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Summing over inequivalent maps in the string theory interpretation of two-dimensional QCD
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Following some recent work by Gross, we consider the partition function for QCD on a two-
dimensional torus and study its stringiness. We present strong evidence that the free energy corresponds
to a sum over branched surfaces with small handles mapped into the target space. The sum is modded
out by all diffeomorphisms on the world sheet. This leaves a sum over disconnected classes of maps. We
prove that the free energy gives a consistent result for all smooth maps of the torus into the torus which
cover the target space p times, where p is prime, and conjecture that this is true for all coverings. Each
class can also contain integrations over the positions of branch points and small handles which act as
"moduli" on the surface. We show that the free energy is consistent for any number of handles and that
the first few leading terms are consistent with contributions from maps with branch points.

PACS number(s): 11.17.+y, 11.15.Pg, 12.38.Gc

I. INTRODUCTION

String theory has progressed tremendously since its be-
ginning in the dual model days of the 1960's. However,
the direction of this progression took an unexpected turn
about twenty years ago. Instead of string theory being
used as a tool to describe strong interactions, it has since
served as a means to unify all forces in Nature.

Since the turn away from strong interactions, there
have been many technical achievements in string theory.
Among the most notable achievements are those of Po-
lyakov [1] and others [2—7], who realized that string am-
plitudes are given by integrations over all geometries of
two-dimensional punctured surfaces. In other words,
string theory is basically two-dimensional quantum gravi-
ty coupled to matter fields. The path integral is given by
the sum over all metrics modded out by diffeomorphisms.
If the strings are critical, then the path integral can be
modded out by conformal transformations as well. This
then leaves an integral over the moduli of the surface, a
finite-dimensional space.

But for many reasons, this theory is not QCD. Howev-
er, QCD stills looks very stringy, at least in the confining
phase. Hence a natural question to ask is to what extent
do the ideas of Polyakov string theory apply to the strong
interactions.

Gross has recently proposed a nice way to start prob-
ing this question [8]. His idea is to study matter-free
QCD in two dimensions and to determine the stringiness
of this particular theory. The great advantage of two di-
mensions is that the theory is solvable. Hence one can
analyze the solutions and decide if they look stringy or
not. If this is a string theory then one should be able to
interpret the QCD free energy as a sum over maps of
two-dimensional surfaces into a two-dimensional target
space. Of course two-dimensional QCD is almost a trivi-
al theory and it is not quite clear if everything one learns
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II. GROSS' PICTURE OF TWO-DIMENSIONAL (}CD

The particular model that Gross has in mind is a lat-
tice formulation of QCD with a heat kernel action. This
model was recently solved by Migdal and Rusakov
[13,14] and its partition function for SU(N) is given by

Z = g (d„) exp( —Ag C2~/N),
reps

(2.1)

where the sum is over all representations of SU(N), A is
the area of the surface, G is the genus of the surface,
gl&N is the QCD coupling, did is the dimension of the
representation and C2+ is the value of the quadratic

from it can be applied to the four-dimensional case. But
there might be some general principles that can be ex-
tracted from the two-dimensional case that are applicable
in four dimensions. In particular, this might lead to a
consistent formulation of the measure for the string path
integral.

This approach differs from earlier attempts to interpret
two-dimensional QCD as a string theory [9—12] in that it
leaves out the quark fields. The resulting theory is com-
pletely trivial if the Euclidean space is Aat and noncom-
pact. However, if the space is compact and topologically
nontrivial, then the partition function will have an in-
teresting structure. It is partition functions of this type
that Gross proposes to explore.

In Sec. II we review Gross' work on two-dimensional
QCD as a string theory. In Sec. III we carry this work
out further. We argue that for a toroidal target space,
the QCD solutions describe the equivalence classes under
diffeomorphisms of smooth maps into the target space.
However, unlike Polyakov string theory, there is no in-
tegration over world-sheet metrics. We also present evi-
dence that the QCD solutions allow for branched sur-
faces by showing that this is consistent with lower-order
terms in the perturbative expansion. We also argue that
the solutions imply the existence of pinched handles and
tubes on the surfaces. In Sec. IV we close with a few re-
marks.
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Casimir invariant of the representation.
The representations can be summarized by Young ta-

bleaux. The tableaux are described by m rows, with n,
boxes in row i, which satisfy n, n if i &j. The quadra-
tic Casimir invariant for a particular representation is
given by

n n
C =—n+ —— (2.2)

where

n = g n;, n= g n;(n; 2i—+1) . (2.3)

(2.4)

The partition function only depends on the quantities, N,
G and the combination Ag . Naturally, I/N acts as the
string coupling and g as the string tension.

The important quantity is the free energy, —lnZ. In
Polyakov string theory, this is given as a sum over all
connected Riemann surfaces, summing over all moduli of
the surface and all matter fields that live on the world
sheet. Each term in the sum is weighted by (g, ) r
where g, is the string coupling and y is the genus of the
world sheet. Thus if two-dimensional QCD is to be a
string theory, then, at least perturbatively, we should ex-
pect the free energy to be comprised of even powers of
g, =1/N. Under this interpretation, the free energy is
given by maps of the world sheet of genus y into the tar-
get space of genus G.

Gross has given a beautiful demonstration of why this
picture of two-dimensional QCD is correct [8]. Suppos-
ing that the map of the world sheet into the target space
is continuous, that is, the surface has no tears; then at the
very least, the genus of the world sheet y must be greater
than or equal to G. Now consider dz, which for a repre-
sentation that has n boxes in the tableaux, behaves as
dz -N" when N ))n. Hence, if G ) 1 then the partition
function is dominated by the representations with a small
number of boxes. If we approximate C2+ as Nn/2, then
the free energy can be approximated by

2(G —1)n
n

F= —g c, exp( nAg /—2),
N

times, then the genus of the world sheet must satisfy

y —1 ~n(G —1) . (2.5)

III. DIFFEOMORPHISMS, BRANCHES, HANDLES,
AND MODULI

In this section we concentrate on the coefficients that
appear in (2.4) and on the higher-order corrections to the
quadratic Casimir invariants. We will see that the
coefficients count all maps of surfaces that are not con-
nected by diffeomorphisms. We will also see that the
n/X and the n /K terms in Czz can be interpreted as
contributions from branched surfaces with handles. For
what follows, we will restrict our attention to G = 1.

If we continue to approximate C2~ as Nn l2, then the
free energy density is given by

This is clearly satisfied by (2.4).
Gross has also observed that the 1/N corrections in

C2~ 1ead to terms in the free energy with factors of A /N.
He has conjectured that such terms arise from branch
points or small handles on the surface. Surfaces with
such points will have a larger genus, hence the factors of
1/N. Integrating over the positions of these points gives
the factors of A.

The string theory is described by more than just the ac-
tion. One also needs to determine the measure. The
Nambu-Goto action is invariant under diffeomorphisms,
that is, reparametrizations of the world-sheet coordi-
nates; thus one should expect the string functional to be
modded out by all diffeomorphisms. This will greatly
reduce the integration over maps of the world sheet into
the target space. This string theory should not contain
integrations over a world-sheet metric either. It does not
appear in the Nambu-Goto action, and there is otherwise
no reason to introduce it. Hence, we should only consid-
er a fixed world-sheet metric which will be used to define
the functional measure. Choosing the world-sheet metric
to be the target space metric leads to the area factors in
the free energy. In the next section we will further see
that this leads to consistent results.

where c; are constants. Gross has interpreted this as fol-
lows: each term in the sum represents a map from a
world sheet of genus y which is an n-fold covering of the
target space. The string action is basically the Nambu-
Goto action, the area swept out by the world sheet multi-
plied by the string tension, which in this case is nAg .
However, there is the caveat that the world sheet is not
allowed to fold back on itself, otherwise there would be
terms in the sum corresponding to world sheets whose
area is not an integer multiple of A. Hence the string ac-
tion should contain terms that suppress the folds. The
first term in the sum has a factor N, which corre-
sponds to a world sheet with genus y =G. Hence, we find
that there is no contribution to the world-sheet sum until
the genus is large enough so that there can be a smooth
map into the target space. Moreover, Gross has pointed
out that if the world sheet covers the target space n

ln g exp( —Ag nz/2) .
reps

Gross has shown this to be equal to

V= ——lng[exp( —Ag /2)],1

a

where q(q) is the Dedekind function,

Hence
oo

g ln(1 —q")

= —g2 g exp( —Ag n l2),
1 nAg

(3.1)

(3.2)

(3.3)

(3.4)
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where S„is the sum over positive integers that are divi-
sors of n,

S„=gq.
q/n

(3.5)

Hence, for n =2, S„=3, since 1 and 2 are the divisors of
2.

(b) (c)

(co, +coz, coz) or (coz, —co, ) . (3.6)

The mapping of the world sheet to the target space maps
the winding vectors (cubi, coz) to the winding vectors
(Xi,Xz). If the map is an n-fold covering of the surface,
then (cubi, coz) will map to multiple numbers of Xi,Xz or
both. For example, a double covered map might be de-
scribed by (2X„Xz). Any map that can be manipulated
to this form using the operations in (3.6) is equivalent. It
is then easy to see that there are three independent ways
to double cover the torus, (2Xi,Xz ), (Xi,2Xz ), and
(X, +Xz,X, —Xz). Figure 1 shows these three indepen-
dent coverings. Checking (3.5), we find that Sz=3. This

In the usual Polyakov string theory, one calculates the
free energy density by summing over all possible metrics,
modded out by all diffeomorphisms. However, the free
energy density is basically a zero-point amplitude. Since
the torus has a di8'eomorphism that is a conformal Kil-
ling vector corresponding to constant translations on the
surface, then modding out by the difFeomorphisms re-
quires us to divide by the area of the surface Imr [15,16j.

Let us assume that for the QCD case, the partition
function is just a sum over all smooth maps into the torus
modded out by di6'eomorphisms. For G = 1, it is possible
to have an n-fold covering with y=1, so we will assume
that every term in (3.4) is from the world sheet with the
topology of a torus. We need to decide what measure to
use when summing over the maps. This will be especially
important when we consider handles and branches. But
it is also important for modding out the constant transla-
tions. The natural choice is to use the measure that exists
on the target space and pull it back to the world sheet.
As in Polyakov string theory, the scale is determined by
the string tension g, and thus defines the unit of area.
Therefore, every contribution to the torus partition
should be divided by n Ag because of the world-sheet
translation in variance. This then accounts for the
denominators in (3.4).

It would seem that modding out all maps by
diffeomorphisms would leave only one map, since the tar-
get space fields have two degrees of freedom, the same
number as the space of diffeomorphisms. This is true for
n = 1, but false for the higher values. It turns out that for
these values of n, there are maps that cannot be continu-
ously changed from one to the other, but are not discrete
diffeomorphisms of each other either. Let us assume that
the target space is parametrized by two vectors (X„Xz),
which define the two independent windings on the target
space surface. Likewise, let the world sheet be
parametrized by two vectors (co„coz),which define the
nontrivial windings on its surface. We call this the wind-
ing map. Because of reparametrization invariance on the
world sheet, the winding vectors can be redefined as

FIG. 1. Three distinct toroidal world sheets that double cov-
er the target space. The dots represent the lattice of the toridal
target space.

suggests that S„counts the number of independent maps
of the torus into the torus.

We now give a simple proof that S does count the
maps for p prime. Given that the area of the target space
is A, then the area of the world sheet whose winding map
is given by (aX, +bXz, cX, +dXz ) is (ad bc) A. —ad bc-
is invariant under the transformations in (3.6). Suppose
that ad —bc =p, where p is prime. Let us further suppose
that none of the integers a, b, c, or d are zero. Then there
are two possible scenarios. Either none of these integers
are divisible by p, or two of them are.

Let us consider the first case. Suppose that d & b )0,
which one can always impose using the operations in
(3.6). Since p is prime, d and b must be relatively prime.
(That is, the only common factor is 1.) Next perform the
diffeomorphism (co„coz)~(co„coz—co, ) n times, such that
d —nb is as small as possible but greater than 0. The new
winding map is

(aX, +bXz, (c —na)X, +(d —nb)Xz), (3.7)

where d —nb —=d'~b, with an equality only if b =1.
Since b and d are relatively prime, then, by construction,
b and d' are also relatively prime. If d'=1, then do the
operation

( co i, coz )~ ( co i ci)z, cl)z ) (3.8)

b times, leaving the winding map (pX„(c na)X, +—Xz).
If d'Wl then carry out the diffeomorphism in (3.8) m
times such that b'=b —md' is as small as possible but
greater than zero. This gives the new map

(a'X, +O'Xz, c'X, +d'Xz), (3.9)

where 0 & d' & d, 0 & b' & b, and d' is relatively prime with
b'. We then repeat the process until we are left with the
map

(pXi, qXi+Xz) . (3.10)

q cannot be a multiple of p, since this would mean that a
and c were multiples of p. Of course, q can be adjusted
such that 0&q &p, by acting with the diffeomorphism
co2~co2+co& enough times. But clearly two maps in the
form (3.10) cannot be connected by a diffeomorphism if
q & Wqz modp. Furthermore, the original map could have
been transformed into the map (Xi+q'Xz, pXz). Hence,
every map of this form is equivalent to one in the form
(3.10). Thus we find that there are p —1 distinct maps
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y —1 =n (G —I)+B/2, (3.1 1)

where 8 is the branching number. The branching num-
ber of a map is the sum of the branching numbers for
each point. At each point p, one can find a local coordi-
nate z which is mapped onto another local coordinate w
on the other Riemann surface. Under the map, w is given
by w =z'. The branching number for this point is
b(p)=n —l. A point with nonzero b(p) is called a
ramification point and its image on the target space is
called a branch point.

From (3.11) we immediately see that the branching
number is even. Therefore, if we only consider maps with
ramification points whose branching number is one, then
the number of ramification points is even. We propose
that the n/N terms in the quadratic Casimir invariants
are somehow related to these points. At a ramification
point of the world sheet the map will locally double cover
the target space. Hence if there are any such points at
all, the entire target space must be at least double
covered. Since the single covered target space does not
have these points, we should expect n=0 for n =1,
which is in fact the case.

The first nonzero values for n occur at n =2. In this
case, n =2, —2 for the two representations, and therefore,
the contribution to the partition function is

that can be found from the first class of maps.
Turning to the second case, if a and b are the two in-

tegers that are divisible by p, the diffeomorphism
co) ~co)+602 will lead to a map where none of the integers
are divisible by p. A similar argument holds for c and d
divisible by p. Hence this subclass will not lead to new
maps. However, if a and c are divisible by p, then they
will remain that way under any diffeomorphism. Fur-
thermore, b and d must be relatively prime. Hence, using
the previous argument we can find a diffeomorphism that
sets c to zero, giving the map (pX„Xz). Likewise, if b
and d are divisible by p, then they stay that way under
di6'eomorphisms and the map is equivalent to (X„pX2).
Therefore, combining all possible scenarios we find a total
of p +1 distinct maps. Examining (3.5), we see that this
is precisely S if p is prime.

As for nonprime n, we have checked the first few
values of S„and have found that they agree with the
number of distinct n-fold maps. Hence, we conjecture
that this is true for all n.

Let us now examine the higher-order corrections to
C2~ and consider their full implications. We can get a
hint to what they might mean by realizing that Gross'
condition (2.5) is actually a consequence of the Riemann-
Hurwitz relation [17]

2 /2 +44t
—+ (Ag ) + (Ag ) + exp( —Ag )

(3.13)

from terms that double cover the target space. The
Riemann-Hurwitz relation (3.11), suggests that the 1/N
term can be attributed to the contribution of a surface
with two ramification points. The points connect two
otherwise disconnected world sheets. Each additional
ramification point leads to another factor of 1/N. Each
point also has a factor of Ag associated with it because a
surface with the points at new positions corresponds to a
new world sheet which is not connected to the old one by
a diffeomorphism. Hence, it is necessary to integrate
over all positions of the ramificatio points. These posi-
tions are basically the "moduli" of the surface. Pulling
back the metric of the target space, we find that every
ramification point leads to a factor of Ag, the area of the
target space multiplied by the string tension, up to sym-
metry factors.

The symmetry factors are as follows. There is a factor
of —,

' for the two world sheets and a factor of 1/n! for a
surface with n ramification points, since they are indistin-
guishable. There is also a factor of 4 which comes from
the cuts that connect the branch points on the target
space. A cut joining the two points could wind either
way around the cycles of the torus. One cut cannot be
deformed into the other, hence we find a factor of 2 for
each cycle, or a factor of 4 altogether. If there are more
than two branch points, there is only an overall factor of
4, and not 4 for each pair of points, because all of these
possible cuts can be continuously deformed into one of
four types. Putting these factors together, the total sym-
metry factor for n points is 2/n f, which agrees with
(3.13).

If the world sheet covers the target space three or more

0 1 2 3 4 0 1 2

with n, ~X, there exists a transposed tableaux whose
value of n has the opposite sign. This is illustrated in Fig.
2, which shows a tableaux and its transpose. n is twice
the sum of the numbers that appear in the boxes. Ex-
panding the term inside the square brackets in (3.12), we
find

2+ (Ag ) + (AG ) + .1 22 2
~44&

and therefore the free energy density has the contribution

exp — (2 4/N ) [exp( —A—g /N)
2

+exp( Ag /N)] . (3.12)

0

-2 -1

Notice that (3.12) is an even function of 1/N, hence the
contribution to the perturbative string expansion has
only even powers of the string coupling. In fact, the
same is true for all n ~ N, since for every Young tableaux

FICx. 2. Young tableaux for a representation and its tran-
spose. 8 is given by twice the sum of numbers in the boxes.
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times then the counting becomes quite complicated. This
is because many of the possible world sheets will be
equivalent to each other but determining the equivalence
is rather arduous. We have managed to work out the fac-
tors for a triple covering of the target space with two
ramification points and have found agreement with the
result from the free energy. In this case, the ramification
points connect a surface that covers the target space once
with a surface that covers the target space twice. There
are three representations that have three boxes in the ta-
bleaux, and their respective values of n are 6,0,—6. Plug-
ging these values into the free energy and expanding in
1/N, we find that the contribution to the free energy den-
sity for a surface that triple covers the target space with
two ramification points is

1 1

A ~' 8(Ag ) exp( —3Ag /2) . (3.14)

.x '

(a) (b)

(c) (4)

FIG. 3. Triple covered surfaces with two ramification points.
The short dashed lines are the cuts connecting the two surfaces.
The parallelograms have periodic boundary conditions.

The possible maps are shown in Fig. 3. We have used the
translational invariance on the world sheet to fix one
ramification point to the origin. The first six figures lead
to a factor of 6Ag, coming from the integration of the
second ramification point over the surface. (The integra-
tion in these figures is over one cover of the target space. )
There are two maps for each surface shown in Fig. 1,
coming from the two possible ways to draw the branch
cuts. (There are two and not four since we have dis-
tinguished the points by fixing one to the origin. ) The last
two surfaces in Fig. 3 contain branch cuts that wrap
more than once around the cycles of the smaller sheet.
For these surfaces it is only necessary to consider the
double covered surface in Fig. 1(a). It turns out that
maps of this type that use the other two surfaces in Fig. 1

are equivalent to the first. To see this, one can break up
the world sheet into separate regions and show that the
different regions are connected to each other in the same
way for either of the mappings. This is illustrated in Fig.
4, where we compare maps containing the double covered

5

4
6

T%

4
6

58

X/

8; 6: 3

7

(a)
6

(b)

47
3

8
5

/X

(c)

FIG. 4. Identical triple covered surfaces with two
ramification points.

n n(n —1)+ (3.15)

It is then consistent to say that the first term in (3.15) is
related to small handles and the second term is related to
pinched tubes. For every small handle on the surface, the
genus is increased by one, thus one expects every handle
to come with a factor of 1/X . Furthermore, the posi-
tion of the handle needs to be integrated over, since each
position corresponds to a different surface. Therefore,
each handle has a factor of n Ag, the area of the world
sheet using the target space metric. If the handles are
infinitesimally small, then their positions are the only
moduli. If the handle has finite length, it would have two
points associated with it, corresponding to the points
where the handle is attached to the surface. In this case,
one would integrate over both points, but with a factor of
—,', since the ends of the handle are indistinguishable. By
shrinking the length of the handle, the two points
coalesce into one, but the factor of —,

' remains. Finally,
interchanging the positions of two handles gives back the
same world sheet. Hence, for n& handles there is a sym-
metry factor of 1/nz~. Therefore, if these small handles
exist, then every term in the free energy that comes from
a surface that covers the target space n times, should be
multiplied by exp( Ag n l2N ). This is precisely the con-
tribution from the first term in (3.15).

If one allows infinitesimally small handles, then con-

surfaces pictured in Fig. 1. By examining the eight re-
gions in Fig. 4(a) with those in Figs. 4(b) and 4(c), one
finds that the three surfaces are identical. (The reader is
encouraged to verify this by tracing closed loops around
the surfaces. ) Therefore, there is a factor of 2Ag from
the last two maps in Fig. 3, and hence the total sum of
factors agrees with (3.14).

Finally, consider the last term in Czz, —N (n /N ) l2.
This term appears to be associated with small handles on
the surface and with pinched tubes connecting different
parts of the world sheet. It is convenient to rewrite
n /2N as
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IV. DISCUSSION

FIG. 5. Two tori joined by a pinched off tube. The arrows
indicate which edges are identified on the world sheet. Note
that the surface folds back on itself at the pinch.

NC =—n+-2z 2 N
(3.16)

Hence the string theory corresponding to this version of
QCD would have ramification points but not small han-
dles.

sistency requires that there be infinitesimally small tubes
connecting different points of the world sheet. These
points on the world sheet must map to the same point on
the target space. Each tube should come with a factor of
1/N, since the genus will be increased by one. There-
fore, if we consider a not necessarily connected surface
with area n A, and then put in a tube, this will lead to a
factor of Ag n (n —1)/2N, where Ag is from the in-
tegration over the target space, and n (n —1)/2 comes
from choosing two of the n sections of the world sheet.
(By section, we mean a part of the surface that covers the
target space exactly once. ) Again, interchanging two
tubes leaves the surface invariant. Therefore, if these
pinched tubes exist, then surfaces of area n A also come
with a factor of exp[ Ag n (n —1)/2N ] in the partition
function. This agrees with the second part of (3.15).

Figure 5 shows such a tube connecting two parts of a
world sheet. By examining the figure, one notes that ac-
tually the surface has folded back onto itself. But the
fold takes place at a single point, not along an extensive
line. Hence, the constraints on the world sheet should
read that finite length folds are suppressed.

We close this section by noting that, for the gauge
group U(N), the quadratic Casimir invariant is given by

To summarize, we have given a string interpretation
for all terms found in the perturbative expansion of the
QCD partition function given in (2.1). The free energy is
given by a sum over maps from the world sheet modded
out by diffeomorphisms. Unlike the Polyakov string,
there is no integration over world-sheet metrics. The free
energy contains a sum over branched surfaces with small
handles, which are inequivalent under diffeomorphisms.
We have verified the consistency of this interpretation for
the lower-order terms in the expansion.

We close with a few remarks. We first note that there
is actually a natural way to suppress the folds. This is ac-
complished by introducing an extrinsic curvature term in
the action. For a two-dimensional surface mapped into
another two-dimensional surface, this is given by

f d $&GG'"B,nBbn . (4.1)

G,b is the induced metric and n is basically the normal
"vector" to the surface, which in this case is n =+1. At
a fold, the derivative normal to the fold on the surface is
a 6 function. Hence the integral in (4.1) is L5(0), where
I. is the length of all folds on the surface. Hence finite-
length folds will be suppressed by this term. This sug-
gests that an analogous term might appear in the four-
dimensional case as well, although, in this case, the bend-
ing of the surface will lead to finite results.

Our second remark concerns nonperturbative effects.
The partition function in (2.1) is an even function of 1/N
only up to terms with N boxes in the tableaux. The fact
that the entire sum will not be an even function is then a
nonperturbative result. This then complies with
Shenker's observation that nonperturbative string effects
are on the order of exp( —1/g, ) and not exp( —1/g, ). If
the latter case were true then the complete partition func-
tion would be an even function of 1/N. Another way to
understand what determines the order of the nonpertur-
bative effects is to realize that there are corrections to the
perturbative sum when the number of coverings of the
target space is N or greater. This is because tableaux
have been summed over that do not correspond to physi-
cal representations of SU(N). Hence, the free energy will
have correction terms of the form exp( —Ag N/2) multi-
plied by moduli factors.

TABLE I. Multiplicative factors from integrations over positions of the ramification points.
q=dg .

Covers

1

2
3
4
5
6
7
8
9

10

2 Ram. pts.

0
29
8q

30q
80q

180q
336q
6209
960q

15909

4 Ram. pts.

0
(1/12)9
(20/3 )q

102q
(2288/3 )q

37739
14232q

( 133616/3 )9"
119904q

(584517/2)9

6 Ram. pts.

0
(1/360)9
(91/45 )q
(383/3)q

(24140/9 )q
(180331/6)q

( 3349714/15 )q
(11174816/9)q

5558312q
(252779965/12)q
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Finally, while it is dificult to verify that the free energy
gives a single counting of branched maps into the torus, it
is not too hard to actually calculate the terms in the free
energy. Hence one can turn this around and simply pos-
tulate what the distinct maps are by reading off the terms
in the free energy. Using the symbolic manipulator pro-
gram MAFLE, we were able to calculate such terms for
surfaces that cover the target space up to 10 times and
with as many as six ramification points. These results are
shown in Table I. This is then another instance where
quantum field theory can be used to explore questions in
geometry.

Note added. After this paper was completed, we
learned that Gross and Taylor were able to prove that the
free energy counts the number of independent maps
(without branch points or small handles) for any number
of coverings. They also extended this to target spaces
with genus G ) 1 [18].
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