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Canonical covariant quantization of the Brink-Schwarz superparticle
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A method for the covariant canonical quanitzation of a wide class of gauge theories with reducible
first- and second-class constraints which includes the Brink-Schwarz superparticle is obtained. The ap-
plication to the Brink-Schwarz superparticle is discussed in detail. The canonical Batalin-Fradkin-
Vilkovisky construction of the correct Becchi-Rouet-Stora-Tyutin (BRST) operator and the BRST-
invariant effective action is presented and shown to agree with the expressions obtained by Kallosh and
BergshoefF using other methods. The correct gauge-fixing procedure to recover the Brink-Schwarz su-

perparticle action is discussed.

PACS number(s): 11.10.Ef, 11.15.Tk

Superstring theories are the best candidates to give a
unified description for all fundamental interactions. The
formulation of superstrings in the manner of Green and
Schwarz [1], manifestly supersymmetric in the target
manifold, presents several advantages over the perturba-
tive Neveu-Schwarz-Ramond (NSR) formulation [2]. In
particular a nonperturbative second-quantized light-cone
gauge formulation was obtained in [1]. Furthermore, clo-
sure of the super-Poincare algebra [3] and multiloop
analysis of the S matrix was also performed in [4]. Nev-
ertheless a second-quantized covariant Green-Schwarz
(GS) formulation is still lacking. The first step in the con-
struction is to perform covariantly the first quantization
of the GS superstring, a problem which has not been
solved. The main difhculty has been the covariant gauge
fixing of the local ic supersymmetry [5]. In fact, the first-
class constraints associated with the gauge symmetries
appear mixed with second-class ones, and so far no local,
Lorentz-covariant, and finite reducible [6,7] approach to
disentangle them has been found.

The zero-mode structure of the Green-Schwarz super-
string (GSS) is described by the Brink-Schwarz superpar-
ticle (BSS) [8]. Moreover the canonical structure of both
theories presents a very close correspondence. In partic-
ular first- and second-class constraints in the BSS also ap-
pear mixed and similar to the GSS problems with the
infinite reducibility of the covariant generators of gauge
symmetries are present.

For these reasons all the approaches to the covariant
quantization of superstrings have been first tested with
the BSS. The physical spectrum of the BSS is easily ob-
tained in the light-cone gauge x+= —p v., y 0=0. It
corresponds to an N = 1 Yang-Mills supermultiplet.

In order to circumvent the problem presented by the
mixing, in a covariant treatment, of first- and second-
class constraints, other actions for the description of the
superparticle, following original ideas of Siegel, have been
proposed. The so-called Siegel superparticle (SS) [9] does
not have the same number of degrees of freedom as the
BSS. It corresponds to ignore the second-class con-
straints of the BSS formulation, leaving only the first-
class constraints which may be covariantly projected

from the original BSS set of constraints. The fact that
the SS has a number of degrees of freedom different from
the BSS is a consequence of nontrivial restrictions im-
posed by the second-class constraints. The modified
Siegel superparticles (MSSI [10]and MSSII [11])have the
same physical spectrum as the BSS, allowing a formula-
tion in terms of first-class constraints only. The formula-
tions however are given in terms of irregular constraints,
distinct from the original BSS formulation. The presence
of irregular constraints [12] does not allow a straightfor-
ward application of the Batalin-Fradkin-Vilkovisky
(BFV) [6] method or of the Batalin-Vilkovisky [7] ap-
proach. As a consequence the off-shell nilpotent Becchi-
Rouet-Stora-Tyutin (BRST) charge for these models has
not been constructed.

A direct application of the Batalin-Vilkovisky formal-
ism to the BSS was also pursued in Refs. [13] and [14].
Although an adequate gauge-fixing procedure has been
presented such that the final action is BRST invariant the
cohomology of the associated BRST operator is not ade-
quate for the BSS. The reason for this may be traced to
the fact that the resultant system presents a twisted X=2
supersymmetry while the BSS has only %= 1 supersym-
metry.

A covariant BRST operator in terms of the same
infinite set of fields introduced in Refs. [13] and [14] but
with the correct cohomology for the BSS was finally ob-
tained in Ref. [15] using a very ingeneous construction
which, unfortunately, has no obvious generalization for
the GSS. Later on in Ref. [16] Kallosh presented a new
action from which the correct BRST operator for the
BSS may be deduced using the standard BFV procedure.
Nevertheless neither a demonstration of the canonical
equivalence of this new action and the original Brink-
Schwarz one, nor a direct construction of the correct
BRST operator starting with the latter, has been present-
ed until now.

In this paper we present a canonical approach which
leads to the covariant quantization of the BSS and
resolves the above-mentioned problems. The formulation
generalizes further a canonical approach for dynamical
systems restricted by reducible first- and second-class
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constraints presented in Ref. [17]. In this approach,
which is closely related to the work in [18], the phase
space is extended to a larger manifold where all the
relevant extended constraints are first class. By an ap-
propriate gauge fixing one may reduce the functional in-
tegral to a functional integral on the original constrained
manifold, with the correct functional measure. It is an
off-shell approach allowing the systematic construction of
the off-shell nilpotent BRST charge and of the BRST-
invariant effective action. Additionally in the enlarged
phase space where all constraints are first class the opera-
torial quantization construction of Batalin and Fradkin
[6] may be directly implemented. The generalization of
this approach presented in this paper may be applied to
the BSS and in principle also to the GSS. For the BSS as
we show below it introduces naturally the correct infinite
set of fields and leads directly to the BRST charge previ-
ously found in Ref. [15]. It also gives a systematic
method for the construction of the superparticle action,
proposed in Ref. [16]. A detailed and more general dis-
cussion of the approach we use in this paper will be
presented in [19].

Another approach which also uses ideas close to the
ones in Ref. [18] to handle the second-class constraints in
the BSS may be found in Ref. [20]. There, representa-
tions of the BSS system are constructed using twistorial
variables and harmonic superfields. This approach is an
interesting alternative for the quantization of the BSS.
Unfortunately this treatment has not been yet applied to
the GSS in a completely satisfactory way. For other
treatments of the BSS using twistorial variables see Ref.
[21].

The first-order action for the 10-dimensional BS super-
particle is

straints by application of 5':

y —=go=0,
tV»m] =0= IV»O] .

(6)

The price one has to pay is that (6) is a set of infinite re-
ducible constraints since

gy=O . (8)

Over the manifold defined in (2) and (6) constraints (3)
become reducible since

(9)

P'y++y+jP =P 1,
for any spinors g one has the (T+L) decomposition

k=0 +r+4
with

(10a)

(10b)

holds identically. The manifold defined by (2) and (3)
may thus be equivalently described by the first-class
infinite reducible constraint (2), (6), and the reducible
second-class constraints (3). In order to write the
effective action of the system one has to include the ghost
fields adequate for the first-class reducible constraints y
[6] and devise a method to handle the second-class reduc-
ible constraints (3).

This decomposition of the constraints into first class
and reducible second class ones, over the manifold of
first-class constraints, is best understood by introducing a
transverse + longitudinal (T+L ) decomposition of the
geometrical objects. Although p is not an invertible ma-
trix it serves to define such decomposition of spinors. Be-
cause of the identity

s= &I„a,y&+ gapa, g+eI '&, Pgz=0 . - (10c)

where e is a Lagrange multiplier associated with the con-
straint

P2 —0 (2)

The canonical Hamiltonian action of the system is

s =
& p„a,~"+&ay+ eI +y(q pg) &, —(4)

where P are Lagrange multipliers associated with the
constraints (3).

Constraints (3) are a combination of first- and second-
class ones. This is best observed computing the Poisson
algebra of the constraints which yields

(5)

Over the manifold defined by (2), P is noninvertible and
in fact conservation of (3) fixes only half of the multipliers
g. The constraints associated with the other half are first
class.

One can covariantly project from (3) the first-class con-

Let i) be the momenta canonically conjugate to g.
Since the action (1) is first order in a,g its dynamics is re-
stricted by

(3)

gl is not uniquely defined but @+GAL and gz- are uniquely
determined.

Equation (9) imposes that the longitudinal part of P,
more precisely y PL, be identically zero over the mani-
fold of first class constraints. The true content of the re-
ducible constraints (3) is then only

, =0, (12)

a, 'P, =0, ai =1, . . . , n, a&=1, . . . , m . (12a)
2 1

We will not suppose a, ' to be of maximal rank. In-
2

stead we will impose that a ( T+L) decomposition similar
to (10) is allowed.

We have then, for any object V, ,
1

Let us translate the above situation to a general nota-
tion. We have a constrained system with Hamiltonian
Ho subject to a set of reducible constraints

1

(a i
= 1, . . . , n) and a set of first-class constraints

(i =1, . . . , k) which we omit in the explicit construction
that follows. We limit ourselves to remark on the
modifications to be done when included. So we have
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V =V +3 'V
1 al a1 a2

a 'V =0 V =a 'V
2 1 2 2 1

and, for any object 8' ',

(13a)
tension is not necessary. We assume V, ' to be invertible.

In this case we impose the constraints (17) to be irreduc-
ible, first class and with structure functions at most linear
in@, . Wethenhave

1

Ip, , pb J
= U, b p, = —2(u, b +v,

, b, @d, )(t',
,

(18)

'8 '=0 W '=A '8
al T 7 L al al

It follows that

(13b) The structure functions U, 'b may depend on the
1 1

phase-space variables p and q. Substitution of (17) in (18)
yields

and

VL a 1 g 2VLa b

a2 a2 al b2
pJ 2 g 2 1~ 2

L al ab2 L (13c)
t(t, , pb J

—V, '
Vb '(v, ~d~+2u, Ib~ p, =0,

I(t'a(& Vb) ] + I VaI &lb) }+ v)ab) 0d) ua) b) VdI

8 'V =8''V +8''V
al T al L a2 (13d) (19)

In the irreducible case (a, ' of a maximum rank) 3, ' is
2 1

the inverse of a, '. In the finite reducible case this decom-
2

position may always be done in a unique way for a given
pair A, a. For an infinite reducible system, we will as-
sume that there exists such a decomposition. The con-
straints (12) are second class in the sense that they have
an invertible Poisson brackets matrix in the transverse
subsp ace.

Following Refs. [17] and [18] let us enlarge the phase
space using a set of auxiliary variables g and gb conju-

1

gate to each other. We also introduce the combinations

bl—
—,'(O, b (P, q)g ',

(14)
4, =g, + ,'(v, b (p, q)g—' .

Here co,b is an antisymmetric matrix with vanishing
Poisson brackets with itself to be fixed by the procedure.
N and N satisfy

We suppose here that

I ((), , @, ]
=0, I V„',N, j =0 . (20)

Let us suppose that we are able to find a solution to
(20) with all the required conditions. As first discussed
for irreducible systems in Ref. [17], in order to demon-
strate the equivalence of our system in the enlarged phase
space to the original system we have to impose an addi-
tional restriction besides (17). A counting of the degrees
of freedom suggests which ones should be chosen in this
generalized situation. The original model has 2N phase
space variables p, q restricted by (n —mr ) transverse con-

straints with mL the rank of a, '. The enlarged model
1

has 2N variables p, q and 2n variables g, g restricted by n

constraints P, and n gauge-fixing conditions g, . To
1 1

match we need (n —ml ) additional constraints. We take
them to be

Since

=0.a
1

(21)

[(Ii, , @, ]=(o, , (22)

1a, N, b =0, a]=1, . . . , n, a2=1, . . . , m,
2 1 1

and invertible in transverse space. More general cases
will be discussed in Ref. [19].

We continue the application of our method [18] and
extend the constraints in the enlarged space to

Q, =P, +V, '@, =0, (17)

where V, '(q, p) is also to be fixed. In general the first-
1

class constraints y may also have to be extended in order
that the complete set of extended constraints be first
class. In the case of the superparticle, however, the ex-

In order to introduce only the complications necessary
to deal with the case of the BS superparticle we will sup-
pose in the following that co, b is transverse,

1 1

the constraints (21) are in our hypothesis second class.
The advantage of this formulation is that the field depen-
dence in (o, , (whose determinant will appear in func-

1 2

tional measure) may be simpler than in tp, , pb ] since
1 1

V, ' may be also a field-dependent object. This justifies
1

the enlarging of the phase space and the modification of
the constraints. Moreover, iterating the process one can
hope to obtain a field-independent functional measure
and pure gauge model. For the BS superparticle, as we
will show below, infinitely many iterations are needed to
this end, but in other cases only finite steps may be neces-
sary.

A gauge-invariant extension of the Hamiltonian Ho
may be written in the form [17]

H =Ho+h (23)

h ' is fixed imposing
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(24)

IQ, Q] =0,
an

BC '

It takes the form

(25a)

(25b)

Introducing the ghost variables C ' and p, the BRST
1

operator is obtained by solving [6]

g '=[/ ', e 'P ]=V 'e ', (30)

We claim that the gauge invariant system defined by
(27) and constrained by (21) is canonically equivalent to
the original system. To prove this, we will show that
with an adequate gauge-fixing condition one can reduce
the path integral corresponding to the enlarged system to
the Senjanovic-Fradkin expression for the original sys-
tern.

The classical gauge transformation law for g is

Q=C 'P, +C 'U, ' C 'p, +. . . (25c)
where e ' are the infinitesimal parameters of the transfor-
mation.

We may then choose the gauge conditions
with a nontrivial tail, when the algebra of first-class con-
straints has structure functions of a higher order. In the
general case when first-class constraints y are also
present, one has to include, of course, associated ghost
fields and condition (25b) must also be satisfied for the ex-
tended first-class constraints y.

The extended Hamiltonian is then obtained by solving
[6]

(26)

Using (25), (28), and (29) we have

a1

5(C, y ')=B, y ' —C, b
C '+O(p)

1

(31)

(32)

The BRST invariant effective action in a phase-space
representation is given by [6,22]

S,a=(pq+p, C '+g, g
' —8'+S(A, 'p, )+S(C, g ')),

where O(p) may appear if the structure functions depend
explicitly on the phase-space coordinates.

We also have

5(k 'p, }=X 'P, +8 'p,

5F= [Q,F] (28)

for any function F of the canonical variables of the en-
larged super-phase-space. For the noncanonical sector
we have

(27)

a1 ~ ~ ~
~

where y are the gauge-fixing conditions and 5 is defined
by The functional integral is

I(y)= f2)z 5(4& )(detco )'~ e

where 2)z is the Liouville measure

2)z =2)p 2)q 2)C 2)C 2)p 2/B 2)8X)r) 2)g .

(33)

(34)

(35)

5C, =B, 5B, =0,
(29a)

(29b)

(29c)
I

Integrating in 8 one gets 5(p) so that in particular
O(p) in (32) does not contribute. Integrating in B, , C, ,

1 1

and A,L' and using Eq. (19) the factor in the measure of
(34) becomes

(detco )' 5(4 )5(g)5(V 'Crb')5r(a 'Vbb'3, 'Cl')5(a, 'V, '4q )

=(detco )' 5(g )5(g)5( Vzq 'Cr')5(ab '
Vb

' A, 'CL')5(a, '
V,

'
Ab 'rI, ) . (36)

In (36) the arguments of the last two factors have op-
posite statistics. Hence

(detco )' 5(g)5(g)5(C)det Vz. .

Now we note from (19}that

(deter )' detVz =(det[Pz, Pz ] )'~ (39)

(37)

This can be taken as valid even in the case of a, ' and
2

A b
' being noninvertible. The factor in the measure

2

reduces to

I= f2)q2)ply, (det[Pz, Pr ])'~2

X exp( —(pq H+ A, r P ))— (40)

Doing the trivial integrations in g, g, and C, we finally
obtain
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which is the correct Senjanovic-Fradkin expression of the
functional integral of this system.

The discussion above only supposes the uniqueness of
decomposition (13). For the superparticle we identify a, '

2

with P and A, ' with y /P . The T+L decomposition
1

is given by (11). Solving (19) by taking V as a Dirac 8 we
have

1 I —1 1

i=0 i =0 i=0

subject to the second-class constraints

Nl =0.

(SOa)

(50b)

(41)

In terms of the auxiliary Majorana spinors i)i and gi
we have

~'i =ni+~ki

C'i=ni ~@—.

The enlarged constraints (17) are, in this case,

0'o= n I'4+ c—'i

(42a)

(43)

The additional restrictions corresponding to (21) are

N =0.i
(44)

(45a)

+i=0 . (45b)

We iterate now the process and introduce gz, i)2, and

co2. We obtain again

cop 2J

@2=n2+~4

+a=12 ~4
and we have the new constraints

(46)

(t'i=@i+C'2 (47a)

%2=0 . (47b)

For the same reason as above we take instead of (47b)
the reducible constraint

~+2lfirst

clas ~92 (48a)

%2=0,

and continue the process. After l steps we have

(48b)

(49)

with @0=—p.
At this level the classical action may be written in

terms of the canonical variables in the form

Since we choose V ' to be field independent the factor
a&

det[4 N ]'~ in the measure of functional integral ap-
pears in principle in this case as problematic as the factor
det [P,P ]

'~ in the direct approach. Nevertheless we

observe that constraint (44) is equivalent to the reducible
constraint

In (50a) P' is the Lagrange multiplier associated with
the ith analogue to (45a) and (48a). The constraints P& in
(49) are irreducible, the other constraints being infinite re-
ducible. At each level l the formulation (50) is not
Lorentz covariant due to the transverse projection in
(50b).

In order to avoid this problem we may introduce
infinite auxiliary fields. We then obtain

S = I„~~+ q, '+u'+ 'P~, +
i=0 i=0 i =0

This is the action proposed by Kallosh in Ref. [16],
which is associated with the BRST charge with the
correct cohomology for the BSS. The effective action as-
sociated with (51) may be truncated at any level I by
imposing the gauge-fixing conditions (31) for
I, =I+1, . . . , ~, and the effective action associated with
(50) is regained. In the limit case j'i);=0 and P;=0,
i =0, . . . , ~ are regular infinite reducible first-class con-
straints.

The final action (51) contains an infinite number of
auxiliary fields. An adequate treatment of them requires
the introduction of appropriate generating functions.
This is reminiscent of the analogous situation in the con-
struction of an unconstrained ofF-shell covariant formula-
tion of some super Yang-Mills and supergravity theories.
There, in order to circumvent the no-go theorems [23], it
was necessary to introduce in the off-shell construction
an infinite set of auxiliary fields. An adequate handling of
them was obtained by replacing ordinary superspace by
harmonic superspace [24]. A superfield in harmonic su-
perspace is equivalent to an infinite set of ordinary
superfields. In particular the quantization of X=3, D =4
Yang-Mills theory was explicitly performed in [24].

The reformulation of the full effective action associated
to (51) in terms of generating functions has not been per-
formed. Progress in this direction has still to be made.
However, as we already mentioned the infinite fields of
(51) coincides with the minimal sector of fields introduced
in Ref. [13]. This sector has been analyzed using repre-
sentations of the orthosymplectic supergroup Osp(10/4)
[25]. Moreover in Ref. [25] it has been shown how to
perform Osp(2n /2n)-covariant computations in this
infinite sector using supergroup techniques. This allows
the systematic BFV [6] construction of the off-shell nilpo-
tent BRST charge for this system which, by construction,
has the correct cohomology for the BSS [16].

To conclude let us say that the construction presented
in this work suggests a concrete and systematic way to
handle the problem of covariant quantization of the GSS.

We are very grateful to J. Stephany Zils for a careful
reading of the manuscript.
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