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Nonperturbative evaluation of the diffusion
rate in field theory at high temperatures
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The Kramers approach to the rate of thermally activated escape from a metastable state is ex-
tended to field theory. The diffusion rate in the (1+1)-dimensional sine-Gordon model as a function
of temperature and friction coeKcient is evaluated numerically by solving the Langevin equation in
real time. A clear crossover from the semiclassical to the high-temperature domain is observed. The
temperature behavior of the diffusion rate allows one to determine the kink mass which is found equal
to the corresponding classical value. The Kramers predictions for the dependence on viscosity are
qualitatively valid in this multidimensional case. In the limit of vanishing friction the diffusion rate
is shown to coincide with the one obtained from direct measurements of the conventional classical
real-time Green's function at finite temperature.
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I. INTRODUCTION

Statistical systems with finite energy barriers separat-
ing diferent domains of the phase space may exhibit
metastable states. Evaluation of the rate of escape from
those states is an important dynamical problem. The
simple example of a statistical system where one degree
of freedom is exposed to the potential illustrated by Fig.
1 was first considered by Kramers [1]. At temperatures

ao «T«Eg,
where we take h = k = 1, uo is the scale of quantum
fluctuations and Eg is the barrier height, the classical
thermodynamical fluctuations contribute to the escape
rate I' exp( E& /T ) of t—he system initially localized
in the well. Kramers [1] suggested determining the escape
rate by means of the classical Langevin equation:

(1 2)

Einstein relation) comes from the fluctuation-dissipation
theorem. In the case of one degree of freedom the escape
rate I'(T, p) has been obtained analytically [9] in the do-
main of very small p and for moderate-to-large friction

p ))u, where u is the negative eigenmode of the fluc-
tuations near the stationary point P = P, . In quantum
field theory one often deals with an analogous problem of
penetration through some energy barrier. One very im-
portant example is anomalous fermion- (or axial charge)
number violation in gauge theories with nontrivial struc-
ture of the ground state [2]. Here the static energy bar-
rier separates diferent classical vacua with definite inte-
ger Chem-Simons numbers [3]. Penetration through this
energy barrier leads to the dissipation of the fermionic
number. The system at high temperature is expected to
exhibit thermal activation behavior of the rate of anoma-
lous fermion number nonconservation [4]. The problem
specific for the Beld theory is that the energy barrier-
the analogue of U in Eq. (1.2) —is not known explic-

(il(t) il(0)) = 2TPMh(t),

where p is a friction coeKcient, introduced as an input
parameter in this phenomenological description and M
corresponds to the mass of the would be Brownian par-
ticle. p determines how strong the coupling of the sys-
tem to the heat bath is, represented by the white noise

and therefore how fast the system reaches equilib-
rium. The normalization of the random force (1.3) (the
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I IG. 1. Typical potential creating a metastable state at
finite temperature.
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itly. This energy barrier is in the multidimensional con-
figurational space. Only the static field configuration,
corresponding to the top of that barrier, is known from
topological considerations [5] or explicitly in some models
[6].

In previous works [7,8] we suggested following Kramers
in studying the energy barrier in field theory. In [8] we
introduced the microscopical classical Langevin equation
in real time in the (1+1)-dimensional Abelian-Higgs the-
ory and observed the Brownian motion of the Chern-
Simons variable between topologically distinct classical
vacua. Our measureinents of the difFusion rate revealed
its thermal activation dependence on the temperature in
the domain (1.1). Although this approach is applicable
in the interesting domain of high temperatures, where
the semiclassical approximation is not valid, it was dif-
fieult to get data there, because it required rather big
lattices. Meanwhile, it was argued in [12] that our re-
sults were difficu to interpret, since they were based on
the Brst-order Langevin equation, derived normally for
large friction coeFicients, while, in fact, p = 1 had been
used.

In the present paper we deal with a simpler model, the
sine-Gordon Beld theory in 1+ 1 dimensions, which al-
lows one to obtain not only accurate quantitative results
but also to check qualitative conclusions valid beyond
this particular model. In fact, this model is very similar
to the Abelian-Higgs theory. On the classical level the
sine-Gordon theory has an infinite number of degener-
ate vacua with a finite energy barrier separating them.
At nonzero temperatures one observes a random walk
between those vacua. At temperatures (1.1) this ran-
dom process goes through the formation of kink-antikink
pairs, so the rate of the process (diffusion rate) is sensi-
tive to the density of kinks. The sine-Gordon model is
also important in solid state physics, since it describes
the Josephson junction transmission lines [9]. The dilute
gas of kinks has been analytically studied before [10) by
means of the effective macroscopical Langevin equation.
Previous numerical calculations of the density of kink gas
as a function of temperature in the (1 + 1)-dimensional
scalar Beld theory with the double well potential has re-
vealed an intriguing fact: the thermal activation behav-
ior of the density of kinks n exp( E~ /T) invol—ved
an effective kink mass E~+, which was found to be 20—
30% smaller than the classical value Eg [7, 11, 12]. One
source of uncertainties in measuring the density of kinks
was the ad hoc criterion (suggested in [15)) for counting
the number of kinks in a given Beld configuration. The
very notion of a kink is ambiguous at Bnite temperature.
The advantage of the sine-Gordon model is a possibility
to avoid this criterion problem. The quantity we mea-
sure is very well defined: it is the diffusion parameter
of the average field. We measure the diffusion rate in
the semiclassical domain (1.1) of temperatures and be-
yond. The measurements allow us to extract the value
of the kink mass E', which we find to coincide with the
classical kink mass E~. We therefore conclude that the
previously observed discrepancy was an artifact of the
criterion used.

We also measure the viscosity dependence of the rate

by means of the second-order Langevin equation. We find
a remarkable coincidence of this dependence with the one
predicted by the first-order Langevin equation down to
very small values of the friction coeKcient. This implies
that one can use the first-order Langevin approach in
field theory, in particular, for p 1.

In the limit of vanishing friction we Bnd a nonzero
diffusion rate. Since in this limit the Langevin equa-
tions (1.2) become the Hamiltonian ones, we perform a
direct numerical measurement of the classical real-time
two-point Green's function, which describes the diffusion,
as a Gibbs' average. These ensemble averages give the
same thermal activation behavior of the rate as obtained
in the Langevin measurements and, what is less trivial,
they prove to be equal in magnitude to the Langevin
measurements in the limit of vanishing friction. This
establishes an important equivalence between the Gibbs
ensemble measurements of the real-time classical Green's
functions at finite temperature and the corresponding
Langevin measurements done in the asymptotic domain
of very small friction.

In the next section we explain the relevance of simula-
tions of the classical Beld theories to the behavior of quan-
tum field theories at high temperatures. We emphasize a
particular relation between the lattice spacing of the clas-
sical systems under consideration and the temperature.
In Sec. III we briefly introduce the (1+ 1)-dimensional
sine-Gordon model at Bnite temperature. Then we de-
scribe the first- and second-order Langevin equations.
Sections IV and V contain the results of our numerical
simulations.

II. CLASSICAL SYSTEMS—FOR QUANTUM
THEORIES

m'
~y'+ AV;„, ,

2
(2.2)

where p = 1/T is the inverse temperature, 5 is Planck's
constant, and periodic boundary conditions are imposed
on the Beld in the imaginary-time direction. Equation
(2.2) implies that in any of the limits

h —+0 orT~oo (2 3)

It is well known that the partition function of a (D+1)-
dimensional quantum field theory in the limit of high
temperature may be obtained by means of the corre-
sponding D-dimensional classical field theory. To see how
this emerges consider, for instance, a scalar field theory
in D+ 1 dimensions, defined by the action of the general
form

d~+'z
l

—(OP) + P + AU;„t l. (2.1)
t'1 ~

m2

(2 2

The partition function of the corresponding statistical
system is given by functional integral with the following
Matsubara action:
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the static x4-independent field configurations dominate
in the functional integral. If one ignores for a moment
ultraviolet divergences and performs the limit (2.3) for-

mally, the contribution of the static modes is determined
by the action

Regularization is necessary for this end.
The vacuum energy of the effective theory (2.4),

dkD 1

(27r)~ 2
(2.11)

m2
d x

I

—(&0)'+ 0" +&U~~t I.
g2 2 ) (2.4)

This action does not mention Planck's constant. The
functional integral with the action (2.4) determines the
partition function of the corresponding classical system.
To be more accurate, one should keep in mind that non-
static modes do not decouple in the ultraviolet-divergent
diagrams, which means that the action (2.4) involves
renorrnalized Largangian parameters —running coupling
constants, normalized on the temperature. The renor-
rnalization effects are the memory about the quantum
nature of the original theory (2.2). To obtain the effec-
tive action (2.4) is, in general, a separate problem [13].
In some simple cases in low dimensions the action (2.4)
is simply a static Hamiltonian.

Let us see explicitly how the reduction takes place, for
example, in the case of a weak interaction (A « 1). The
free energy of a gas of particles of mass m, corresponding
to (2.1), in the one-loop approximation reads

is determined by the regularized propagator

GA = 1/ (ur„+~]./A ) .

For the temperature-dependent cutoff,

(2.12)

A = cT, coc1, (2.13)

one recovers the result (2.8) with c determined by r..
This simple exercise illustrates one general and im-

portant statement. The effective D-dimensional classi-
cal field theory (2.4), which serves for the calculation of
the high-temperature limit of the corresponding (D+ 1)-
dimensional quantum field theory, has a physical cutofF,
given by Eq. (2.13). If we assume lattice regularization
for the original theory (2.2), we conclude that the con-
tinuum limit is performed simultaneously with the limit
(2.3). One should perform the thermodynamical limit
in the functional integral with the effective action (2.4),
but not the continuum one. It is essential that the lattice
spacing a oc A here is the physical cutofF, unambigu-
ously fixed by the temperature

K=TV) —ln(~„+cu„),dk 1

27' 2
(2.5) (2.14)

dkD

(27r) ~ ln [1 —exp( —P~A, ) ]

becomes, in the limit T )) m,

(2.6)

where a„=2vrnT, n = 0, +1,+2, ... are Matsubara fre-
quencies, ug = gm~ + k~, and V is a D-dimensional
volume. The temperature-dependent part

In this sense the original quantum field theory may be
studied at high temperatures by simulating the classi-
cal functional integral with the regularized action (2.4)
and a temperature-dependent cutoff (2.14) [15]. As soon
as nontrivial lattice spacing dependence is observed in a
study of the classical systems at high temperatures the
relation (2.14) is to be taken into account.

III. KRAMERS' APPROACH IN FIELD THEORY
dkD

P k n~(Pk),

where n~ is the Bose distribution so that

F = —KVT +

(2 7)

(2.8)

We consider the sine-Gordon model in 1+1dimensions
defined by the action:

m2
d x —(0$) — (1 —cos[v AP(x)])

2 A

with

p-„= I'(D+ 1) ((D+ 1),
0

2vr ~ (2.9)

dk

(2vr)~
' (2.10)

This divergent integral counts the number of degrees of
freedom of the classical field theory (the Rayleigh-Jeans
divergence). Thus the partition function of the classi-
cal field theory is something which needs to be defined,

where 0=2~D~~ /I'(D/2) is a surface of the D
dimensional sphere [14].

If we want to obtain the same expression by means of
the effective theory (2.4) we have to perform the limit

P ~ 0 in the integrand of Eq. (2.7), which gives the
divergent factor

(3.1)
On the classical level the theory has an infinite number
of degenerate vacua with P = 2~n, n = 0, +1,+2, . . . .
In the quantum theory the mass m determines the scale
of quantum fluctuations and the self-coupling constant A

is bounded [16]: A & 8vr. The well-known static solution
to the classical equations of motion interpolating between
different classical vacua Pt, = ~ arctan (e *) has energy

Ey = 8m/A (3.2)

d x —(BP) —(1 —cos [P(x)] )2
(3.3)

which is parametrically large, in the sense that A is a
parameter of the semiclassical (loop) expansion. If m is
chosen as a unit of measure, the Lagrangian in Eq. (3.1)
may be rescaled to the one which has no free parameters:
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rpBc exp( —2Eic; / T). (3 4)

The sine-Gordon model provides one with a good op-
portunity to study thermal activation phenomena in field
theory. The potential energy is completely bounded at
infinity for the zero mode Cp =

& fo dx Ip(x), which al-
lows for the Brownian motion of p at finite temperature.
Any initial state localized around one classical vacuum
is far from equilibrium. In the case of periodic bound-
ary conditions fluctuations of the field between different
vacua proceed via formation of a pair of kink and antikink
and their separation from each other. Creation and an-
nihilation of kink-antikink pairs is essentially a random
walk between different classical vacua. Thus the diffusion
rate I' of &p is sensitive to the kink mass, which determines
the height of the static energy barrier between different
vacua. For periodic boundary conditions kinks and an-
tikinks appear in pairs, so one expects in the semiclassical
domain of temperatures m &( T (& EI, .

classical gas of particles of mass

M=a /A (3.11)

p = exp( H,g/—H,a), (3.12)

AT
6ee =

aD (3.13)

from which one concludes that the normalization of the
random force, fixed by the Einstein relation [see Eq.
(1.3)], is (rj„(t)rj (0)) = 2Tpa 6(t)6„ /A. Theav-
erage kinetic energy is independent of the effective mass
M according to the usual formulas of quantum statistics
(K) = NT/2.

The form of the rescaled action Eq. (3.3) implies that
the classical dynamics does not depend on A. To see it
explicitly rescale the momentum: p = Ap. Then the
density matrix looks like

In the case of free boundary conditions a configuration
with a single kink may appear as a result of the thermal
fluctuations. The kink's motion through space brings the
system from the neighborhood of one classical vacuum
to the vicinity of another vacuum. Therefore for free
boundary conditions we expect

H.ir = ) . 2 (p )' +
2 (4 +i —0 ) /a'

n=l

+ 1 —cos[P„] (3.14)

r»c - exp( —Ei, /T). (3.5)

H =K+U, (3.6)

Following Kramers, we describe evolution of some initial
nonequilibrium st te localized around one classical vac-
uum by solving the real-time Langevin equations.

Let us discretize the system of size L = Na, where
a is lattice spacing. The Hamiltonian, corresponding to
Eq. (3.3) is

[4-(~+1) —4-(i)l is = p (~) (3.15)

[p ('+1) —p (i)] /s = (0'~-i + &~+i —2& ) la
—»n(0 ) —'YP + rl (')

(3 16)

where

The corresponding Langevin equations indeed do not
contain the parameter of the semiclassical expansion A

explicitly:

N

fc = ) — (p. )',
2 G

(3.7) 2 p 6'ee
(n (~)n U)) =, ~ ~v (3.17)

A f (~),
G

(3.9)

1V

) —(4 r. r
—p„) /cc + 1 —ccsf p„]),

n=l

(3.8)

where D is dimensionality of space, D = 1 in our
case. To generate a system with the density matrix
p = exp( —H/T), one naturally employs the second-
order Langevin equations of the form

1
(K,g) = —Ne, s.

2
(3.18)

and we have discretized Langevin time by the amount of
Physical quantities are obtained in the limit c —+ 0.

Notice that the normalization of the white noise (3.17) is
different from that in [12].

Equations (3.12)—(3.14) define the effective classical
system we are going to simulate. It incorporates the
lattice spacing a as an input parameter, determined in
the underlying quantum theory by Eq. (2.14). The ki-
netic energy of the efFective system (3.12)—(3.14) aver-
aged over the evolution (3.16) may be evaluated to check
the effective temperature O,p..

—sin(p„)) —pp„+rj„, (3.10)

In the Lagrangian formalism, both sets of equations,
(3.9) and (3.10) and (3.15) and (3.16), are equivalent to
the following second-order I angevin equation for the field

which is a straightforward generalization of Eqs. (1.2)
and (1.3) to the case of many degrees of freedom. Equa-
tions (3.6)—(3.10) indicate that formally we deal with a

~ ~ He8'4-+ ~4. = — ' + n. .
n

(3.19)
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The second term on the left-hand side (LHS) of Eq.
(3.19) is the damping force. It dominates over the first
one at large friction or large times t & p . Then
neglecting the first term in the LHS of Eq. (3.19) one
obtains the first-order Langevin equation:

10

10

I I I I I II I I I I I III I I I Ill

e.(+I) -e-() = --, ' +
'Y &n

28m.
D A\

10

IV. NUMERICAL SIMULATIONS

We have solved the second-order Langevin equations
(3.15)—(3.17) numerically for the system of size L
50, a = 1. This volume is sufficient to accommodate
a few kinks (which size is 1 in our units) at low tempera-
tures. The diffusion parameter A(t) has been measured,
defined following [8] as

(&(t)) =—1

40
( P(t + t) —P(t ) ) (4.1)

(3.20)

where 8 = AT and ( is a random variable with Gauss'
distribution of variance l. 8 is the only parameter of the
classical model (apart from the lattice spacing). To fix
the physical temperature one needs to know A. Since A

is a parameter of the semiclassical expansion according
to Eq. (3.3), it is fixed only in the underlying quantum
theory.

The RHS of Eq. (3.20) depends on the ratio s/p, not
separately on z and p. This implies a simple friction de-
pendence of, say, the diffusion rate determined by means
of the first-order Langevin equation: the diffusion rate
must be inversely proportional to the friction coefficient
I'(T, p) 1/p. Thus within the first-order Langevin
treatment the absolute value of the diffusion rate is fixed
in a simple way by the friction coeKcient p, which is a
dimensional quantity. The second-order Langevin equa-
tion, valid for arbitrary friction, predicts nontrivial fric-
tion dependence, which has been evaluated explicitly by
Kramers [1] in the case of one degree of freedom coupled
to the heat bath. In the limit of large p that friction de-
pendence of the escape rate, of course, reduces to the one
we just derived from the first-order Langevin equation.
The question we would like to clarify is how large the
friction coefficient must be in the case of field theory to
allow one to use the Erst-order Langevin equation instead
of the second-order one. Our numerical data proves to
be helpful for this end.

V
10

10

10
10 10 10

FIG. 2. Time dependence of the diffusion parameter (4.1)
obtained from the second-order Langevin equation. Measure-
ments were performed every 100 iterations. The parameters
are T = 6, L = 50, e = 0.02. Three solid lines correspond to
different lattice spacings: a = (1,0.5, 0.25); the dashed line
is a 6t with slope I.

at temperature T = 6 for three different values of the
lattice spacing. The rate is obviously insensitive to the
lattice spacing and the relatively large value a = 1 may
be used to obtain physical results. Large values of a are
preferable to save computer time.

Periodic as well as free boundary conditions were
studied. In both cases we measured the difFusion rate
in the range of temperatures 8 = 1.33—18. The semi-
classical domain corresponds to 8 &( 8 in accordance
with (3.2). Figure 3 shows the temperature dependence
of the diffusion rate on a logarithmic scale. In the case
of free boundary conditions all the data points starting
from T = 3 downwards lie on a straight line. This im-
plies the expected thermal activation behavior (3.5). The
slope of the straight line is seen to be 8, which is exactly
the classical value of the kink mass (3.2). In the case of
periodic boundary conditions, a somewhat more interest-
ing phenomenon is observed: starting around T = 2 the
slope of the straight line changes from 8 to 16, which cor-
responds to the classical energy of a kink-antikink pair.
This is again in accordance with the expectations (3.4)
for periodic boundary conditions. The sensitivity to the
boundary conditions appears in the lowest-temperature
domain. Figure 4 shows that at higher temperatures

From (A(t)) we extract the difFusion rate I'
limi ~ (A(t)) /t. Although I' is proportional to the
kink density at low temperature, it is defined for all tem-
peratures, independently of the notion of kink, and with-
out need to identify kinks at finite temperature. The
system was observed over 5 x 10 to 2 x 10 iterations
(i.e. , a time to 10s). The longer runs were necessary to
reduce statistical errors at the lower temperatures where
the difFusion rate is smaller. The time step was typically
e = 0.02. The Brownian motion of p has been unam-
biguously observed. Figure 2 demonstrates the diffusion

In that case, the discrete Hamiltonian Eq. (3.14) is

N

H.s = ) ( —(ss )' + 1 —ccs)4 I)

+) (-,'I~, . ~.)*):) (4.2)
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there is no dependence on the boundary conditions. The
crossover temperature below which the kink-antikink pair
energy is observed in (3.4) depends on the system size L
The larger the volume L the smaller that crossover tem-
perature.

The diffusion rate can also be measured in the high-
temperature domain 8 & 8, where the semiclassical ap-
proximation is not valid. Our numerical results are shown
in Fig. 5 for both types of boundary conditions. The dif-
fusion rate does not depend on the choice of boundary
conditions as it is not associated with the production of
kink-antikink pairs any more.

0. 1

0.01

1

Low Temp. , Free b.c.

0.1—

(a): QQQ1 I I

0.0

High Temp. , Per iodic b.c.

0.2 0.4 0.6 0.8
1 / Temperat. ure

FIG. 4. Temperature dependence for free vs periodic
boundary conditions at both high and low temperatures.

0.8 ~

0.01 +

O. OO1

0.0 0.2 0.4
1 / Temperat, ure

0. 1

0.0-
0 5 10 15

Temperature
0.4

High Temp. , Fr ee b. c.

20

0.01

0.001
0.0 0, 2 0.4 0.6

1 / Temper atur e
0.8 0. 1

FIG. 3. Temperature dependence of the difFusion rate on
a logarithmic scale for (a) free and (b) periodic boundary
conditions. L = 50, a = 1. A typical uncertainty is shown
for T = 2. The dashed lines correspond to the Boltzmann
exponent with slope given by the classical value of the kink
mass MI, = 8 in (a) and the energy of the kink-antikink pair
2MI, = 16 in (b).

100 2 4 6 8
Temperature

FIG. 5. Temperature dependence of the diffusion rate at
high temperatures. The dashed line is a prediction from the
corresponding first-order free Langevin equation.
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At high temperatures the Langevin equation (3.20) can
be integrated explicitly, because the noise term, whose
contribution is proportional to ~T, dominates over the
regular force. Then the analytical predition for the rate
is

500
(a) Effective Potential T=2

POO—
2T
pL

(4.3)

The numerical measurements are in perfect agreement
with Eq. (4.3).

The crossover temperature from the semiclassical to
the high-temperature domain is seen to be around T =
3. Perhaps surprisingly it is less than the kink energ

To determine it more accurately we have mea-~ ~

energy

sured the probability distribution of the averaged field

p, whose logarithm determines the effective potential
V(p, T). One can see in Fig. 6 that at T = 2 there
is a deep parabolic well at the origin, so that most of
the time the field oscillates around y = 0. Beyond the
parabolic well the potential is Bat. This implies the free
motion between the different vacuum sectors, which pro-
ceeds via the formation of kink-antikink pairs, seen as the
modulation of the high frequency oscillations correspond-
ing to the parabolic well. The deeper the well the better
the very notion of the kink configuration is at T g 0. At
temperature T = 3 the parabolic well is rather shallow,

k'
so the low frequency modulations usually interpret d

inks become hard to identify. The effective potential is
almost entirely flat, which means that the transitions be-
tween different classical vacua do not require smooth low
frequency configurations any more. This is obviously the
boundary of the semiclassical domain of temperatures.
At temperature T = 6 there is no sign of the confining
parabolic well.

Thus we have found that the effective potential
V(p, T) of the diffusing variable is flat in the high-
temperature domain, starting from T 3. This result
is interesting in the context of the baryogenesis within
the standard electroweak theory [17,18]. In the standard
model there is a variable, which is expected to diffuse
at finite temperature. It is the Chem-Simons variable
Ngs. Diffusion of Nc, s leads to the dissipation of the
baryonic number. This effect could be responsible for
the production of the baryon asymmetry in the expand-
ing Universe. In [19] a scenario for baryogenesis within
the standard model was suggested, in which the crucial
assumption was the flat effective potential V(Nos) in
the high-temperature domain. While to measure prop-
erly V(Nos) in the electroweak theory is not easy, our
data in the sine-Gordon model indicate that the flat ef-
fective potential V(Ncs) is a rather plausible assump-
tion. We would like to emphasize again the similarit'ari y
between the sine-Gordon model and Abelian-Higgs the-
ory in 1+1 dimensions. The zero mode &p of the sine-
Gordon theory plays the role of the Chem-Simons vari-
able in the Abelian-Higgs model. One can decompose

y + bp, to demonstrate that the effective poten-
tial V(P, T) is a bounded periodic function, allowing for
the Brownian motion.

We now turn to the dependence on the friction coef-
ficient. The friction coefBcient p is a dimensional input

100—

50

20

500

Eff

400

0
(4)

500
(c) Effective Potential T=B

200—

100—

50

20
0

(4)

I I I I I I

FIG. 6. Logarithm of the probability distribution (effec-
tive potential) of p at different temperatures indicated on the
plots.
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parameter in the Langevin equation (3.19). It determines
the scale as it is seen, for instance, from formula (4.3),
derived for large p. Although the friction dependence of
the escape rate has been obtained analytically in [1] in
the case of one degree of freedom exposed to the heat
bath, it is a less trivial task in the field theory. We have
measured the friction dependence of the diffusion rate
numerically by solving Eqs. (3.15) and (3.16) for the two
temperatures T = 2, 6 and for various friction coeffi-
cients. The results are shown in Figs. 7 and 8. In both
the semiclassical and high-temperature domains we find
the same behavior of the rate. The inverse rate varies lin-
early with the friction coefficient from large p ) 1 down
to very small p 10 ~: I" i oc (p+const). This sim-
ple friction dependence coincides with the one predicted
by the first-order Langevin equation. Therefore we ob-

80
-(a)

tain experimental evidence that the first-order Langevin
equation may be used to explore the large-time behavior
of the correlators not only for large, but also for small
friction coefficients, in particular, for p l.

One can see from Fig. 8 that the rate does not diverge
in the limit p —+ 0. It approaches some finite asymp-
totic value. Meanwhile the original Langevin equations
become the conventional Hamiltonian ones in the limit
p —+ 0. Therefore we expect the rate extracted from the
second-order Langevin simulations in the limit of vanish-
ing friction to coincide with the one obtained by means
of microcanonical simulations. To verify this conjecture
we first of all notice that the microcanonical simulations
of classical systems in real time [15] naturally correspond
to some fixed energy, not temperature. To obtain the
time-dependent Gibbs averages, one has to average the
result of the microcanonical measurement over the initial
field configuration with the Gibbs weight:

40

20

B
G

)8
0 I J J

0.0

80
(b)

L I I J A ~ J LM

0.2 0.4 0.6 0.8
Vriction Coefficient

I I I I I I I I I I I

1.0
. l ' t . i. . . I i i .. .i 2 i L. i

0.00 0.0i 0.02 0.03 0.04 0.05
Vric. tion Coeff ic:ient

-(b)

~ 40

E4 04

H
Q +54PI

0 2 4 6 8
Vriction Coefficient

FIG. 7. Friction dependence of the rate in the (a) low and

(b) high temperature domains obtained from the second-order
Langevin equation. L = 50, a = 1. The dashed straight line
is a prediction from the first-order Langevin equation, derived
normally for large friction p ) 1 or large times.
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Vriction Coefficient

0.08

FIG. 8. Same as in Fig. 7, but only the points correspond-
ing to very small values of the friction coefBcient are shown.
The cross points on the y axis are the extrapolations.
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f &Pp&pp exp[ —H(vo pp) IT] (P(t V'p po) —&P(0))

J &I'o&po e&p [
—H(pp po) I T ]

(4.4)

The problem here is that the value of the diffusion pa-
rameter 4 at time t, obtained as a result of the Hamil-
tonian evolution, is a functional of the initial field con-
figuration (pp, pp) = (p(t = 0),p(t = 0)). This func-
tional is not known explicitly. However, following the
suggestion by Smit [20] we evaluate this functional nu-
merically. This means that to measure the Gibbs aver-
aged diffusion parameter directly we calculate numeri-
cally [p(t) —&p(0)] from the Hamiltonian evolution for
a given starting configuration (yp, pp), then update this
starting configuration by means of the Metropolis pro-
cedure, corresponding to some temperature T, then do
microcanonical evolution again and so perform the Gibbs
average.

In this way the diffusion parameter (4.4) has been mea-
sured. The function (A(t)) is shown in Fig. 9. One can
see a crossover between two domains of time. At short
times t & 102 the deterministic behavior is observed
(E(t)) t2, while at t + 10 the Brownian motion
sets in (A(t)) t. The corresponding diffusion rate as a
function of temperature is shown in Fig. 10. The thermal
activation behavior is clearly seen at low temperatures.
As a result we observe a remarkable coincidence between
the data from the second-order Langevin simulations in
the limit of vanishing friction and the direct Gibbs aver-
ages. One obtains I'(T = 2) 0.3 and I'(T = 6) 8
from both Fig. 8 and Fig. 10. This result answers the

question of how to relate the Langevin measurements to
the direct calculations of the Gibbs average (4.4).

V. COMMENTS ON THE ERRORS

As mentioned above, all the runs, the results of which
are presented, were long enough to make statistical errors
negligible. The two main sources of systematic errors are
the finite lattice spacing a and the time step e. The
insensitivity to the lattice spacing was discussed before
(see Fig. 2). Here we would like to address the artifacts
of the discretization of the Langevin time.

It is known [21] that the finite time step in Langevin
simulations makes the temperature of the simulated sys-
tem T,fr larger than the input one T: AT = T,fr —T =
0(e'). To check the efFective temperature we measure the
diffusion parameter at rather small times, as shown on
Fig. 11. The Brownian diffusion is clearly observed at
short times, but it has nothing to do with the motion
of the system between topologically different vacua. At
short times the white noise always dominates over the
regular force in the Langevin equation. Therefore the
short-time behavior of (A(t)) is, in fact, controlled by
the free Langevin equation, which immediately implies
diffusion of p. This short-time diffusion is already sen-
sitive to the discretization effects. Its diffusion rate is
given by T,p, which has been measured numerically and
is shown in Fig. 12. One can see that the effective tem-
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FIG. 9. Time dependence of the diffusion parameter (4.1)
obtained from direct measurements of the Gibbs average
(4.4) for periodic boundary conditions. The temperature
is T = 1.5. The initial field configuration was updated by
means of the Metropolis procedure 100 times and each time
10 leapfrog iterations of the microcanonical evolution were
performed. L = 50, a = 1, c = 0.1
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FIG. 10. Temperature dependence of the diffusion rate
obtained from direct measurements of the Gibbs average (4.4).
The dashed line corresponds to the Boltzmann factor with
the energy of the kink-antikink pair. The parameters of the
measurements are as in Fig. 9.
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FIG. 11. The typical diffusion at short times, controlled
by the free Langevin equation.

perature of the simulated system follows the input one
with fairly high accuracy. Since these measurements are
obtained from very short runs, the computer time needed
is quite small. So we have also checked that LT = ee,
with c = 1.5 + 0.5.

Another alternative to checking the effective tempera-
ture of the simulated system is measuring the Langevin
average of the canonical momentum squared over the
whole run: (p2) = T,fr. This way is not easily gener-
alizable for theories where there is a coupling between
the canonical momenta and coordinates in the Hamilto-
nian, as in gauge theories.

VI. CONCLUSIONS

The study of the sine-Gordon field theory in 1+1 di-
mensions shows that the classical Langevin simulations
in real time prove to be e%cient in obtaining valuable in-
formation about the nonperturbative effects in field the-
ory at high temperatures. In the semiclassical domain
of temperatures, kinks are seen as smooth modulations
of the high frequency oscillations of the field. The diffu-
sion between difFerent classical vacua is due to random
process of production and free motion of kink-antikink
pairs during the Langevin evolution. This is very well
confirmed by the measured temperature dependence of
the difFusion rate, which exhibits thermal activation be-
havior with the classical value of the kink mass in the
Boltzmann exponent.

Crossover is observed between the semiclassical and

FIG. 12. The e6'ective temperature of the simulated sys-
tem obtained from the short-time diffusion. The dashed line
is a fit. The solid line corresponds to the input temperature.
The deviation is proportional to the time step e.

high-temperature domain, where the semiclassical ap-
proximation is not valid. The effective potential of the
diffusing variable is found Hat at high temperatures. In
the high-temperature domain at moderate friction the
diffusion rate follows the prediction of the free Langevin
equation.

The dependence of the diffusion rate on the friction
coefficient is found to be identical to the prediction of
the first-order Langevin equation down to rather small
friction coefficients p ~ 10 ~. This justifies the use of
the first-order Langevin equation in the calculations of
correlation functions at large real times.

We also measure the diffusion parameter directly as the
Gibbs ensemble average by means of the Metropolis pro-
cedure and microcanonical evolution. The correspond-
ing diffusion rate is found to coincide with the smooth
extrapolation of Langevin measurements in the limit of
vanishing friction coefficient.
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