faces are labeled in Fig. 1.

The equation of motion of the massless theory, with
one four component Dirac fermion in the continuum lim-
it, is
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FIG. 1. Each point on the lattice is labeled by

(( —1),( —1) ). The fields y"', y' ' are associated with type
3 faces, and g' ', y" ' are associated with type B faces.

5GA;(x~, x +—)=8;A(x~, x —), i =0,3,
GAGA (xj,x —)=b, +A(x~, x —), a=x,y .

The forward lattice derivative

(3.1}

variant at each site. This, however, fails because of the
2D gauge anomaly, and a second set of fermion fields has
to be introduced, leading to a second fermion flavor in
the continuum limit. Lattice symmetries and the form of
the fermion action is discussed, with particular care given
to analysis of allowed mass terms.

To promote 5GP=iAQ to a local gauge symmetry, in-
troduce the 2D vector gauge fields A; and 2D scalar
fields A with transformation laws

X e (h(x , n ),— (2.10) b, +f(xI ) =—[f(xi+a) —f(xi)]
1 (3.2)

where —~&I (~, and the signature of the spacetime
metric is (+,—,—,—).

In rnomenturn space, the equation of motion is

obeys the integration by parts rule

gf ~.+g = —g (~.f )g,

ik P(l)+ik ($(l +~)+i
sinl

&

$(l)

sinl2
P(l +~)=0, (2.1 1)

where

f(xi)= —[f(xi)—f(xj —a)] .=1

The Lagrangian for the gauge fields is

(3.3)

where p(1+m)=p(l&+sr, 12+A). In the continuum lim-
it, as a —+0, finite energy states are located about I -e,
or l —~—e. There are clearly four continuum fermion
components for one transverse lattice fermion. This is
just the standard fermion doubling problem, which works
to our advantage, in this case, because four continuum
components are desired. Divide momentum space into
four regions:

Xs,„s,= ga 2(F)) + 2(F, ) + (F p)
4g][ 4g2 4g3

(3.4)

where g&, g2, and g3 will be fixed by requiring 3+1
Lorentz invariance in the continuum limit. The field
strengths F„are

1 =p + II „(mod2~),
(2.12)

I' p=A+ Ap —
Ap A

(3.5)

11,= I(0,0), (~,0},(0,~), (~,~)],
and let

P(p + II, ) =c, (p) +c4(p),

P(p + II2) =c3(p)+c2(p),

P(p+II3) =c3(p) —c2(p),

P(p + II4) =c, (p) —c4(p) .

With the "continuum" momentum variables

(2.13)

For the fermion fields, we dress derivatives via the usual
minimal coupling procedure:

a, y D, y=(a, —iA, )y,

b, P~D P= IP(xi+a)e (3.6)

—P(x~ —a)e '
] /2a .

However, this construction does not yield a gauge-
invariant theory. The 2D kinetic terms for the fermions
are

sin(p, ) sin(p2)k'=, k =
a a

(2.14)

In this section we introduce gauge fields to make the
theory defined in the previous section locally gauge in-

the massless Dirac equation (2.11) reduces, in the c, basis,
to ik„y"c =0.

III. LOCAL GAUGE INVARIANCE,
LATTICE SYMMETRIES,

AND THE FERMION ACTION

5=iv'2P (8 iA )P+, —xi even

=i V'2$t(i}+ i"A+ )P+, —x~ odd .
(3.7)

There is only a single left- or right-handed fermion for
each local U(1) gauge symmetry, and therefore, the local
U(1) symmetries are anomalous. The anomaly breaks the
U(1) X U(1) symmetry of pairs of sites (say xi and
xi+PL [xz]y) to the diagonal U(1). In principle, one can
construct transverse lattice QED with the remaining U(1)
symmetry [14]. However, in practice, it will be easier to
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add a second flavor of lattice fermions to cancel the
anomalies and preserve the full set of U(1) symmetries.
The fermion action takes the form

2

XF=i g ga /~[[DO+( —1) " ' D3]QI
f=1 x&

P, (x )~(—1) «P2( —x3),

$2(x )~(—1) «p, ( —x') .

In terms of the continuum 6elds,

%(x )~cr y y 4( —x ),

(3.15)

(3.16)

rr[D—+i( —1) " ' D ]PI],
(3.8)

where the o' are Pauli matrices that act in flavor space.
(iii) y-coordinate shift invariance:

j =1,2, (3.9)

are

where sc is a hopping parameter that will be fixed by re-
quiring 3+1 Lorentz invariance. While ~=1 in the clas-
sical continuum limit, it will receive quantum corrections
and in fact will have to be renormalized With two
flavors on the lattice, there will be two Dirac fermions in
the continuum limit. Their components y and g are con-
structed from di6'erent flavors of the lattice fermions, i.e.,
p, and p2 contribute to each of the two continuum Dirac
fermions. The components of the continuum fermions

P, ( x~)~$2(xi+y),

$2(xj)~P, (xj+y) .

This is a flavor change in terms of '0:

e(x, ) o'e(x, +y) .

Note that two shifts generate a simple translation.
(iv) x-coordinate shift invariance:

P, (xj )—&$2(xi+x),

$2(xi)~Pi(x~+x) .

This is an axial flavor change in terms of 4:

(3.17)

(3.18)

(3.19)

and

y'i"= —,'[yi(xj)+P, (xi+s)], x~ even,

y'i"= —,'[Pi(xg)+Pi(x, +s)], x, odd,

y'i"= —,'[$2(xJ) $2(XJ+s)](—1) ', x~ even

y'i '=
—,'[$2(xj )

—$2(xj+s)]( —1) ", xi odd,

y2" —
—,'[$2(xj)+$2(x~+s)], xi odd,

y2 '=
—,'[$2(x~)+$2(xj+s)], x~ even,

y2"= —,'[p, (x, ) —p, (xJ+s)](—1) ", x, odd,

q2
'=

—,'[p, (x~) —p, (x~+s)]( —1) ', x~ even .

%(xi)~o'y %(xi+x) . (3.20)

(3.10)

P&(n«) ~( —1 ) «P&( n«) . —

(3.11) In terms of 4',

'P(n«)~o y y il«( —n ) .

(vi) x-axis reversal:

(3.21)

(3.22)

Again, two shifts generate a simple translation. The
combination of x and y shifts generates 0' —+y 4', which
is a discrete chiral symmetry. This takes g —++g» and

yJ ~—
cp», and corresponds to a discrete Z2 subgroup of

the 4D anomalous axial U(1) symmetry. The mass term
(3.12) explicitly breaks both the discrete chiral symmetry
(generated by xi~xi+s), and the axial vector flavor
symmetry.

(v) y-axis reversal:

The mass term g„a (m /&2)+. %'~%'~ is found, by expli-

cit evaluation, to be
P&(n„)~( —1) "P~( —n„) .

In terms of 4,

(3.23)

(3.12)

5$&(x) =A, ( —1) " P&(x') . (3.13)

In terms of the continuum fermion 4 defined in Eq. (3.9),
the transformation is

5'@=A,y y 'Ir(x') .

as expected.
(ii) Two-dimensional parity:

(3.14)

and it clearly preserves the U(1) symmetries for all the
sites.

We now discuss the other symmetries of the massless
lattice action.

(i) Continuous two-dimensional Lorentz invariance:

4'(n„)~ —o'y y'4'( n) . —

(vii) x-y rotational invariance:

(3.24)

P&(n„n«) ~P&( n«, n„), —xi even,
(3.25)

P&(n, n«) —+i( —1) +'P&( n, n ), —x~ odd,

Writing this in terms of + is not particularly illuminat-
ing. This symmetry is why we need only one arbitrary
parameter ~ in the Lagrangian, instead of one for the D
term and one for the D term. This can be interpreted as
a spin transformation; these transformations are typically
applied to staggered fermion systems to diagonalize y
matrices in the fermion action (see Refs. [15], [16], and
[17] for further discussion on this point).

The 2D gauge theory for each site also has an anoma-
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ious chiral transformation:

5$f (xi ) = ik, (
—I )f + 'pf (xi ) . (3.26)

Z'=m'ya'[ytyz+yzyi] . (3.29)

This symmetry is broken at one loop in perturbation
theory by the usual anomaly. It corresponds in the 4D
continuum limit to a broken axial-vector Aavor symme-
try, under which the continuum components transform
as

5%= —iso 3y5% . (3.27)

(3.28)

can occur in the Lagrangian, where F is a 2 X 2 matrix in
flavor space, and G is a 4X4 matrix with spinor indices.
Terms of this form could in principle be generated as
contact terms when evaluating the fermion self-energy at
one loop (for discussion of this in the context of 4D lat-
tice QCD, see Ref. [21]). The 2D Lorentz invariance
places a strong constraint on the form of G, namely,
[y y, G]=0. There are only eight linearly independent
G matrices that satisfy the commutator: 1, y, y, y y,
iy'y, and iy y, where a=1,2. The y-coordinate shift
invariance requires that [a',F]=0: F=1 or cr'. For
F =1, applying the symmetries (ii), (v), and (vi) above
leaves just one G, G =1. This is the mass term %''(Il given
by Eq. (3.12). For F =cr, applying the same symmetries
leaves G =y y', so there is a second possible term,
4'io'y y'%. In terms of the lattice fermions, it is given
by

There are no continuous global flavor symmetries for
this model. This is in contrast with the naive (Wilson)
and staggered (Susskind) formulations of QED on 4D Eu-
clidean lattices [15,18]. The action for a single 4D naive
massless fermion on the 4D lattice has U(4) vector and
axial-vector fIavor symmetries, which is a subgroup of the
full U(16) fiavor symmetries of the 16 continuum Dirac
fermions of this model. The minimal staggered massless
fermion action on the 4D lattice has U(1) vector and
axial-vector Aavor symmetries on the lattice, which is a
subgroup of the U(4) flavor symmetries of the 4 continu-
um Dirac fermions for this model. The transverse lattice
model constructed in this section has no continuous
Aavor symmetries, and has only two continuum Dirac
fermions in the continuum limit. For the fermions on the
4D lattices, the axial-vector flavor symmetries which ex-
ist in the lattice action are spontaneously broken in the
strong coupling limit. The nonvanishing of the order
operator %%, which signals the breaking of the axial-
vector flavor symmetries of the lattice models, is
confirmed, by Monte Carlo simulations, for the scaling
region of the theory [19,20]. This order operator breaks
all of the continuum axial flavor symmetries, and one ex-
pects the full multiplet of Goldstone bosons associated
with the full set of broken axial symmetries in the scaling
regime. In Sec. VI, we will show that the discrete chiral
symmetry of the transverse lattice model is spontaneously
broken in the strong coupling limit by the nonvanishing
vacuum expectation value of 4 %.

With the symmetries listed above, we will now see
which "mass terms" of the form

However, this is not rotationally invariant, unlike Eq.
(3.12). Under symmetry (vii),

Z'~m' y a'( —I)""+"'[pic,+y,'y, ] . (3.30)

In particular if a y-coordinate shift is then implemented
on Eq. (3.30), and another rotation is performed, one gets

So m ' =0, by a combination of symmetries (iii) and
(vii), and the lattice symmetries are sufficient to guarantee
that no additional counterterms, other than the fiavor
symmetric mass term, will be required at one loop. In ad-
dition, if the bare mass is set to zero, the renormalized
mass in weak perturbation theory will also vanish, by the
symmetry (iv). However, this symmetry will be spontane-
ously broken in the intermediate and strong coupling re-
gimes, to which we new turn.

IV. ULTRAVIOLET FINITENESS
OF PERTURBATION THEORY

one finds that only the P are dynamical fields. The con-
straint equations in the light-cone gauge for the fields 2+
and y are

2

8 3 —J &2it it (4.2)

and

1
8 y= —[D, iD ]g. —

2
(4.3)

Using —,
'

~x
—y ~

= I /8, which satisfies 8 —,
'

~x —y
=5(x —y ), the constraint equation (4.2) is integrated:

In this section, the weak coupling perturbation expan-
sion will be developed for the transverse lattice theory
with Lagrangians given by Eqs. (3.4) and (3.8). It will be
argued that the transverse lattice regulates all the UV
divergences for each diagram in perturbation theory. We
will use this formalism in the next section to calculate the
nonperturbative scaling dimension of the interaction
Hamiltonian.

Axial gauges minimize the mixing of longitudinal and
transverse degrees of freedom and are therefore particu-
larly useful in the context of the transverse lattice con-
struction. Spacelike axial gauges are problematic for
weak coupling because of difficulties implementing
Gauss's law [22], so the light-cone gauge A =0 will be
used. In light-cone gauge, if the field theory is quantized
on the null plane x+ =0, then A+ is a constrained field.
So in this section, we use the light-cone quantization
scheme —the light-cone gauge with the null-plane Cau-
chy surface.

Only half of the fermion fields P'f' satisfy dynamical
equations on the null plane. With the definitions

x=0f
(4.1)

(
—1) " ' =+1,
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3+=—,
' dy x —y J +Ex +G . (4.4) where the constraint equations have been applied, and

the measure is
The constant G (x +,x» ) is set to zero as a gauge fixing
constraint; it fixes x+-dependent (and x -independent)
infinitesimal gauge transformations .The F(x,xi)x
term corresponds to the 0 angle of the Schwinger model
[23]. In the continuum limit, the physical 3+1 Lorentz-
covariant vacuum should correspond to F =0, so it can
be set to zero identically.

To remove the coupling constant dependence from the
canonical commutation relations, we let

dAt= pa dx (4.7)

The light-cone Hamiltonian I' can be divided into free
and interacting parts:

—+g2 3 (4.5) Po = fde. e,, A Ap bii A +e2(b, A )

The current J and covariant derivative D must be
changed accordingly. With this field redefinition, the
light-cone momentum P+ =(P +P )/&2 and the light-
cone energy P =(P P)/v'—2 are

P+= fduta ~.a ~.+i&Zq'q],
(4.6)

gz 1 1
P = f dA, . F,2F, 2

— J
2g3 g]

+ —(5 p ie l3)g D —[Dpf] . ,
2

where

1
Cl

2 g3

and

+ —gtb, b,
2

1 gi 1

z

(4.g)

P;.»= fd~ —&2 ~. ~.
&

[0'0l g iA, —[Al

+ —tfrt (5 p i e li)D —[Dl3$]—
2

(4.10)

We define the beta functions p&(y»)=a»)y/»)a for each
coupling constant y =g &,g2, g3, ~. The coupling con-
stants g, and g3 are fixed with respect to g2 for each
value of lattice spacing a by requiring that the photons
obeys a covariant dispersion relation. The appropriate
renormalization scheme for covariant dispersion relations
is

are determined by the renormalization conditions Eqs.
(4.11).

The quantum theory is defined on a square, doubly
periodic, transverse lattice with X sites, X even. A real
scalar field o (xi) =(xi+Na) has the mode expansion

C) — 2, C2 =0 (4.11) o (xi) = g»o'"o (l)+c.c. , (4.13)

P l(g I ) P l(R 2 ) ++(g2 )

P„(g, ) =P„(g2)+O(g2),
(4.12)

At the tree level, this implies g, =g2=g3. This relation
will receive corrections in perturbation theory; the beta
functions where co is the phase factor e '~, the I are integer mo-

menta which take values from —N/2 to N/2 1, and the-
inner product l n is shorthand for g l n . With these
definitions, the mode expansions for the fields are

g f Ie '"" »o'"a (l, g)+e '" co '"a (l, q)],
'»/4~Na

&
o

g f ~ [e '"" co'"b(l q)+e '" co '"d (l g)],V2~Na, o V'q

g f ~ Ie '"" co'"d(l i))+e '"" oi '"b (l g)] .
&2~Na

(4.14)

The canonical (anti)commutation relations for the creation and annihilation operators are
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[a (1,r) ),a pt ( l ', il' ) ]=5, , 5 &&5( r) 'r—t' ),
[ b(l, r)), b ( I', g') ]

=5t i 5~pr)5(il (4. 1&)

[d(l, g), d (1',i)')] =5((5 pg5(q il—') .

The modes a, b, d annihilate the light-cone vacuum, and the normal-ordered expressions for the fermion charge
QF =&2f g g, momentum P, and free Hamiltonian Po are

Qp= g J [b (l, rl)b(l, i)) dt(—1,i))d(l, i))],dn

I

P+= g J dr)[a "(l,r))a (l, i))+bt(l, g)b(l, i))+dt(l, g)d(l, q)],
I

Po = g J /k'(b. +b. ;l)a (l, il)a (l, il)+ —,'ki(b, ;l)[bt(l, r))b(l, r))+d (l, i))d(l, il)]J,d'Q
1 2 +

1

(4.16)

where

k~(b, +b, ;1)=g
a

2
2 sin(vrl /N)

(4.17)

k (b, 'I)= g
2

sin(2ml /N

The photon states a (l, g) 0) satisfy the free-field equa-
tion

[P+P; —
—,'k'(a+a-)]a'~0) =0 . (4.18)

As the lattice size becomes large, ki(b, +b, )~k, +k2,
where k =2vrl /Na. Hence Eq. (4.18) is the 3+ 1

Lorentz-co variant free photon dispersion relation for
finite lattice size. A similar relation holds for the fermion
states.

We now argue that light-cone perturbation theory
[24—26] is finite, diagram by diagram. The S matrix is
(f ~

T exp( i fdx +P;„, ) ~
i ), w—here T denotes time or-

dering with respect to x+, and P;„, is the normal-ordered
interaction light-cone Hamiltonian (4.10) in the interac-
tion picture. Diagrammatic perturbation theory is gen-
erated by expanding the time-ordered exponential and in-
serting complete sets of intermediate states. In general,
the S matrix will have an overall energy conservation fac-
tor 2vri5(PO & Po, )—, and each inter—media. te state will
have the factor I/(Po& Po +iE) Matr—ix elemen. ts of
the interaction Hamiltonian with intermediate or final
states will always include the factor 5(gfYJf g rj ), ''
where the n& are outgoing momenta and the g, are in-
coming momenta, because all vertices conserve light-cone
momentum g. The light-cone momentum is bounded
from below by zero for all states.

One delicate aspect of light-cone perturbation theory is
the limit g —+0 in intermediate loops. Certain connected
one-loop diagrams are ill defined for zero g in continuum
QED and QCD (see Refs. [27] and [28]); and need to be
regularized. The regulator can be removed when calcu-
lating gauge invariant combinations of one-loop dia-

grams; i.e., the g=O region does not contribute to gauge
invariant processes at one loop. These divergences are
particular to canonical Hamiltonian perturbation theory
and do not correspond to the UV divergences of covari-
ant perturbation theory. Also, they are not infrared (IR)
divergences since the parity operator P, where
Pg(x, x+)P '=g(x+, x ), acts on the modes as
Pb (l, il)P '~b (l, ki(l) /2 i)), and interchanges the large
and small g regions. Two popular regularization schemes
for the i'd=0 region are a sharp r) cutoff [27,28] and the
discrete light-cone approach [29—31]. However, these
cutoffs may not be good regulators to higher order in per-
turbation theory because the g=0 region can contribute
to connected diagrams in light-cone field theory [32].
One signature of this problem would be the loss of gauge
or Lorentz symmetries; counterterms would have to be
added to restore the symmetries order by order in pertur-
bation theory.

The regular UV divergences of QED arise from in-
tegration over the transverse momentum k~ of the fer-
mions and the gauge fields in the I/(Po& —P +ie)
terms of the S matrix [33]. These divergences are explic-
itly cut off by the transverse lattice construction, since
the perpendicular momentum is bounded by 8/a . There
also are IR divergences for the gauge fields and massless
fermions that arise when summing over k~=0 in the
denominators. These correspond to the IR divergences
of covariant perturbation theory, and are regulated by in-
troducing small mass terms: k J +k J +p

The last source of perturbative UV divergences is the
continuum 2D field theory. Divergent tadpoles of the
perturbation theory are eliminated by normal ordering

. the light-cone Hamiltonian. The nonlocal operator 1/0
in the interaction Hamiltonian Eq. (4.10) softens the UV
structure of the vertices, as opposed to derivative interac-
tions, which can violate UV finiteness [34]. For. instance,
the four-fermion term in Eq. (4.10) is scaling dimension
zero (verses two) because of the nonlocal I/O factor.
And by further power counting arguments, the interac-
tion light-cone Hamiltonian is UV finite, diagram by dia-
gram.

In principle, the 2D fermions g in the light-cone Ham-
iltonian can be bosonized. With the bosonization rela-
tions g=:exp(i&2m. +): and g =:exp( —iv'4m@):, where
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N is a canonical boson, the light-cone Harniltonian of
TLQED is mapped to a bosonic light-cone Hamiltonian
with nonderivative interactions. It is well known that a
bosonic theory in two dimensions with no derivative in-
teractions is UV finite, diagram by diagram [34]. It is
also possible to bosonize the 2D covariant Lagrangian.
Then the bosonization dictionary which translates be-
tween fermions and bosons will be more complicated [35].

V. THE NONPKRTURBATIVK ULTRAVIOLET
DIVERGENCE AT g2 =4m

While the transverse lattice theory of QED is UV finite
diagram by diagram, it can happen that an infinite num-
ber of diagrams conspire to generate a new UV diver-
gence. This phenomenon occurs in the 2D sine-Gordon
model [34,36—38]. The basic signature of this
phenomenon in the sine-Gordon model is that the anom-
alous scaling dimension of the interaction (a/p )cos(pp)
is greater than two for p ) 8m. , and the interaction be-
comes nonrenormalizable. For this region of coupling,
the energy density is unbounded from below [34], and the
connected Green's functions diverge order by order in u,
starting at order a [36,37].

For TLQED we will now calculate the leading anoma-
lous scaling dimension of the interaction light-cone Harn-
iltonian (4.10). It is obtained by considering the parts of
Eq. (4.10) that contain noninteracting products of link
fields. The prototypical term of this type is

A+'1/ A +ki(l)
A,+= (5.5)

Here, k~ plays the role of a mass for each 2D theory. In
the limit A))ki(l),

A 4Adg 4A
(5.6)

I

Aa I+g2 ~a. '
e =:e

g /8~

+ski(l)
4A

(5.7)

In Eqs. (5.6) and (5.7), the IR divergence at l =0 is regu-
lated by adding a small mass: ki(1=0)~p . We see
that the exponentials have the anomalous scaling dimen-

2
—g 2

/4m.2

sion g2/4~; i.e., they scale as A, where A is the UV
momentum cutoff. The interaction term (5.1) is multipli-
catively renormalized by defining a renormalized cou-
pling ~(m) as

~O=Z, a (m),

In terms of a fixed x3 momentum cutoff A=1/a3, the
large g cutoff A&+ is given by the 2D relativistically
correct expression

2
Ko
2g e pD [Dpf], (5.1}

2 — /2
Z, =

—,'(2ma3 )
' + [ki(l) ]

'

lag2 4 ae ' =:e ':exp[+ —,'(g2a) [3+,A ]], (5.2)

where A+(A ) includes only raising (lowering) opera-
tors in the fields mode expansion (4.14). After applying
the commutation relations, we get

~~+

4'(Na ) s+ 'rl
(5.3)

The small g regulator 6&+ and the large g regulator A&+

are related by x 3 parity, as discussed in the preceding sec-
tion and in Ref. [32]. The relationship is

(5.4)

where Ko is the bare coupling and a3 is the cutoff of the
2D continuum theory. This is a bare expression, since it
depends upon a3, and it needs to be renormalized with
respect to an arbitrary mass scale. We will calculate the
divergent tadpole contributions and renormalize this
term. In Eq. (5.1), the factor 1/a 3 accounts for the naive
scaling dimension of this interaction, which is
—,
' + —,

' —1 =0, where each —,
' comes from the fermions and

—1 comes from 1/8 . Since the fermion fields g and P
in Eq. (5.1) occur at different lattice sites and therefore
anticommute, and the two link fields commute because of
e &, we only have to normal order each link field to ob-
tain the tadpole contributions. Consider the exponential

where m is an arbitrary mass scale. The renormalized in-
teraction term is then

2 — /2n
m ' ~ (m)P e &D [D&g) . (5.9)

For g2 (4~, the interaction term has dimension less than
two. For this region of coupling constant, the UV finite-
ness of each diagram in the theory is sufhcient to guaran-
tee finiteness of the full theory. For g2=4~ the interac-
tion term (5.1) is a marginal operator, and the theory will
be well defined if the renormalization of g2 with respect
to the 2D continuum theory is allowed. This is the situa-
tion for the sine-Cxordon model as its critical point [6,38].
For g 2 )4~ the theory is nonrenormalizable, the hopping
parameter K has negative scaling dimension, and the
operator product of the interaction Hamiltonian with it-
self is too singular to allow consistent perturbation theory
about the free-field vacuum.

Therefore, for TLQED, we find the somewhat surpris-
ing result that the weak perturbation theory is valid only
for a(a)=gz/4vr&1, independent of a. The coupling
g2(a) is the bare coupling and in the scaling regime of
full TLQED it may be quite far from the renormalized
QED coupling constant g„„. Only for very weak cou-
pling is g2(a}=g„„ in the full theory. However, recall
that in the quenched approximation of lattice QED [10],
chiral symmetry is spontaneously broken beyond a cer-
tain critical value a-1. Similarly, the analytic calcula-
tions in the ladder approximation of quenched QED also
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exhibit a critical coupling which corresponds to the
chiral-symmetry-breaking phase transition [6,7]. We
therefore make the conjecture that g2(a)=4m. is in gen-
eral the chira1-symmetry-breaking critical point in
TLQED, and that specifically, in the quenched approxi-
mation of TLQED, for which gz(a) =g„„,chiral symme-
try is broken for a) 1. This is discussed further in Sec.
VII.

VI. STRONG COUPLING LIMIT

Does TLQED realize spontaneous chiral symmetry
breaking in the strong coupling regime? This means that
a nonvanishing chiral condensate (qi 4') must appear, or
equivalently, in terms of the lattice fermions,

g (
—1)""&vac~y',y, +y', y, ~vac)eo, (6.1)

where ~vac) is the full interacting vacuum state. Such a
nonvanishing condensate would signal the spontaneous
breaking of the discrete chiral symmetry of the lattice
theory. Since it is a discrete symmetry in the strong cou-
pling region, there will be no accompanying Goldstone
boson in this region, and Coleman's theorem [39], prohi-
biting spontaneous breaking of continuous internal sym-
metries in two dimensions without anomalies or a Higgs
mechanism, will not be violated. The discrete chiral sym-
metry of the lattice model corresponds to the 4D anoma-
lous U(1) chiral symmetry, and we would not expect
Goldstone bosons for this broken symmetry in the scaling
regime of the transverse lattice model. However, non-
vanishing of the condensate Eq. (6.1) in the scaling re-
gime would also signal the breaking of the nonanomalous
continuum U(2) axial fiavor symmetries and we would ex-
pect their accompanying Goldstone bosons in the scaling
regime.

We will now show that spontaneous chiral symmetry
breaking does occur in TLQED in the infinite coupling
g; —+ ~ limit, where i = 1,2,3 (here we assume

g& -g2-g3) by calculating the energy difference between
various vacuum configurations defined below to lowest
order in 1/g. As we will see, this calculation is compli-
cated by the fact that the field theory of rigid rotators is
fraught with divergences. In the end however, the vacu-
um energy density shift will be a finite quantity.

Unlike the previous weak coupling analysis, it is con-
venient to perform the analysis in the 2 3

=0 gauge, and
with equal time quantization. The Hamiltonian density is
then

2

E + Ao[b, E +a jF]+HF+0
2 a

Q(xi)=b E +a j~(xi)=0 (6.3)

(6.2)

where E is the electric field and momentum conjugate to
, and j+= gf pt'f'p'fi is the fermion current. Gauss's

law

quantum theory as the weak constraint ( 9 ) =0 for all
physical correlation functions. To leading order in g, the
vacuum must satisfy

E (xi) 0) =0, Vxi . (6.4)

The system will be quantized with respect to this "free-
field" vacuum. The condition that all modes of canonical
momentum annihilate the vacuum is reminiscent of the
rigid rotator in quantum mechanics.

To regulate the IR behavior of the system, introduce
periodic boundary conditions in the continuous spatial
direction z =x3.

—L~z&L . (6.5)

The mode expansions for the second quantized fields are

En +innz/L+Een —innz/L]+EO= 1
a 2L a a e a

n=1

[ g n +imnz /L+ g en —imnz/L~+ g Q

a
n=1

(6.6)

where E*" (A*") are the complex conjugates of E"
( A ), and not Hermitian conjugates in the sense of rais-
ing and lowering operators of the harmonic oscillator.
The canonical commutation relations in terms of the
modes are

[ A *"(x~),Et7(y )]i=i 5 P"+ 5„„
(6.7)

[ A "
( xi ),Ep™( yi ) ]=i & t35

" + 5, y

The free Hamiltonian and momentum for the gauge fields

are given by
'2

x),a n =1

P,„,= g [A*"E"—A "E*"].
L

x&, a, n

(6.g)

All E" and E*' are lowering operators and annihilate the
free-field vacuum, and the modes E",A *"(E*",A" ) are
eigenstates of momentum P with eigenvalues n ( n). —

Certain operators in the Hilbert space are exponentials
of the modes A " with charge n. For instance, the

ina A 0

momentum zero mode state e ~0) has the energy ei-

genvalue (g 2 n ) l4L. Each state in the Hilbert space
corresponds to a wave function in a first quantized theory
where the dimensionless quantity a A " plays the role of a
coordinate. This relation can be used to calculate corre-
lation functions. The correlation function of states is
nonvanishing only if the total charge in the exponentials
of the wave functions vanish.

More precisely, for the zero-mode expectation values,
the two-point correlator is

aP

is obtained by integrating out Ao, and is treated in the =5 tijtt' '6(n —m) . (6.9)
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Note that for the compact U(l) theory, the integration re-
gion for x would be [ —m, m. ], n, m would be integers, and
the correlator Eq. (6.9) would be 5„. In the noncom-
pact case at hand, the result is a normalized Dirac delta
function, which is ill defined for arbitrary real n, m; only
for "integer" n, m do the noncompact and compact re-
sults coincide [40]. In this section, we will evaluate such
correlators with noninteger arguments, and regulate the
result by defining the cutoff delta function

'5(o)e" .'Io& .
2

(6.11)

The energy is infinite because the exponential is a product
of an infinite number of states. The exponential receives
contributions from all of the "standing waves" A" and3*"in the box. To regulate this UV divergence, intro-
duce a cutoff in the number of modes counted in the delta
function:

A'
5L ( ) y einjz/L

2I.
(6.12)

Then the energy of the exponential is (gz/2)5~(0). The
energy is proportional to the number of links and to the
square of the Aux carried by each link.

The next to leading order contribution to the Hamil-
tonian comes from the fermions and their interactions
with the gauge field. We adopt the equal time anticom-
mutation relations for the fermions:

5A(x) = f dk e'"
2& —A

The normalization is given by JV '=5~(0).
This is not the only expression which needs to be regu-

lated in the theory. Consider the exponential of the field
ia A (z)

e acting on the vacuum. This expression appears in
the interaction Hamiltonian; it represents a link field car-
rying Aux from xz to x~+a and has the energy eigenvalue

2

n=1

The normal ordered free-field Hamiltonian is given by

and

+ ~
( b t(f)b (f) +d f(f)d (f)')

x&,f, n

(6.17)

(Olb„=(old„=b„IO&=d„lo&=0, n )0, (6.18)

for each fermion fIavor. The zero modes appear in the
charge operator

Q (x) ) = fdz j~=—,
) [b(~)' ', b() ']+

and in the mass operator

M(x) ) =a f dz[(t), $2+(t)~P, ]

—I t(1)$ (2) +$ f(2)$ (1) +0 0 0 0

(6.19)

(6.20)

The chiral condensate order parameter is proportional to
g„(—1) "M(x~).

The vacuum states of the full theory to order O(g0)
will be a direct product of the gauge field vacuum Io&
and the highest weight states for the fermion zero modes.
To discuss chiral symmetry breaking in the zero-mode
sector of the fermion theory, we diagonalize the charge Q
and mass operator M simultaneously, via the Bogolubov
transformation

(1) 1b()" = —(a() +ic()),
2

t()) (at ~ i
)() ~— a() ic()

(6.21)
bt(2)

( t+ t
)0 ~2 0 c0b0 = —(a0 ic0), —(2)—

v'2

where [a0,a0] = Ic0,c0j =1. Then the mass and charge
operators in the zero-mode sector for each site are

where, for each site x) and fiavor f,
[b„,bt j =5„, [d„,dt j =5„, [b,b" j =1 .

(6.16)

I haft(z, x) ), P (z', y) ) j
=

z 5(z —z')5„& 5fg
=1 (6.13)

M= —,[ao a0] —,I:co co] Q= —[ 0 0)=—
I: 0 0] .1 f 1 4 —1 t —1

(6.22)
The free-field Hamiltonian density for the fermions is

(6.14)

Because of the minus signs in this expression, the mode
expansion for the fermions is

1
(b 1'(f) in nz/L+d (f) i 7rnz/L) +—b (f)f n n 0&2La „()

The operators a0, a0 and c0,c0 act on two level systems.
The a operators are raising and lowering operators for
the states

I
1 &, and

I 1 &„

a011&,=lt&, , a0ll&, =o,
(6.23)

The vacuum states in the fermion sector are direct prod-
ucts of the two level states in the a and c systems:

( —1) " ' =+1, I+ &=It&.l», , (6.24)

1

&2L.a'

(6.15)

(b(f) innz/L+dt(f) lnnz/—L)+b t(f)
n n 0

n)0

( 1 )
xn +n +f

They satisfy Q I+ &
=0 (Crauss's law) and Ml+ & =+ I+ &.

The vacuum for each site on the lattice is therefore dou-
bly degenerate at O(g ). Note that fermion zero-mode
expectation values vanish: (b0(f) & =0 and (b0( '

& =0.
The nonvanishing two-point functions are
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( b t( f)b (f') ) —+ ( b (f)b t(f') )

( b t(f)b (f') ) — ( b (f)b t(f') ) —( M
(6.25)

We now show that the degeneracy of the vacuum state
is broken in perturbation theory by the interaction Ham-
iltonian

terms; for instance, integrating out ( A ' + A "'
) yields a

term 5&(2cos(zvr/L ) 2—cos(z'm/L)) which has no over-
lap with the second two terms in Eq. (6.30). In the pres-
ence of the first term of Eq. (6.30), all the other modes in
the correlator contribute factors of unity. Therefore, the
correlator Eq. (6.29) is given by

H;„,=i' g a f dz (t)f[D„+&(—1) " ' D~]pf,
5A(q —q')

5 g f dz f(z)g(z)
5~(0)

(6.31)

(6.26)

which is a gauge invariant operator since [g(xi),H;„, ]
=0. In the context of the 4D transverse lattice theory,
the constant ~ is dimensionless, since the fermions are di-
mension —, and the lattice derivatives go like 1/a and are
dimension 1. When power counting for the continuous
2D theory however, the fermions are dimension —,

' and

the derivative is dimension 0. Therefore ~ is dimension 1

in the context of the 2D field theory: ~- a /a 3, where a 3

is the UV cutoff of the 2D theory at each site. To regu-
1ate the energy of states, we have introduced a cutoff in
the number of modes, 5&.(0). The UV cutoft' a3 is given

by a3 —1/5A (0), so that

)~ =v'a 5& (0), (6.27)

This correlator occurs when summing over intermediate
states in Eq. (6.28). Integrating out the zero modes A in

the exponentials yields the factor 5 gz(q —q')/5&(0).
From the next lowest mode i ( 3 ' —A "'), there is the
factor

5~(2sin(z vr/L )
—2sin(z '~/L ) ) /5A(0)

[5A(z —z')+0(z')5A(z +z' L)—
+8( —z')5A(z +z'+L) ]/5~(0) . (6.30)

The only term on the right-hand side (RHS) of Eq. (6.30)
that contributes to the correlator is 5~(z —z'). The other
two terms will lead to vanishing contributions because
there is no overlap with these delta functions and the del-
ta functions that appear when integrating out the cosine

where ~' is a scale independent constant.
The first-order shift (H,„,) in the vacuum energy van-

ishes because the expectation value of a single link field
vanishes. The second-order shift is given by

(0/H;„, /
n ) ( n /(H;„, /0)

8'~= g' (6.28)
n n

where W„=(g~ /4L)5~, (0)+ O'„F is the energy eigenval-
ue of link states )n ), and W„F is the fermion sector con-
tribution. We will calculate the shift in the vacuum ener-

gy due to the assignment of the fermion vacuum to the
zero-mode states ~+) at each site on the lattice, which
will be denoted as 58'2.

To calculate the second-order energy shift of the vacu-
um, we need the correlation function

f dz f(z) f dz'g (z')(e e e ) . (6.29)

The parameter A is an ultraviolet regulator. If the z
direction were discretized, then the sin( nz sr/L ) and
cos(mzvr/L) terms which appear as arguments in the del-
ta functions of the correlation function (6.29) would take
on discrete values (n, m would be bounded by —[2~/a 3 ],
where a3 is the lattice spacing in the discretized z direc-
tion). For integer charges q, q', which is all that we will
have to consider in this section, all of the correlation
functions would then be normalizable. The discrete ver-
sion of the normalized delta function 5&(z)/5&(0) would
be (a3) '5, /(a3) '. Hence 5&(0)=1/a3.

While Eq. (6.28) is a complicated sum over four-point
correlation functions of the fermion modes, the only
terms which contribute to the shift in a vacuum energy
68'2 are products of four fermion zero modes. The non-
trivial part of this observation is that a typical two-zero
mode contribution (bo(f'b„'f'b„(f 'bo'f ' ) is proportional
to (bo( 'bo( ')5, and this by the first of Eqs. (6.25) is
independent of the choice ~+ ) or

~

—) for the vacuum
state at that site. Using the link field two-point correla-
tion function (6.29) given by Eq. (6.31) and the fermion
zero-mode two-point correlators Eqs. (6.25), the shift in
the energy density is

6m2 = 1

16vrg 2 (La)

X QM(xi)[M(xi+x) —M(xi+y)] . (6.32)

This is minimized for M(xi)M(xi+x)= —1 and
M(xi)M(xi+y)=+1. There are two fermion vacuum
configurations, related by an overall sign change, that
obey these conditions and the symmetry of these ground
states is made clear by Fig. 2. Both configurations break
the discrete U(1) axial chiral symmetry since the order
parameter g„(—1) "M(xi) is nonvanishing for these

vacuum configurations. If the order parameter is non-
vanishing in the scaling regime, then the full set of
nonanomalous continuum axial flavor symmetries will be
broken.

There is a simple way of approaching the continuum
limit of this leading-order result in the strong coupling
regime such that Eq. (6.32) remains finite; i.e., let the lon-
gitudinal IR regulator L ~ ~ and the transverse UV reg-
ular a~0 such that La remains finite. So although the
energy and correlators of link fields require UV regula-
tors, the shift in the vacuum energy density is finite in the
continuum limit. We briefly list the sources of the regu-
lated divergences that contribute to Eq. (6.32). The prod-
uct of four zero modes contributes 1/L a; the energy in
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VII. DISCUSSION

FIG. 2. The plus and minus signs for each site refer to the
fermion zero mode states

~
+ ) and

~

—). Up to an overall
change in sign, this configuration minimizes the order 1/g
correction to the vacuum energy density in the strong coupling
limit.

the denominator of (6.28) contributes I/5~. (0)-a3; from
the integral over intermediate states we get 1/5A(0)-a3;
from the a coupling constant there is a factor of a /a3,
examination of Eq. (6.26) shows that H;„, contributes a
factor of a, and we multiply by 1/a to make (6.28) into
a density. The result is the net factor of 1/(La ) .

To interpret this result further, consider the spin trans-
n

formation bo ' ~ab'0 ', where a(xi) =( —1) '. Following
the analysis of Semenoff [9], define the vector

g(1) ~

0

b(2) (6.33)
0

and the currents S.=pter g where o are Pauli matrices.
Then the Hamiltonian density in the zero-mode sector
that has expectation value given by Eq. (6.32) can be writ-
ten as

K 15e2= Q S(xi) [S(xi+x)
16m.g2, (La)

+S(xi+y)]+const .

(6.34)

This is the Hamiltonian density for the quantum spin- —,

Heisenberg antiferromagnet, and the configuration given
by Fig. 2 is just the classical ground state of the system
[41]. It has Neel order, i.e., the expectation value of Eq.
(6.32) is nonvanishing and the global fiavor SU(2) of the
Hamiltonian (6.34) is spontaneously broken. We can con-
sider Eq. (6.34) to be Hamiltonian in the fermion sector
to leading order in the strong coupling expansion.

To study chiral symmetry breaking to higher order in
the strong coupling expansion, we need to treat the quan-
tum fluctuations of the spin- —,

' Heisenberg antiferromag-
net in the zero-mode sector, and include the effect of
nonzero modes on the vacuum state. There is no exact
solution of the ground state of the quantum d =2 quan-
tum spin- —,

' Heisenberg antiferromagnet [42], and no
proof that Neel order persists in the full quantum theory.
However, numerical simulations indicate that this may be
the case [43]. For a similar analysis of regular Hamiltoni-
an lattice gauge theory the situation is better, because
Neel order has been proven to exist in the three dimen-
sions [9,42].

The transverse lattice regulation of QED that has been
studied in this paper is a "minimal" way of regulating the
diagrammatic divergences of the perturbation theory,
and it exhibits a phase transition at a critical value of the
lattice QED coupling constant, and chiral symmetry
breaking in the strong coupling regime. '

In Sec. V, we took advantage of the UV finiteness of
each diagram in weak perturbation theory to find a non-
perturbative UV divergence at g2(a)=4m. The trans-
verse lattice regulates the usual UV divergences of four
dimensional QED, but the "finite" two-dimensional field
theories for each site conspire to generate a nonrenormal-
izable interaction. The signature of the nonrenormaliza-
bility is the anomalous scaling dimension of the interac-
tion Hamiltonian. If the dimension of any part of the in-
teraction Hamiltonian is greater than two, then the per-
turbation theory about the free-field vacuum will be ill
defined. One can calculate the anomalous dimension of
the interaction Hamiltonian because the coupling con-
stant g2(a) is not renormalized in the 2D continuum per-
turbation theory for g2 &4~. Note that there is no pla-
quette term in the interaction Hamiltonian, since we have
studied noncompact QED, which would have a higher
scaling dimension than the term we considered.

The 20 sine-Gordon model has the same properties
with respect to the coupling constant p: it is perturba-
tively finite for all p but its free-field perturbation theory
is unstable, without additional coupling constant renor-
malizations, for p ) 8m. The sine-Gordon field theory is
equivalent to the grand canonical sum of a Coulomb plas-
ma, and the sine-Gordon phase transition has a nice
physical interpretation in terms of the Coulomb gas pic-
ture [36]. As p increases, the free ions of the Coulomb
gas, represented by vertex operators exp(+pp) in the
sine-Gordon model, collapse to form dipoles and a new
gas of interacting dipoles is formed. This can be inter-
preted in the sine-Gordon model as the appearance of a
new dimension-2 renormalizable operator at this fixed
point. One can consider the sine-Gordon model for
values of p )8~ as long as the additional renormaliza-
tion for the new operator is taken into account [38].

In TLQED, "free ions" are given by fermion charges
se arated by one link and connected by a fiux tube:
P exp(gA)g. The "Coulomb gas" in TLQED is then a
gas of e+e pairs, where the charges, separated by a sin-
gle link, interact via Coulomb interactions. The "di-
poles" of the strong coupling phase are pairs of e+e
Aux tubes, with strongly interacting photon fields.

The conjecture is that the nonperturbative gz(a)=4m.

'If one formulates QED with one lattice and three continuum
dimensions, then the diagrammatic divergences will not be regu-
lated by the lattice, and chiral symmetry breaking will not ap-
pear in the strong coupling expansion of the lattice theory. This
is shown by choosing a gauge where the lattice gauge field is set
to zero.

Plaquette terms are presumably generated perturbatively but
are suppressed by powers of the cutoff.



3542 PAUL A. GRIFFIN

critical point of TLQED, where this phase transition
occurs, is the critical point of spontaneous chiral symme-
try breaking, where the goal order parameter gets a vacu-
um expectation value. The bare coupling constant g2(a)
is the "quenched" coupling constant of TLQED, because
fermion loop corrections are obviously not included in
the bare Hamiltonian. Both the quenched lattice simula-
tions and the quenched planar approximation exhibit
chiral symmetry breaking for o;b„,-1. The phase transi-
tion in the quenched planar approximation has been pre-
viously compared to the phase transition of the sine-
Gordon model by Miransky [6], who interpreted the
phase transition of each model as a collapse phenomenon.
At the critical point in the quenched planar approxima-
tion, the anomalous scaling dimension of the fermion is 1,
and the four-fermion term becomes a renormalizable
operator [7]. It is tempting to associate the "dipoles" of
the strong coupling phase of TLQED with renormaliz-
able four-fermion operator of the quenched planar ap-
proximation. We used the strong coupling expansion of
TLQED in Sec. VI to calculate explicitly the spontaneous
chiral symmetry breaking in the infinite coupling limit.

Recent lattice gauge theory simulations indicate that
the UV fixed point of chiral symmetry breaking in the
quenched theory may be trivial in the full unquenched
theory [12,13].

Some of the results of this paper can immediately be
applied to more realistic transverse lattice models. In
particular, the construction of staggered fermions and the
analysis of chiral symmetry breaking via the strong cou-
pling expansion can be easily generalized to non-Abelian

gauge theories.
We now brieAy mention two formal areas of the theory

that would be interesting to pursue. In Sec. IV, we noted
that TLQED can be covariantly (in the 2D sense) boson-
ized. Bosonization plays a central role in explaining why
the Schwinger model is exactly soluble. It would be in-
teresting to understand the continuum limit of this bo-
sonized version of TLQED. It would also be interesting
to work in the "opposite" direction —to covariantly bo-
sonize transverse lattice fermions, and then put the two
continuous coordinates on a lattice. Naively, this would
generate a 4D lattice theory where the fermions are inter-
preted as bosonic solitons, and the functional integral
over fermions is "Gaussian" and easier to simulate.
Second, TLQED is an interacting 2D field theory in the
form of a combined Schwinger and sine-Gordon model.
It might be possible to solve the sine-Gordon "part" by
using inverse scattering and/or Bethe ansatz methods.
Then the nonintegrable Schwinger terms would have to
be treated as perturbations in the space of Bethe ansatz
states.
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