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Ultraviolet regularization of light-cone Hamiltonian perturbation theory:
Application to the anomalous magnetic moment of the electron (g —2) in the light-cone gauge
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An ultraviolet regularization and renormalization procedure of light-cone perturbation theory which

is suitable for a numerical application is discussed. The fourth-order correction to the anomalous mag-
netic moment of the electron in the light-cone gauge is computed. Several regularizations of the associ-
ated light-cone gauge singularity are explored. Local counterterms are constructed to remove the quad-
ratic light-cone divergences from the formalism. Problems of discrete light-cone quantization (DLCQ),
beyond one-photon exchange, are also described.

PACS number(s): 11.10.Gh

I. INTRODUCTION

Perhaps the most outstanding problem of light-cone
quantization is to compute the bound-state spectrum and
relativistic wave functions of hadrons at strong coupling.
In quantum chromodynamics (QCD) one needs a practi-
cal computational method which not only determines the
hadronic spectra, but also provides nonperturbative ha-
dronic matrix elements [1].

In addition, it is particularly important to compute the
relativistic wave functions needed to calculate structure
functions, form factors, and other hadronic matrix ele-
ments. The computation of parton distributions is
perhaps among the most interesting applications of
light-cone quantization since these distributions are relat-
ed to the Fourier transform of correlation functions along
a lightlike direction. Thus, parton distributions are "ki-
nematic" observables given the equal light-cone time
wave function.

A step in this direction has been undertaken by a
method known as discrete light-cone quantization
(DLCQ). So far, the theory has been applied mainly to
the elucidation of quantum field theories in one space and
one time dimension. In (1+1)-dimensional QCD, for ex-
ample, the full spectra and wave functions could be ob-
tained using the DLCQ method [2]. These results, which
required only a minimal numerical efFort, are in agree-
ment with other calculations when available. The success
of DLCQ, as well as a similar approach known as the
light-front Tamm-Dancoff method [3], provide hope for
solving field theories in 3+ 1 dimensions.

However, the transition to dimensions higher than
1+1 is anything but straightforward. Some of the
reasons are the following.

(i) Theories in 1+1 dimensions, quantized on the light
cone, are manifestly covariant. This is because the opera-
tor of certain boost transformations, which is a kinematic
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Poincare operator in light-cone quantization, is the only
generator of continuous Lorentz transformations. This is
generally not the case in higher-dimensional field
theories, since the underlying Poincare group includes
certain rotation operators, which are dynamical in the
light-cone formulation. Thus, the recovery of Lorentz-
invariant physical observables is a nontrivial problem in
light-cone-quantized theories beyond 1+ 1 dimensions (as
for any form of Hamiltonian dynamics) [4].

(ii) The Hamiltonian formulation of gauge theories in
1+1 dimensions is effectively gauge invariant [5]. How-
ever, in higher dimensions the regularization imposed in
such a formalism will generally spoil gauge invariance,
since the gauge-field quanta become a dynamical degree
of freedom of the theory. Unless a careful regularization
is imposed, gauge-invariant amplitudes are not recovered
in the continuum limit.

(iii) Simple theories such as the Yukawa model or
gauge theories in 1+ 1 dimensions are superrenormaliz-
able. In 3+1 dimensions, however, a renormalization
scheme to all orders in the coupling constant and masses
must be imposed for these theories in order to ensure a
consistent treatment of their short-distance behavior.

(iv) The number of degrees of freedom in (3+ 1)-
dimensional theories is drastically enhanced compared to
the (1+1)-dimensional toy world.

Thus, a thorough investigation of light-cone properties
which are characteristic for higher dimensions is very im-
portant. The easiest way of addressing these issues is by
analyzing the perturbative structure of light-cone field
theories first. Perturbative studies cannot be substituted
for an analysis of problems related to a nonperturbative
approach. However, in order to prepare for upcoming
nonperturbative studies, it is important to validate the re-
normalization methods at the perturbative level. A clear
understanding of divergences in perturbation theory, as
well as their numerical treatment, is an important step in
such a program [6].

One objective of this paper is to explore some of these
issues in the example of the anomalous magnetic moment
of the electron a =(g —2)/2 to order (ct/vr) . In particu-
lar, the discussion shall focus on a renormalization
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scheme which is also suitable for a numerical treatment.
This requires the construction of certain counterterms on
the local level in order to prevent round-off errors.

The second section of this paper addresses problems
associated with quadratic divergences in light-cone-
quantized gauge theories. It has been shown that Feyn-
man gauge leads to an infinite number of quadratic diver-
gent light-cone perturbation theory (LCPT) diagrams at
one loop [7]. The situation is significantly better in light-
cone gauge since in the continuum only the self-energy
and the vacuum polarization display a quadratic diver-
gence at one loop. However, a computation in A+=0
gauge requires a careful regularization of the associated
gauge singularity. Most regulators reduce the small-x be-
havior of the light-cone photon propagator to that
present in Feynman gauge. Thus, an understanding of
Feynman gauge is essential even if calculations are car-
ried out in A + =0 gauge.

In Sec. III the fourth-order correction of g —2 in the
light-cone gauge is computed. Two different descriptions
for the regularization of the k+ singularity are discussed.
The sensitivity of physical observables to a finite trunca-
tion is investigated.

In Sec. IV ultraviolet regulators, which are commonly
used for the purpose of nonperturbative calculations in
DLCQ, are tested. It is shown that these regulators do
not recover the correct answer for a =(g —2)/2 in fourth
order, unless special counterterms are invoked.

II. LIGHT-CONE QVANTIZATION
IN FEYNMAN GAUGE

In any gauge different from light-cone gauge, canonical
light-cone quantization is anything but straightforward.
This is due to the fact that, after solving the spinor con-
straint equation, the light-cone Hamiltonian in these
gauges contains terms which are of arbitrarily high order
in the A + field. Thus, in this case, we will not attempt to
write down the light-cone Hamiltonian. However, even
without constructing the light-cone Hamiltonian explicit-
ly, one can still derive light-cone perturbation theory
(LCPT) rules for Feynman gauge simply by separating
the various light-cone time orderings of the Feynman am-
plitudes. A useful reference can be found in [8,9].

Feynman perturbation theory in Feynman gauge has
the advantage that even off-shell Green's functions exhib-
it the full I.orentz structure. This simple feature provides
important consistency checks for light-cone-quantized
field theories, since manifest covariance is lost in this
case. In addition, it helps to disentangle problems associ-
ated with singularities in the light-cone gauge propagator
from problems intrinsic to light-cone quantization itself.

We start our discussion with the evaluation of the
fourth-order correction to the anomalous magnetic mo-
ment of the electron (g —2)/2 in LCPT. The Feynman
diagrams and the corresponding light-cone time order-
ings are displayed in Fig. 1. The techniques we used for
this calculation have been discussed elsewhere [10] so
that we only compare the I.CPT answer of the anomaly,

CX

aLcpr = (
—0.324+0.004)

LCPTH

FIG. 1. Feynman diagrams E with corresponding light-cone
time-ordered diagrams contributing to the electron anomalous
magnetic moment a =(g —2)/2 to fourth order.

with the analytic result by Petermann and Sommerfield
[11,12]:

Qf 2

a = —0.327
m2

Also, some sixth-order contributions have been calculat-
ed using LCPT [10].

It should be emphasized that, in order to obtain this
agreement, additional renormalization, beyond usual pro-
cedures, is necessary for the self-energy diagram 2 in Fig.
1. This is because the one-loop self-energy exhibits a
quadratic divergence in light-cone quantization, which is
rather atypical for gauge theories [13]. The "method of
alternate denominators" has been suggested as a possible
solution to this problem [14]. However, in the Appendix
A we show that this method must be used with caution if
one wants to recover the usual Feynman answer for gen-
eral perturbative processes.

Whereas the problem of the one-loop quadratically
divergent self-energy occurs also in A =0 gauge, any
gauge different from light-cone gauge, such as Feynman
gauge, poses extra problems in light-cone quantization.
To see this, we consider the "jellyfish graph" (Fig. 2) with
n (n ~0) external photons inserted into the loop. For
any n we find a quadratic divergence in this diagram [15].
Furthermore, extra logarithmic divergences occur, which
can be seen by power counting of the diagram in Fig. 3
[16,17].
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mion and I„&f gy
denotes the fermion self-energy. In

one loop it is straightforward to show that (2.4) is
equivalent to the effective replacement

+
P2

P2 P 1 energy she11
P1

(2.5)

FIG. 2. n-photon jellyfish graph.

In the following we demonstrate that extra divergences
in light-cone field theories can be associated with certain
noncovariant terms appearing in the light-cone formal-
ism. As an example, we investigate the n =0 jellyfish
graph I„» (which is actually just the one-loop self-

energy) with momentum p = (p +,p, p~ ). We leave the
explicit calculation to Appendix B and quote the result
obtained after mass renormalization (throughout the pa-
per we use the notation p

—=p +p, y
—=y +y ):

y+ uy+uI„o=(I(—m)B+(gf —m) X(p )+ — C
p 2mp

(2.1)

—tr(y I„o)=p [8 —2m'(p )]+ C .
4 n —0 (2.2)

In the following we want to imply that the integral

f d A, p(A, ) =0 is always taken; i.e., one Pauli-Villars sub-

traction is assumed. In the above example we find

-L
C'V

'

p

I +k~
16m p+ A +k

(2.3)

p +
se]f energy ) + ( V self energy )

p
(2.4)

where p+,p correspond to the momentum of the fer-

The quadratic divergence can be identified with the term
C in (2. 1) and is therefore associated with the noncovari-
ant structure in the self-energy.

We note that the occurrence of noncovariant terms of
the form Cy+/p+ is not restricted to the one-loop self-
energy (for an explicit two-loop example see Ref. [7]). In
fact, all noncovariant terms we have encountered have
had this structure (for a discussion of vacuum polariza-
tion contributions see [18]). As far as the self-energy is
concerned, a method which is based on the correct tensor
structure of the diagram can be proposed. This is possi-
ble since different tensor components should be related by
covariance:

f dA, 'A, 'p(A, ') =0,

f dA, X 1n(A, )p(A, )=0

(2.6)

are introduced. This corresponds to the introduction of
three Pauli-Villars ghost particles. This is in contrast to
covariant perturbation theory, where at most one Pauli-
Villars (PV) photon is needed to render all jellyfish dia-
grams finite. Hence it is instructive to investigate the ori-
gin of these three PV conditions in light-cone quantiza-
tion. In coordinate space, the one-loop self-energy is
given by

X' '""-f d x b, F(x)y"S~(x)y

where bF(x) and SF(x) denote the usual boson and fer-
mion propagators, respectively. Clearly, light-cone per-
turbation theory (keeping x+ fixed while integrating out
x and x~ first) would give the same answer for X' '"~ as
time-ordered perturbation theory if there were no singu-

(see Fig. 4) in the Dirac numerator, where p&+ =p+,
energy she11 P . The mOmenta P,P

+ + + +

denote the total light-cone momentum and energy, re-
spectively. Here, k+ is given by the light-cone momen-
turn of the virtual photon. More generally,
p, ,„„gy,»,» =p —(A, +k~)/k+ defines the light-cone
energy one would obtain if light-cone energy conserva-
tion was imposed. The replacement (2.5) expresses the
"bad component" (i.e., y+) in terms of the "good com-
ponent" (i.e., y ) and thus renders the self-energy covari-
ant by construction. Hence, the problem of the quadratic
divergence is avoided in this case [19]. Equation (2.4) can
be generalized to higher-loop self-energy diagrams, pro-
vided all subloops are first rendered covariant and the
noncovariant piece is of the form Cy+/p+.

Whereas the tensor method provides a useful practical
tool for dealing with the quadratic divergence in self-
energy diagrams, the application of the tensor method for
the cure of the jellyfish diagram with n ~ 1 is not straight-
forward. This is because the different tensor components
are not simply related in this case.

It should be noted that in 3+ 1 dimensions the nonco-
variant term in Eq. (2.2) and all other jellyfish diagrams
can be eliminated more systematically if the spectral con-
ditions [20,21]

f dX p(k )=0,

FIG. 3. Power counting for the n =2 jellyfish diagram leads
to a logarithmic divergence. FIG. 4. One-loop correction to Compton scattering.
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larity at x =0. As the leading singularity of the propa-
gators S~(x)-x"y /(x ) and b, ~(x) —1/x are mass in-
dependent, there are two possibilities for regulating this
singularity. Either both propagators are regulated by in-
troducing one PV photon and one PV fermion into the
formalism, thereby reducing the leading singularity by
two powers of x, or only b,~(x) is regulated, which has
the advantage of preserving current conservation. In or-
der to achieve the same degree of regularization in this
case (reducing the singularity by two powers of x )

one needs not only to impose the condition
lim, x b,+ (x )=0 but also lim, b,P (x )=0. The
expansion of the boson propagator around x =0 then
yields [22]

1 1 A, e(x ) A, A, xbFx, k, = — + + ln
4n x —je 16' 16~2 4

precisely condition (2.6) encountered earlier.
However, such a large number of Pauli-Villars condi-

tions is awkward from a numerical view, since the num-
ber of degrees of freedom is enhanced dramatically in this
case. For example, because of Eq. (2.6), a typical two-
loop Feynman diagram, requires 16 independent compu-
tations of its integrand at each integration point. This is
in contrast with only four computations in a covariant
approach. In addition, the quadratic divergences would
be canceled only among contributions from different
Pauli-Villars particles. However, for the purpose of nu-

I

C 1=—tr()/ I )n=p p
—=pp =p ~ (2.7)

where C is independent of the external momenta. Hence,
we define the null subtraction as a procedure where the
"bad" component of a quadratically divergent graph or
subgraph is subtracted for vanishing external (with
respect to the divergent graph or subgraph) p and p~
momenta, while keeping p+ ~0. In the above example
we obtain for the null subtraction

1 y+ kg+Pe
e2 1dxdkl 2 p+ 1 —x P2 'V

m'+k' X'+k'
X X

(2.8)

Performing replacements similar to those given in Ap-
pendix B yields

merical calculations it is extremely inconvenient to cancel
quadratic divergences among different diagrams because
of the limited accuracy of any numerical procedure.

Hence, for practical purposes, it is necessary to develop
a recipe which reduces the number of Pauli-Villars parti-
cles as well as subtracts quadratic divergences locally,
i.e., before integration. In this context we shall introduce
the "null subtraction" as such a local procedure. For
n =0 the idea of the null subtraction is based on the ob-
servation that the troublesome term in Eq. (2.2) is given
by

2 +
A,

2 — 2

16m p+ 0 kj+A, (1—x)+m x
(2.9)

f dx f d kz ln[m x+A, (1 —x)+kz]= f d k&ln

(2.10)

What we encounter here is nothing but the noncovariant piece of Eq. (2.3). Hence, the null subtraction removes the
quadratic divergence automatically in the correct way.

Let us examine now the null subtraction for the jellyfish graph for n = 1 (which is actually the one-loop vertex correc-
tion in this case). The covariant answer is expected to be of the form [23]

I "=y"F,(q )+ cr" q F2(q ) .

(2.12)

Using the Gordon decomposition, Eq. (2.10) can be rewritten as

uI +u=uy+u[F, (q )+F~(q )]——(p+p')+F2(q ) (2.1 1)
p p

ur-u=uy u[F, (q )+F (q )] (p+p—')—F2(q')1, 2 (p +p')
p

where A, , k' denote the initial and final helicity, respectively. The momenta p and p' correspond to the initial and final
fermion, respectively. If one inserts the analytic form for the second term on the right-hand side (RHS) of Eqs. (2.11)
and (2.12), the sum F&(q )+F2(q ) may be computed in two different ways: F, (q )+F2(q ) can be obtained from the
I current by means of Eq. (2.11). This is straightforward, since we do not expect trouble in this case [24,25]. Howev-
er, the extraction of F&(q )+Fz(q ) by means of Eq. (2.12), i.e., by computing the I" current, requires a null subtrac-
tion which takes the form

x

m +k~
1 —x X

p +1
k2+g2 k2+g2

dxd kg
'V

2 + 7p

16m px 1 —x g2+ k2
(2.13)
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2

(16~3)~ o
'

o xy (1—x)(1—y)(1 —x —y)

A, +kii X2+k2„1 y+
y„(Pz+m )yx 2 p

x y

X
m +(p~ —k~~) k~~+2

1

k,~+A.k)~+A,+k,
1 x

m +k(~
1 —x —y

(2.14)

Note that we only subtract the y+ component for zero external p and p~ momenta. If the null subtraction removes
the quadratic divergences correctly, the result for F, (q )+Fz(q ) should be the same in both cases. We have checked
this statement numerically [26]. Hence, the null subtraction restores the covariant answer also in the case of the n =1
jellyfish graph.

If we take those results, together with the fact that the one-loop Ward identities are satisfied for the good components
in LCPT, one can say that the null subtraction preserves the Ward identities at one loop (for external fermion lines on
shell).

It should also be mentioned that we have checked the null-subtraction method for the case of the two-loop rainbow
self-energy in Fig. 5. More interesting, however, is the two-loop self-energy of Fig. 6 since it contains two n = 1 jellyfish
subdiagrams [27]. The corresponding null subtractions are

m +(p~ —k)~)
P

1 —x
A, +k)~ m 2+k„

1 x

where pz = (1—y,p —(A, + kz~ ) /y, p~ —kzj ) and

1
2

1 —x 1I2=
3 2

d k]Jdx d k2ydy(16~')' o xy (1—x)(1—y)(1 —x —y)

A. +k2~ 1
y (gf, +m )y„—y+y

2
X

A, +k2~ 1 y+
yP

2 p
A. +k2~

y

m +k2~ k2~+A,

(2.15)

respectively. Figure 6 shows the result of the numerical integration for different components. The result is that the null
subtraction eliminates the quadratic divergence and restores a covariant form within the error of the calculation.

The general definition of the null subtraction of the n-photon jellyfish graph,

2 + 8(p+ —k+ )8(p+ —k+ —q,+ ) 8(p+ —k+ — —q„+ )
IJ = dk+d k

(16~') k+(p+ —k+ )(p+ —k+ —q,+ ) (p+ —k+ —q,+ — —q„+ )

X
y"(gf&+m)y '(pz+m)y ' . . (p'„+m)y„

+(p~ —k~) m +(pj —k~ —
q)g

—. . —q„g)
p —k — p —kP+ —k+ p+ —k+ —q+ . —q+

(2.16)

with external fermion momentum p =(p+,p, pl ) and momentum q; =(q;+,q;, q;~) for the ith external photon line, is
given by [28]

2 + 8(p+ —k+ )8(p+ —k —q,+ ) 8(p+ —k+ —. . —q„+ )I"
))
= dk+dk~

(16~') k+(p+ —k+)(p+ —k —q,+ ) (p+ —k+ —q,+ — —q„+)

—ki+A,
k+

k~+A,
+ k+

k2+g2 k2+g2 k2+g2
~ ~ ~

k+ p+ —k+ —
q )+ k+

k +A,

(2.17)

where k = ( k f +A, ) /k +. The fermion light-cone ener-
gies p; are given by p,. = —(kj +A, )/k+, if p,. is set on
energy shell, i.e., the ith fermion line does not extend
over more than one intermediate state [14].
The on-mass-shell case yields p, = ( m +k ~ ) / FIG. 5. Two-loop rainbow self-energy diagram.
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graph res

res.

-2656 + 7.7
-2691 + 37
-2641 + 50

component

2.

523.73

—1 35.63

0.5

FICs. 6. The two-loop self-energy contribution of the electron
is expected to be of the form A +Bye, where p corresponds to
the external fermion momentum. The result (res) shows the ex-
traction of 8 by means of the various components ofp.

(p+ —k,+ —q,+ —. q;+). Note that the null subtrac-
tion in (2.17) is to be used in combination with only one
Pauli-Villars particle. Thus the number of degrees of
freedom is considerably reduced. This was possible since
all higher-loop noncovariant terms are independent of the
photon mass.

The null subtraction was developed to deal consistently
with quadratic divergences, in particular in the context of
a numerical treatment.

III. LIGHT-CONE QUANTIZATION
IN LIGHT-CONE GAUGE

—9.16

182.5

—167.4

9.69

419

For nonperturbative methods such as DLCQ or the
lightfront Tamm-Dancoff procedure, A+ =0 gauge is by
far the most favorable choice among all gauges. This is
due to the fact that ghosts and spurious degrees of free-
dom should not occur in this case. Furthermore, it seems
to be the only gauge where canonical light-cone quantiza-
tion is tractable, since it avoids having the 3 + field in
the denominator after solving the constraint equation for
the left-handed spinors. In addition, only light-cone
quantization in A+ =0 gauge provides a convenient ex-
traction of hadronic structure functions and, therefore,
ensures an intuitive picture of high-energy scattering pro-
cesses. Because of our discussion of the previous section,
we may add the fact that quadratic divergences and non-
covariant terms are restricted to a much smaller set of di-
agrams, compared to any other gauge. However, as a
noncovariant gauge, 2 + =0 requires a careful regulariza-
tion of its k+ singularity, in particular because the co-
variant structure in a Hamiltonian formulation is already
lost. Many procedures have been given in literature to
regulate the light-cone gauge singularity [29—31]. In any
event, every prescription gives rise to the introduction of
a regularization parameter e into the theory. It is essen-
tial for analytic, as well as numerical calculations, to en-
sure independence of physical quantities on the e regula-
tor.

In this section, we want to focus on e prescriptions,
which are easy enough to implement; i.e., they are of po-
tential interest for practical applications in DCLQ or the
light-front Tamm-Dancoff procedure. In addition, we in-
vestigate, in the particular example of the anomalous
magnetic moment of the electron (g —2)/2, the sensitivi-
ty of physical observables to a truncation at finite e. We
start out with the light-cone gauge propagator, which has
the form

—104.7

—852.7

Total Result —134.7 3.7

FIG. 7. Correction to e+e scattering.

g„k +g k„
gp~+ (3.1)

nk
where r) k —=k+ [32]. One possibility to regulate the rj k
singularity is given by

g„k +g k„d„=—g„+ "e(g k E) . —
n. k

(3.2)

Note that the e function of the second term does not re-
gulate the gauge piece only, but also all energy denomina-
tors which will multiply this term. Since gauge invari-
ance in QED should occur locally (or quasilocally [34]),
we expect the correct result for the anomalous magnetic
moment of the electron for any value for e between 0 and
1. This is exactly what we observe in our numerical cal-
culations. It is instructive to see how the contributions of
single diagrams add to the gauge-invariant answer. This
is shown in Figs. 8 and 9. We remark that contributions
of single diagrams grow logarithmically if e gets small,
which makes it more difBcult to maintain the numerical
accuracy for small values of e. In order to obtain these
results, it was essential to include the instantaneous self-
energy diagram of Fig. 10, which vanishes in Feynman
gauge. This is because the external self-energy diagram
does contain a double pole in 2 + =0.
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graph res

4941 0.05

-172.9

FIG. 10. Instantaneous contribution to the external wave-
function correction in light-cone gauge.

3. 2.34

—734.55

for g k (e. Basically, any prescription which regulates
the second term in Eq. (3.1) differently from the first one
exhibits this feature. This is why, even in light-cone
gauge, the existence of ghosts cannot be excluded in gen-
eral [35]. From a technical point of view Eq. (3.2) means
that the jellyfish problem does occur even in 2+=0
gauge. The only exception to this case is given by a regu-
larization, introduced through

5. 319.17
g„k +g k„d„= —g„+ " " e(g k —e),g.k (3.4)

6.

8.

9

m. s.—

—121.1

—3952

—428.8

which means that A + =0 gauge is strictly obtained even
at finite e; i.e., 2+(e)=0. The advantage of this choice
is the absence of ghosts and the jellyfish problem at finite
e. However, regularization (3.4) will, in general, truncate
also physical contributions to Feynman integrals. Thus,
correct physical answers are recovered only in the e—+0
limit. For the purpose of practical applications, such as
DLCQ, one can investigate the numerical significance of
such a truncation. In Table I we present the result for
the computation of (g —2)/2 for finite e, using the
prescription in Eq. (3.4).

Total Result -137.8
IV. REGULATORS IN DLCQ

FIG. 8. Contributions (res) of single LCPT diagrams to the
anomalous magnetic moment of the electron a =(g —2)/2 to
fourth order in light-cone gauge for different values of the
light-cone gauge cutoff' e. An ultraviolet cutoff' A=1000m was
used, where m denotes the electron mass. The residual A
dependence is within the error (o. ) of the calculation. For con-
venience a/2m. = 10 was chosen. m.s. associated with a line indi-
cates that the corresponding fermion light-cone energy was tak-
en on shell. q„k„means that only the gauge piece of the corre-
sponding photon propagator was used in this case.

ri„d" (e)= —g+ [1—e(q k —e)]%0 (3.3)

The price we pay for the complete e independence of
physical observables for the regularization introduced in
Eq. (3.2) is that for g k (E the computation is carried out
essentially in Feynman gauge. Indeed, we find

Nonperturbative methods should generally be compati-
ble with perturbation theory in the weak-coupling
domain of a theory. In lattice QCD, for example, the
data scale as the one-loop P function for weak coupling.
This important feature indicates the recovery of the
correct continuum field theory for small values of the lat-
tice spacing. A Hamiltonian formulation of field theory,
such as DLCQ, should in principle reproduce correct
perturbative results for any scattering process to finite or-
der in the coupling. Thus, the calculation of g —2 to
fourth order provides a powerful consistency check as
well as an ideal testing ground for those methods.

We start our discussion with the test of the global
cutoff, which is commonly used in DLCQ [33]. The glo-
bal cutoff regulates an intermediate state with n particles

TABLE I. Total answer for the electron anomaly to fourth
order in light-cone gauge for different values of the gauge regu-
lator. The analytic Feynman answer is given by
a = —131.4 (a/m. ) .

FICx. 9. Fourth-order correction to the electron anomaly in
light-cone gauge for a different value of its gauge regulator. The
analytic Feynman answer is given by —137.2 for a/2m = 10.

—128.3+3.3
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according to

n m 2+k2
e —y ' "+~' (4.1)

m +k
1 —x

X2+k22,
+A (4.2)

where m, X denote the fermion mass and the photon
mass, respectively. Here, the variables k2l and x corre-
spond to the loop momentum of the virtual photon [36].
However, the 8 function of the second intermediate state
of the diagram corresponding to Fig. 13 is given by

T

m +(k2j+k, ~) A, +k2~
1 —x —y

A, +kil
+A

(4.3)

Obviously, (4.3) does not reduce to (4.2) in the large-kzj
limit and hence does not allow a factorization of its
infinite contribution. This effect induces the observed de-
viation from the correct answer in the A —+ ~ limit.

Recently, the so-called local cutoff has been proposed
[37], which restricts the difference in the invariant mass
locally, i.e., at a given vertex only, to values less than
A /x. Here x is given by the fraction of the light-cone
momentum which Qows through the vertex under con-
sideration. Hence, (4.3) gets replaced by

m +(k)~+k2~)
1 x

2+k2 m 2+k2l +
1 —x

2 21l ( A
1 —x

where x;,k;l, m; refer to the light cone x, the perpendicu-
lar momenta, and the mass of the ith particle, respective-
ly. A denotes the ultraviolet cutoff, which is taken to
infinity at the end of the calculation. Our result for the
calculation of graph 1+2 in Fig. 1 is
R, +&=( —0.34+0.005)a /m, which is to be compared
with the analytic result by Peterrnann:
Rz = —0.3285 a /nTh. e result for the ladder graph
using the global cutoff is (0.658+0.006)a /m . However,
the correct answer is given by R =0.778m /a . Thus,
the global cutoff does not recover the correct continuum
answer in the limit A~ ~. Notice that there is no mass
renormalization associated with the ladder diagram.
Therefore, introducing "sector-dependent mass counter-
terms" (see, e.g., Ref. [3] for a discussion of the sector
dependence of counterterms in the context of the Tamm-
Dancoff approximation) does not help here either. In or-
der to understand what has happened, we recall the 6
function in the q~0 limit for the counterterm (see graph
4 in Fig. 1):

cutoff violates gauge invariance already at the tree level
[39].

Other e-function cutoffs that have been proposed [40]
are also doomed to failure, unless a noncovariant coun-
terterm is invoked. The reason is that they depend on
momenta, i.e., derivatives only. However, a gauge-
invariant regulator would require a functional depen-
dence on covariant derivatives instead.

In Appendix C we demonstrate the implementation of
dimensional regularization on the light cone.

V. SUMMARY

Light-cone quantization in Feynman gauge leads to an
infinite number of quadratically divergent LCPT dia-
grams at the one-loop level. The problem occurs for
self-energy diagrams where n photons (n ~ 0) are inserted
into the loop ("n-photon jellyfish problem" ). We con-
structed a local representation of noncovariant counter-
terms, called the "null subtraction, " in order to remove
those divergences from the formalism.

In principle, also light-cone quantization in light-cone
gauge exhibits this feature for all n (and not only for
n =0). This is due to the fact that most regularizations
of the light-cone gauge singularity reduce the small-x be-
havior of the photon propagator to that in Feynman
gauge. In this case, the null subtraction can be used in
the same way.

In Sec. III we evaluated the fourth-order correction to
the anomalous magnetic moment of the electron in light-
cone gauge and reproduced the analytic Feynman gauge
result by Petermann. It was shown that a finite trunca-
tion of the k + =0 region can lead to a significant
modification of the continuum result.

Finally, several ultraviolet cutoffs, which are common-
ly used in DLCQ, were tested in perturbation theory. It
was shown that those regulators do not recover the
correct continuum field theory in the A~ ao limit.

Appendix C demonstrates the introduction of dimen-
sional regularization into the light-cone formalism.
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(4 4)

Changing variables according to y =(1—x)y,
k2&=k2j —yk&~, and A =A —m reduces (4.4) to (4.2)
and, thus, avoids the problem of the global cutoff.
Indeed, our calculations show that the local cutoff repro-
duces the correct result for the ladder graph. Unfor-
tunately, it leads to the incorrect answer for graph 1+2
in Fig. 1. It is straightforward to show that the local

APPENDIX A

In this appendix we discuss the "method of alternate
denominators, " which was introduced in Ref. [14] as a
possible way of removing quadratic divergences in the
light-cone formulation. For illustration, the one-loop
correction to the Compton graph, shown in Fig. 4, yields
[41]
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IComp
u8(gf, +m )

m +p(g2 2

Pi Ps

f dk+d'k, y"(gf, —k+m )y

m +(p~ —k~)
(p, —k)+k+ p; p+ k+

A, +kj
k+

—f dk+d ki
y"(P, —1+m)y„

m +(pj —k~)
(p, —k)+k+ p, + k+

(P, + m )g*u

m +p&j

P&

(A 1)

The second term is the alternate denominator (AD) subtraction, which is designed to cancel the quadratic divergence in
the first term as well as perform the mass renormalization (see Fig. 11). The AD term is obtained by replacing the ini-
tial energy p, in the energy denominator of the quadratically divergent subgraph by its adjacent energy p, which is, in
case of the self-energy diagram in Fig. 4, equal to the mass-shell energy p &

(see below).
Obviously, the quadratic divergence is subtracted in this procedure since it is independent of the incoming energy.

However, it remains to be shown that the mass subtraction of Fig. 11 is carried out correctly, using the AD method.
Note that the AD term I~& of Eq. (Al) is obtained by performing the k integration of

ug(gf, +m) y„[(gf, —g)+m]y" (P', +m )8"u
Az) d k (A2)

p~
—m +to [(p~ —k) —m +ie] (k —A. +i@) p&

—m +iE'
Here, p& is on shell, i.e., p~&=p~& for pW —and p& =(m +p&~)/p&+. However, the usual Feynman counterterm is
given by

ug(gt, +m) u(p, )y„[(P,—k)+m]y"u(p, ) (P, +m)8*u

p, —m +iF [(p, —k) m+ie—] (k il. +ie) p, —m +i@
(A3)

Obviously there is a dift'erence between these two expressions because of the spinors u(p, ) and u(p, ) which project out
the 6m piece from the self-energy in Eq. (A3). Thus, we conclude that the AD method must be used with caution.
However, if one ignores the double instantaneous graph of Fig. 12 for a moment, at least one of the fermions is onshell,
and the corresponding propagator

gf) +m

p —m +ie

gets replaced by

P, +m

p) m +LE

u(p„s)u(p„s)
p&

—m +i@

so that the missing projection onto the 5m piece in Eq. (A3) is achieved by the adjacent on-shell fermion line. The point
is that, unless one is cautious, the AD method treats the double instantaneous graph incorrectly by subtracting a
nonzero contribution [42].

Thus, if one modifies the AD method such that the subtraction is excluded from the double instantaneous self-energy
diagram, the usual (Feynman) answer can be obtained [43].

APPENDIX 8
In this appendix we prove that the n =0 jellyfish graph (which is actually just the one-loop self-energy) with momen-

tum p = (p+,p,pz) has the form

FICx. 11. Mass correction to electron Compton scattering.
FIG. 12. Double instantaneous diagram to electron Compton

scattering.
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I„o=(P—m)B+(P —m) X(p )+ — C (81)
p 2mp

after mass renormalization. In the following we want to imply that the integral fd Ap(k ) =0 is always taken; i.e., one
Pauli-Villars subtraction is assumed. LCPT yields for the y and y~ components for the n =0 jellyfish graph

2 ] &—)r„
16m. 0 (kj —pjx) —pox —p p+x(1 —x)+(m +p3 )x+A, (1—x)

(82)

where the "good" vectors p =(p+, O,pj ),k =(k+,O, kj ) have been introduced. The quantity x is given by the relative
momentum carried by the virtual photon, i.e., x =k+/p . Rewriting the denominator in terms of the four-momentum

p =p+p —p~ and shifting integration variables yields

P(l —x)
Svr3 0 —k3+x(1 —x)p —m x —

A, (1—x)

For the y+ component we find

+ e2 1 &+ i z
(m +k3 )/(1 —x)+p3(1 —x)X+= —

3
—

+ dx d'kl
2 2 2 2Srr 2 p o —k~+x(1 —x)p —m x —

A, (1—x)

(83)

(84)

Since we are using Pauli-Villars regulator, the replacement k3 —+p x (1—x)—m x —A, (1—x) does not change the value
of the integral [44]. Thus,

2 1 + xp +m —
A, +p3 (1—x)X+= —

3
—

+ dx d k3.
Sm 2 p o —k&+x(1—x)p —m x —

A, (1—x)
Using

xp + (m —
A, ) = —[(1—2x)p —m +A, ]+(1—x)p

(85)

we obtain

[p x(1—x) —xm —(1—x)A, —k3]+(I—x)p
dX

2
1

+
+ f d kjdx ln[p x(1—x)—xm —(1—x)A2 —k~2]

8~ 2 p 0 dX

e 1 (1 —x)p
Sm. 2 0 —k3 + x (1—x)p —m x+A2(1 —x)

(86)

y+ e2 y+ I +k~d'k, ln
p+ 16~' p+ A +k,

The total answer becomes
2 +

5m+I„o= f d kjdx ln[p x(1—x) —xm —(1—x)k —k3 ]p+ 0 dX

e
, f d'k, dx +

8m'

—(1+x)m
—k j +x (1—x)p —m x —A, (1—x)

(1—x)(gf —m)
—k3+x (1 x)p mx —A,—(1—x)—

where 6m denotes the mass correction. Performing mass renormalization yields

Obviou»y, the last integral corresponds to the integral in Eq. (83) and is therefore part of the covariant answer.
However, the first integrand in Eq. (86) is noncovariant and leads to

(87)

(88)

e2 y+
16m p

1
+

1

u + u f d kzdx ln[p x(1—x)—xm —(1—x)A, —kj ]2m p 0 dX

e & 2 1 —X —m

Sm 0 —k3 +x (1—x)p —m x —A. (1—x)

1 (1—x )xm(p —m )

8~ 0 —kj+x(1 —x)p —m x —A, (1—x) —k3+x(1 —x)m —m x —
A, (1—x)

Thus, we obtain the form of the self-energy in Eq. (Cl).

(89)
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APPENDIX C

In this appendix we demonstrate the use of dimensional regularization in light-cone quantization (see also Ref. [6]).
For illustration we discuss the computation of the ladder diagram in Fig. 13. LCPT yields

4

Fl= dxd k dyd " 'k
(16~')' xy(1 —x) (1—x —y)

X
m +k

2 1
Pal

1 —x
k, +A,

N(q, k, , k2)

m +(k, +k~) ki +A,

1 —x —y

where m, k denote the fermion and photon mass, respectively. The Dirac numerator is abbreviated by N(q, k„kz) and
will be specified later. Note, that the q dependence in the denominator can be dropped, in this particular example, since
it gives no contribution to the anomaly. Notice further that only the inner loop is ultraviolet divergent and requires
regularization. The introduction of dimensional regularization according to

fdxd k —&fdxd (C 1)

seems dangerous, particularly if the integrals are not absolutely convergent. However, (Cl) is a direct consequence of
the definition of dimensional regularization [45]. We have not yet encountered an example where (Cl) leads to addi-
tional di%culties (in comparison to one Pauli-Villars photon and fermion, for example) in the light-cone formulation.

Shifting momenta and setting I = 1 yields

(167r ) o o (1—x) x[1—(1+k, )/(1 —x) —k, ]

x fd"'-'r
2

N(q, k„k2 —yk, /(1 —x))

k — k, + —1+ +k, +
1+k

(1—x)2 1 —x 1 —x —y y

(C2)

where k2=kz+yki/(1 —x) and ki =(ki+k )/x, k2 =(kz+A, )/y. If we expand the numerator according to

N(q, ki, k2 —
yki /(1 —x) ) = Ak2+Bki+ C, (C3)

the last integration can be performed analytically by means of

1 1 I (A —1 —co)—5
(4~) 1(A) 2 " (M )"

With the definition

f(k„x,y)=
(1 —x) x

one obtains

1+k —k 1

'2

(1 —x) '
1 —x

1+k-1+ ' +k-+'
1 x

4

FL = f d k, f dy f (k„x,y) (A+@A')~(l e) ———CE„i +rr(Bk, +c)(16' ) o o E
(C4)

where we have written A(e)= A +@A'. A, A', B can be
computed using an algebraic manipulation program such
as REDUcE. Equation (C4) can be integrated numerically.
CE„& is the Euler constant and given by CE„&=0.577. . . .

The counterterm to Fig. 13 (see diagram 4 in Fig. 1) is
computed in a similar way. It should be stressed that the
pole in the one-loop vertex correction of diagram 4 in
Fig. 1 not only cancels the pole in Eq. (C4) but also gives

——,p+=1q + +—p =1q +
2'

FIG. 13. Ladder diagram contribution to the electron anom-
aly in fourth order.
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rise to a finite contribution [46].
We have redone the entire fourth-order calculation us-

ing dimensional regularization. Unlike the computation
of the ladder graph, in general one has to combine energy
denominators before the analytic part of the integration
can be carried out. In contrast with a covariant theory,
only one additional a parameter is necessary in light-cone
quantization. This is due to the fact that the photon

propagator 1/(k +t'e) simply becomes 1/k+ in this
case.

On the other hand, the coefficients 2, A ', B are harder
to extract in light-cone quantization since the fermion en-
ergies generally depend implicitly on the loop momenta.

An understanding of dimensional regularization is
essential, if one wants to extend LCPT to non-Abelian
gauge theories.
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