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We study the implications of duality symmetry on the analyticity properties of the partition func-
tion as it depends upon the compacti6cation length. In order to obtain nontrivial compactifications,
we give a physical prescription to get the Helmholtz free energy for any heterotic string, supersym-
metric or not. After proving that the free energy is always invariant under the duality transformation
R ~ a'/(2R) and getting the zero-temperature theory whose partition function corresponds to the
Helmholtz potential, we show that the self-dual point Ro = gn /2 is a generic singularity like the
Hagedorn one. The main difFerence between these two critical compacti6cation radii is that the term
producing the singularity at the self-dual point is finite for any R g Ro. We see that this behavior
at Ro actually implies a loss of degrees of freedom below that point.
PACS number(s): 11.17.+y

I. INTRODUCTION

Recently some thinking effort has been devoted to the
problem of R duality in string theory (cf , for .example,
[1,2]). One of the related topics that seems to have re-
ceived less attention is that of the implications of duality
on the analytic structure of the partition function Z(R)
as a function of the compactification radius R. As far
as we know this problem has only been fully treated for
the noncritical string coupled to conformal matter with
c = 1 in which Z(R) is C (R,+) as a function of R [2,
3]. In the case of critical heterotic strings this problem
seems to have been studied only in [4, 5]. In these works
a small class of heterotic strings has been treated: trivial
toroidal compactifications on R~"' " ' "~ x S . On the
other hand it is also well known that there exists a com-
pletely analogous duality invariance (the so-called P du-
ality in opposition to space-time duality) for the thermal
free energies corresponding to the family of supersym-
metric heterotic strings. This is the only case in which
duality is a mathematically well-defined property of the
Helmholtz free energy, although there is always a well-
defined duality relationship for the integrand of the free
energy represented as an integral over the fundamental
region of the modular group, even for the bosonic string.
Of course duality is actually an invariance of the spec-
trum of the theory.

Using the nontrivial relationship between the
Helmholtz free energy and the partition function of the
same theory on R~'" "~' "& x S we can get an enor-
mous class of non-supersymmetric strings, which exhibit
nontrivial duality as a property of their corresponding
partition functions. By nontrivial duality we mean that

under the transformation R —+ const/R the solitonic
contributions associated with each spin structure inter-
change between them. In other words, there is a corre-
lation between the solitonic contributions and the spin
structures. The study of heterotic strings at Gnite tem-
perature is then of interest to understand space-time du-
ality as a physical property.

On the other hand, the study of superstrings at finite
temperature has interest on its own. A lot of effort has
been devoted to this topic (cf., for example, [6—8]), with-
out, in our opinion, getting any conclusive answer for
the most important questions: Is there any possibility of
a phase transition at the Hagedorn temperature (or be-
fore or after)? And if there is, what would the number
of physical degrees of freedom be at high temperature?
The number of degrees of freedom of the Nambu-Goto
string is also of major interest in order to know whether
this string has something to do with the features of the
deconfinement phase of @CD (cf. [9]).

The existence of P duality for the free energy is a puz-
zling property of the heterotic string closely related to the
latter question. Namely, at the one-loop level P duality
on the Helmholtz free energy reads

sr 2 (z.z 'i
+h.t(P) = —+h.t I

—
~

.P' '
&Pp

The presence of the Hagedorn length PH together with
the P-duality property implies that there exists another
critical length PH = vr /PH such that although I'H(P)
diverges for PH ( P ( P~ it is finite for P ( PH. Using
F&«(P) when P ( Prr as the therrnodynarnical Helmholtz
potential some shocking thermodynamical features ap-
pear for this would-be high-temperature phase. The most
striking one is that, in the limit P ~ 0+, (1) implies that
the free energy behaves as
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Here A is the cosmological constant; since A = 0 for a het-
erotic supersyrnmetric string (2) implies that no degree
of freedom will survive at high temperature. In fact, we
will show that (1) and consequently (2) also hold for any
heterotic string, even a nonsupersymmetric one. Some
authors [10] (cf. also [9]) have pointed out that this could
indicate that the heterotic string would be described by
a topological theory in that limit. Thermodynamically
things appear as though Bose and Fermi statistics were
not equivalent at high temperature.

In the present work we will carefully study the behavior
of thermal heterotic strings to prove, among other things,
that above the Hagedorn length, which is the same for
every heterotic string, there is one more critical length
at the self-dual point, which is generic too and does not
correspond to a divergent term in the free energy.

In Sec. II the prescription given by Atick and Witten in
[10] for constructing the free energy of the heterotic string
at one loop will be recovered by using what we regard as
a much more physical prescription. In fact, by making
use of the results of Ref. [1] we will be able to show
that every heterotic string enjoys P duality, even in the
nonsupersymmetric case. With this new prescription we
will explicitly calculate the free energy for the family of
nonsupersymmetric heterotic strings in two dimensions,
which appear in [11,12, 5].

Section III will be devoted to the study of the possibil-
ity of separately getting the free energy for the bosonic
and fermionic sectors of the heterotic string in a mani-
festly modular-invariant way. This goal is a legitimate
one from a purely thermodynamical point of view (e.g. ,

if we are interested in studying a possible Bose conden-
sation). The results so obtained will be used to ana-
lyze what would be the structure of the high-temperature
phase (or equivalently the number of degrees of freedom
at high energy).

In Sec. IV we shall study the behavior of the free en-
ergy at some given values of P at which special generic
singularities appear [4, 5]. These singularities will be in-
terpreted as coming from contributions of states, which
actually behave as ghosts, killing the physical degrees of
freedom that are a surplus for duality to hold. Finally,
in Sec. V we will summarize the conclusions.

where 1, 2, 3, 4 label, respectively, the four spin structures
(+, +) (+ -) (- -) (-, +)

Generalizing these phases to arbitrary genus, one can
represent the genus-g contribution to the free energy per
unit volume for the heterotic string in a very manageable
form, namely [1],

dp(m) ) A, (v, ~)8 (0[Ag),
g S W

(4)

where the cosmological constant is given by

dp(m) ) A, (r, ~) (5)

S1
S2

sq, s2 E [(Zj2)/Z] being the characteristics defining the
22g spin structures on the Riemann surface (in fact, only
the even-spin structures contribute). The second argu-
ment of the Riemann 8 function [13] is

1 OI
Ag —Ag +—

t'P ~g~2 ~g + ~2
2 —1

—12~2 T2 7

OI
2 IO

F (P) = &gp(m) ) A ) (
1)4(sstq+sqts+tqt2)

S t

x8 0 0 (0~4Ag).

Manipulating (4) one is able to rewrite the genus-g con-
tribution to the free energy as

II. GETTING THE FREE ENERGY

In Ref. [10] Atick and Witten gave a prescription for
computing the free energy for the heterotic string. In
their approach the contribution of an arbitrary set of
windings (n, m) is weighted, at one loop level, by a phase
given by

In [1] it is shown that given this form we have the follow-
ing duality relation for I"g(P):

U (n, m) = —
[
—1+ (—1)"+ (—1) + (—1) +"],

1

U (, )= —[
—(—)"+(—) +(—) +"],

2

Us(n m) = -[1+ (—1) + (—1) —(—1) ]

U4(n, m) = —[1+ (—1)"—(—I)™+(—1) +"],

(3)

In particular, for g = 1 we get (1).
So every heterotic string such that its free energy is

given by the application of the Atick and Witten pre-
scription obeys duality at arbitrary genus (provided only
even spin structures contribute to the free energy).

I et us now consider the general form of the one-loop
free energy for a heterotic string. By using the four
SO(10) conjugacy classes we can write the part of the
integrand of the cosmological constant which multiplies
Poincare's invariant measure as (cf., for example, [14])
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Where z„z„,z„z, are, respectively, the contributions associated with the four conjugacy classes of SO(10) (scalar,
vectorial, and two spinorials), and d is the number of noncompact dimensions. For example, for the supersymmetric
heterotic string in ten dimensions we have that z, = z, = 0 and z„= z, = Or, @r,g

From the modular invariance of (10) we get

e4 e4 4 e4 e4 84

,', (.+")+,', ( - -")—,', ("+")=,', [T(")+T(")]—,', [T(")-T(")]+,', [T( -)+T(")] (»)

and
8' e4 e4 e4

,', (z, + z, ) +,', (z„—z.) —,', (z. + z.) =,', ~ ']~[" ' [S(z,) + S(z,)]

+,', ~—'l. l"-'[S(z-) —S(")]—,', — 'I~l" '[S(z-) + S(")]n"

where T and S are the two transformations generating
the modular group: T:r:r + 1 and S:r:—I/w.

These relations determine the transformation proper-
ties under both T and S of the combination of z, 's,
which appear in (10). However, we should be very careful
about the identification of the terms multiplying Jacobi's
8 function in (11) and (12). If we consider a linear com-
bination of the form

8,' —e,'+ e,' = 0,

we also have a nontrivial solution, namely,

Ai = -A2 = As.

(14)

From a physical point of view the nontrivial solution
would correspond to the fact that when performing a
modular transformation we are not recovering the same
theory we started with. We need to add to it the spec-
trum of a supersymmetric heterotic string. Our starting
point is that (10) corresponds to the complete theory.
Actually if we add a supersymmetric heterotic spectrum
we can always write the resulting cosmological constant
as in (10). Thus we will only consider the trivial solution
of equations (ll) and (12). This gives the transformation
properties (cf., for example, [15, 14))

T(z, ) + T(z, ) = z, + z„
T(z„) + T(z.) = z„—z. ,

T(z ) —T(z ) = z„+z„
for the T transformation, and

S(..)+S(.) = ='[-i'-'(. -"),
S(z„)+ S(z.) = ~4[~]2 "(z„+z.),
S(z.) —S(..) = ~4[~[2-"(z.+ ..), (17)

for S. These tranformation properties will be of major

Ai 82 + A282 + As84 ——0,

then there exists a trivial solution which correspond to
Ai = A2 = As = 0. But since Jacobi 8 functions satisfy
the well-known identity

F(P) = (N~ —Np )f~(P) + N~ fs (P), (20)

where fg(P) = f~(P) + f~(P) If the co.smological con-
stant vanishes then the free energy can be written

F(P) = NFL(&)

= —2NF
OO 2' 2

dss ~8
i

0 ie ' (21)

Weighting the states in the scalar and vectorial conju-
gacy classes as bosonic quantum fields and both spinorial
classes as fermionic ones we obtain, for the integrand of
the P-dependent part of the free energy,

x(, -) = ).~.(, -) 8. o, ,
S

2~2~2

.—.284 P 2,P2 q„'(z, +z,)8, i
0

7r2~2)
' (22)

Since y(w, 7.) is invariant only under the Borel subgroup
generated by the transformation T, we have that the free
energy is obtained by integrating over the fundamental

interest when dealing with the theory at finite tempera-
ture.

To construct the corresponding free energy one can use
an analogue model. The free energy of a quantum field
with N~ bosonic physical degrees of freedom is given at
one loop by [7, 16]

C}O

2~s)
=:N~f~(&)

where f~(P) is the free energy per physical degree of
freedom and the prime indicates that the zero mode has
been suppressed. For a fermionic field of the same mass
and N~ physical degrees of freedom we have [17]

FF (p) = Np f~(p) —2NJ; f~(2p).

Now it is easy to get the free energy for a field with
bosonic and fermionic degrees of freedom:
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region of this subgroup, which is the strip 8 = (7i +
i72~72 ) 0, —1/2 & 7i ( I/2). Physically in the analogue
model we integrate over the proper time from 0 to +oo,
and at the same time we have to impose the left-right
level-matching condition as a Kronecker 6 that Bnally
becomes an integral over phases. So we have that the P-
dependent part of the free energy in the 8 representation
is given by

F(/3) = F (P) + F.(P)

with

Fi(P) = d27 i 2) A(~, ~) es'~ O

F2(P) =— d27. d-2 284 2i)92 )»'("+")e. o
~2 7r272 )

(24)

F(&) = 7 i 2
(26)

~-2 284 (' 2iP2 l
(z, + z, )82 i

0
7l» ' ' ( 7r27-2 )

(23)

This is in perfect accordance with the field-theoretical
result (20).

Our next task will be to go from the S representation
for the free energy to the F representation in which it is
expressed as an integral over the fundamental region of
the modular group of a function, which is invariant under
the full modular group (cf., for example, [17]). To do this,
we will make use of the coset techniques developed in [18]
(see also [11,19]). Let us separate (23) into two parts:

Fi(n)-
d27 ) A, (7-, 7.) 8 0 0 (0~&); (27)

S

here the prime indicates again the absence of the zero
mode and 0 = A& with g = 1.

F2(p) can be rewritten in a modular invariant way by
going from the subgroup of discrete translations B to
the congruence subgroup I'p(2) (: I' and finally to the
full modular group I' [l3, ll, 18]. We get

Since, as we have imposed above, Q, A, is a modular
invariant quantity, we can obtain the F representation of
Fi(P) almost inmediately:

(p)
B i o(2) I' —,', (z, + z.)e 2 (0~4n)

~2
' n"

Collecting together (27) and (28) we finally
for a general heterotic string:

G
F(p) =

2 ) A, (7., 7.) 8 0 0 (O~A)
~ ~2 S

82~ &- ae4
,', (z, + z, )

r2

g4 1
Q 2g4 1 1

zz (z„—z,)8 0z 0 (0~482) +, (z„+z, )8 z z (0~~482)j . (20)

arrive at the modular invariant expression of the Helmholtz free energy

0 1 04 1 0 g4 1 1
x8 00z (0~482) + (z„—z, )8 0z 0 (0~482) —,z (z„+z, )8 0z 0z (0~482)). (29)q12 0 Q

After some computations one can show that (29) is the same we would have obtained from the application of the
Atick-Witten s prescription as written in (4). Indeed, by using (8) and with the identifications

a-2 g4
A 2 P (7 &

7 ) = 72 [Z8 (7 &
7 ) + Z0(7 z

7 )] z

~—~ g4
Ap 2 (7-, 7-) = 7-2 ' [Z„(7-,7-) —Zz2(7-, 7 )], (30)

~ 26I4
App(7, 7)= 72 i2[Z~(7, 7—)+Z ( 4277)]

(the contribution from the odd spin structure A2 2 being zero) one gets

FAw(P) =
I

2 ) A, ) 8 0 0 (Oi40)—
S S1 7S2

7 1
Q

2A 8 2 (0i4A)

Q
1 11

+2A z8 0 0z (0~4') + 2Az, z8 0z 0z (0~4B)) (31)
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Vr2 (n21 ( Vr2)
F(P) = —F

I

—
I

—
I

1 ——
I
A.P' (32)

However, by simply adding the cosmological constant to (29) we get that F(P) obeys (1). This corresponds to dropping
the prime in the Riemann 8 function with null characteristics. In other words to have duality as a property of the
partition function we need to set the result of the decompactification limit to the value of the cosmological constant.

As a particular example, we are now going to apply the prescription to get the free energy for the cases in the
family of heterotic strings in two noncompact dimensions, which have been treated in [5] (see also [ll] and [12]). The
contribution associated with every SO(10) conjugacy class is given by [5]

z.(r, r) = -8,'(8,'+ 84) [j(r) + rr (I) —720],

z~(r, r) = —(82 + 83 + 84) + —8384 [j(7) + rr(l) —720], (34)

za(r) r) (82 + 83 + 84) ——8384 [j(r) + rr (1) —720], (35)

z (r, 'r) = —82(83 84)[j(r) + rr (1) —720],
2

(36)

(33)

that is easily proven to be almost identical to (29). The difference is that in Eq. (29) the zero mode of the Riemann
8 function with vanishing characteristics is missing as the result of removing the ultraviolet divergent vacuum energy
in the original analogue model. The presence of this zero mode in (31) guarantees that FAw(P) obeys (1). In the case
of (29) we have that the relation that holds is

where j (r) is the modular invariant function and rr(l) is the number of lattice vectors with (length) = 2, which
parametrizes the 24 self-dual Niemeier lattices among which we choose one to compactify the left moving coordinates.

By using (29) we obtain the free energy per unit volume for the family of heterotic strings described above as

F(P) = —48 2 [j(r) + rr (1) —720]8 00 (O~A)
~2

d2T .
2 [j(r) + rr (1) —720]
2

2/12 Q
]. 28" '0

x ~ 8 ~ (0(4A)+ ~~ e 020 (0~4A) —
~~

8 O2 o~ (0~4A) j,q12 Q Q QQ (37)

where we have set all the constants in front of the inte-
grals to one.

III. BOSONIC AND FERMIONIC DEGREES
OF FREEDOM IN HETEROTIC STRINGS

In the analogue model the presence of the Hagedorn
length is seen as resulting from the exponential growth
of the degeneracy of the states in a mass level when the
mass goes to infinity. So when this phenomenon happens
it does not disappear by increasing the temperature; in
fact it worsens. The strange feature implied by duality
in the modular invariant expression is that below PH the
free energy is finite and then the analogue model interpre-
tation does not hold. One may ask oneself what happens
to the density of states we could associate with each of
the two statistics. The standard in quantum-field theory
is that the free energy diverges as —P "when P goes to
zero (see [17] and references therein and also [10]). For
a system of bosons and fermions the total free energy
behaves in this limit as (40)

I

where NT = Ng+Ng = 2N~. Thus the combined action
of bosons and fermions never results in a cancellation
between the two types of degrees of freedom.

In this section we will show that it is possible to ob-
tain separated modular invariant expressions for the free
energy of each of the the two species of degrees of free-
dom in the heterotic string: bosonic and fermionic ones.
We will see that for each case the corresponding free
energy is infinite from P~ to )9 = 0. It will be only
aRer combining the two contributions that the strange
high-temperature phase appears as though there were
tachyons in the fermionic sector having and preserving
the fermionic character at high temperature.

To get the modular invariant expression we start using
the analogue model as follows from the prescription given
in the last section to get

d2~ && 844 84F (P)=, . ',', ("- -) -,', ("+")
ip2

x83i 0

FT (p) —Ny (1 —2 ) + N~ p

In particular for a supersymmetric theory,

FT (p) NT(1 —2 ")p ", —

(38) for bosons and

d2r g g 84 ( ~P2
F~(p) =

2 r2 ' (z, + z,)84
~

0
72 7/ g 27r r2

(41)
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for fermions. Now, the goal is to obtain from (40) and
(41) a modular invariant result. It is not straightfor-
ward to get manageable expressions. By manageable we
mean written in terms of our useful Riemann 8 functions.
The reason is that the behavior of the 3acobi 8 functions
under the modular group transformations do not corre-
spond to that of the terms that multiply each of them.
To solve this problem we use the easily proven relations

( iP2 5 (' i(2P)2 5 ( i(2P)2 &

2vr ~2 y ( 2vr ~2 ) E 2vr ~2 )
(42)

84 0 2
—-83 0 2 82 0 2

(43)

(44)

and

iP' ) ~ ( i(2~P)' l

)-g I(0 ( "P)'&I
2a272 )

~(2)))'

)—2 (45)

We are now prepared to consider the case of the bosons;
their free energy can be written as

to get the expansions

ip' & ( i(2"p)' l - i(2"p)' l

d 7- ~-~ g4 gs ( i(21P)
,', (--")-,', (-+") g.

I
0 (46)

We can easily go from the Borel subgroup to I'0(2) and from this to the full modular group. Following this procedure
and taking finally the limit JV ~ oo (which is perfectly justified for P g 0), we arrive at

d27 OO 2

k=o 2 s
(47)

where F(P) concides with the total free energy given by (29). For the fermionic degrees of freedom we operate along
the same lines; its contribution to the free energy can be written as

OO

) A, g 0 0 (OIA) ——) F(2"P)—' k=o
(48)

which is indeed equal to F(P) —Fa(P).
For the case of supersymmetric heterotic strings (47)

and (48) drastically simplify. The bosonic contribution
to the free energy is simply

I"~(P) = 2).F(2"P) (49)

The singularity structure of (49) is given by an infinite
set Z of values of p labeled by the integer k running
in the sum Z = (Pi, I Pi, = 2 "PH), where PH is the
Hagedorn length of the heterotic string. P duality for
each term of the sum (49) implies a second set of lengths
Z* = (Pz I P&

——vr /Pi, }. Then we find that for each
interval (P&, Pg) at least one of the terms of the sum in

(49) diverges. It is also easy to show that this family of
intervals overlap, so F~(p) diverges for any p ( pH. For
the case of fermions the situation is exactly the same. We
then see that duality is a property of the total free en-

ergy and, at first sight, results from the mutual cancella-
tion between the divergences of the bosonic and fermionic
parts so as to leave only an interval of divergence given
by (pH, pH).

However, looking carefully, duality invariance is al-

ready sowed in both contributions. Let us take the limit

~z (4
I"a(P) - —

I

-~
Ip'&3 )'

v&2 (1
I'~(P) ——

I

—A I.p' ~»

(50)

(51)

The solution of this paradox is that the equivalence be-
tween the corresponding analogue models and the modu-
lar invariant expressions is broken. A related question is
that of the value of P (i.e. , the energy scale) at which the
intruder fermionic (bosonic) degrees of freedom corrupt
the bosonic (fermionic) free energy. We postpone this
problem until the next section.

IV. THE SINGULARITIES OF THE FREE
ENERGY OF A HETEROTIC STRING

In quantum-field theory the equivalence between the
free energy of a quantum field and the contribution to the

I

P + 0+ in F~&~~ (P). By duality symmetry for each term
in the sum over k, F~~~l(P) will go to zero, and then
we have that no bosonic (fermionic) degree of freedom
survives [17].

For the general case, computing the p —+ 0+ limit of
F~(P) and I"~(P), we get the paradoxical results
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vacuum energy, the cosmological constant, of the same
field with Euclidean time is a very well known fact (cf.,
e.g. , [17] and references therein). In the case of strings
[7, 18, 10], this relationship is not direct. Actually, it de-
pends on whether the string can be described by its field
content. Until now the answer has not been too precise;
in general, the fact that any string model has a Hagedorn
temperature has been used to break any relationship at
higher temperatures. From the work done in [4, 5] it
has been concluded that in some compactifications this
equivalence is broken by a difFerent kind of singularities
of the partition function.

The strategy is to find the relationship between the
modular-invariant free energy gotten by using the coset
technique and the cosmological constant of a zero-
temperature heterotic theory. Then we will study the

analytic behavior of the free energy through the mass
formulas of the corresponding zero-temperature theory.
After that we will see that, at the Hagedorn temper-
ature, the analogue model presents the same divergent
behavior as the modular invariant extension. The break-
down point will be the self-dual radius below which we
claim that the equivalence between the modular invariant
result and the analogue model does not hold any more.

In what follows we will treat this problem for the gen-
eral free energy of a heterotic string. To prove that the
manifestly modular-invariant free energy corresponds in
every case to the cosmological constant of a heterotic
string with Euclidean time it is useful to realize that, af-
ter some Riemann 8-function gymnastics, the integrand
of (31) can be written (we now drop the multiplicative
factor ~z

" ~
)

x(~ ~) =- g4 6I4

6,4+ e4

p]12

g4
—12
7l

g4
+ -12

rl

(
—,'o —,'-,' i ( oo
oo oo i+'"i oo
oo o-,' & ( —,'o

)
oo o-,' ) ( —,'o
Oo OO '+"

~ OO
+

( —,'o —,'-,' ~ & oo~' oo +' oo ~+"~' oo -'

+' 0o' ~)
1 1

8 2 200

.' ~)

,", i), (52)

where all the Riemann 8 functions are evaluated at (0]40). With this form of the free energy it is also easy to read
back the mass formulas and constraints for each sector in the corresponding theory at zero temperature. The general
structure of Eq. (52) can be sketched as (v, I' ) + (o, I",) + (s, I', ) + (c, I', ) where v, o, s, c are the conjugacy classes
of SO(10) and I', with i = v, o, s, c are sets of vectors (which, in general, do not close under addition) defined in
the following way: Corresponding to each of the two terms multiplying the contribution of the conjugacy classes of
SO(10) we define two sets I', i and I', 2 such that I', = I', i U I', z. Now, for each class, we can characterize these sets
as

I'', ={(PL PR)APL, R = [ L,R pL, R(p)]}
I ', 2 —((PL, PR) ~PL, R = [ L,R pL, R(p) + ~L,R(p)]) .

Here the first entry corresponds to the vectors giving the generalized 8 functions contained in z, , which may even-
tually depend on a radius of compactification, although there are always components that correspond to internal
compact dimensions at fixed radii, at least 16 dimensions in the left-moving sector. The second one is a function of
P corresponding to the momentum in Euclidean time and 6'L R(P) is a shift.

The mass formulas and constraints for the four bosonic sectors in (52) are

1 2 121zpz 2 2 3
4 2)
—m, i ——NR+ NL+ —p« i+ —pL, & + (2m+ 1) + (2n+ 1)

2 "+ 2 "+ 4vr2 4p2 2'
2m+ 1 12 12 1

NL, —N~+
2

(2n+ 1) + p~L
2 '+ 2 '+ 2

12=—m, z = NR + NL + —pR, +i + —pL,+i + z (2m) + (2n)

Nl. —¹~+2mn+ 2&I., "+1 2&R, +1

(54)

(55)

(56)

(57)

where i = 0, 1 [v = 0(mod 2), o—:l(mod 2)]; NL is a positive integer and NRO 6 Z+, NR e Z+ + 1/2; again pR&Ll,
denotes the vectors associated with each z, . For the four fermionic sectors we have

12= 2—m, , = N„+ NL + p„, + -pL, +—, (2m) +,(2n + 1) —1,2

NL —NR + m(2n + 1) + pL ~
— pR ~

—1 = —0, —3 12 12
(58)

(59)



3418 M. A. R. OSORIO AND M. A. VAZQUEZ-MOZO

12=—m~ z = N~+ NI, + pR i+ pl. ~ + 2(2m+ 1) + (2n) —1, (60)

NI. —N + (2m+ l)n+ pi— pR —1 = 0,2 12 12
R )2 2 )3

where now j = 0, 1 [s:—0(mod 2), c = 1(mod 2)]; and
NR~, N&~ are positive integers. From these formulas one
can show that the Hagedorn length is the same for ev-
ery heterotic string (cf. [21]); it comes from the sector
associated with the scalar conjugacy class and z„with
the following set of quantum numbers: NI. = NR ——0,
m=n=0orm=n= —1, and@1 „——pR„——0.

The existence of a vanishing value of the momentum
in the compact dimensions associated with the vectorial
conjugacy class in the theory at zero-temperature re-
sults from the induced U(l) Kaluza-Klein bosons. That
these bosons must appear glued to this class is the re-
sult of modular invariance because T(z„) = z„and then
if (pL, „,p~„) is a vector we must have pl „—p&„
0(mod 2). Since z„, in general, receives contributions
from vectors (pl, ,„,p~,„)= (pr„„,pL„„(R);pR,„,p~,„(R)),
where p and j are momenta corresponding to fixed-
size dimensions (at least 16 dimensions in the left sec-
tor), and pl. „(R), pR „(R) are left and right momenta
depending on the value of the radii; it would appear
that there is a way of getting T(z„) = z by having
pl „—g „—:1(mod 2) and p —p—:l(mod 2). This
is impossible because this would imply that in the limit
in which the radii of compactification go to infinity z
goes to zero and then the corresponding theory in the
decompactification limit could not be modular invariant
because of the absence of the contribution of the vectorial
conjugacy class. On the contrary, T(z, ) = —z, implies
that pzl, —pz&, = 1(mod 2).

The Hagedorn temperature, which corresponds to the
length of the Euclidean time P~ = vr(~2+ 1), and its
dual [1/TH ——PH

——vr(~2 —1)] are singularities at which
the free energy diverges, respectively, to the left and to
the right in a plot F(P) vs P.

In the same sector we can also find that for (Nr, =
1, NR = 0, m = O, n = —1 or m = —1 n = 0 and

pr, „——pR „——Oj or (NI. = Nz = 0, m = O, n = —1
or m = —1, n = 0 and pI „=2, pR„——0), we have
another critical length at P = vr, the self-dual point of
the free energy. This value of P gives m = 0 but such
that m2 & 0 for every P P vr.

Both lengths are generic for every heterotic string, su-
persymmetric or not, as long as we have Kaluza-Klein
U(1) bosons. Of course there may be more critical
lengths as the Hagedorn one and their duals that depend
on R [8] and consequently are not generic. Furthermore,
there is an intermediate case. When there is a vector

This sufBces since duality symmetry interchanges both
spinorial conjugacy classes and then both chiralities must
have a null vector in each of the associated sets of vectors.

of (length) = 0 in one of the spinorial representations~
we have a class of heterotic string theories for which two
more critical lengths, P = xv 2 and its dual P' = vr/v 2,
can be found independently of the radii and such that
m & 0 for every P P sr~2, vr/~2.

For example, in the first case, in which only Hage-
dorn and the self-dual point are generic temperatures, we
find the nonsupersymmetric O(16) x O(16) [22, 14] and, in
general, any heterotic theory for which z, and z, do not
receive a contribution of vectors with (length) = 0. In
particular, the model presented in Sec. II whose free en-
ergy is given by (37) does not present these singularities,
since the corresponding generalized 8 functions associ-
ated with z, and z, start with powers of q higher than
zero [see (35) and (36)]. On the other hand, for the old
heterotic string [23] we have the opposite situation be-
cause the E8xE8 lattice, which is common to all conju-
gacy classes, do have a vector with p~J ——0.

When the term producing the Hagedorn temperature
is substracted from the free energy, the remaining would-
be renormalized free energy presents a singularity at the
self-dual point. The term contributing to the free energy
associated with this singularity is

OO

I(P) = —2
/3

d+1 ~ /P —P
d~z~z ' exp

d —1

amer 2 (P' —P,')
1 —d ~ (P'-P,')'

2 '2 PP
(62)

where t90 = vr. Whenever d & 2 and even, I(/3) is finite
for any value of p, in particular, at the corresponding
singular point, it has a finite jump in the d —1 derivative.
For d odd it suffers from a logarithmic singularity in the
d —1 derivative at Po. When d = 0, 1 the contribution of
I(/3) to the free energy is divergent at P = Po but finite
at any other point. It is worth noticing that Po I(P)
is always invariant under the exchange P ~ Po. This
implies that near Po, Po I(P) is a function of ~P

—Po~.
When the singularities at harv 2 and vr/v 2 appear the

associated terms contribute to the free energy as in (62)
with the opposite sign and a factor 2 multiplying the ar-
gument of the exponential function in the integrand. Fi-
nally, we should note that all these terms must be mul-
tiplied by integral degeneracy factors. For example for
the ten-dimensional supersymmetric heterotic string we
would have a factor given by 24+ 2 x 240 = 504 multi-
plying I(P) with Po ——~
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V. CONCLUSIONS

Let us go back in time to Ref. [5] where the depen-
dence of the partition function on the compactification
scale was studied for a particular class of two-dimensional
heterotic strings. There we showed that no critical radius
as the Hagedorn one appears. There is, of course, a sin-
gularity, but of a quite diferent kind. Furthermore, it is
easy to show that the origin of this soft singularity is the
unstability of the vacuum represented as

27-

z J(~)
~2

( 27rR'
exp

(

— l~~+ ~l'
r

x )
m, nCZ

1=-4~R[1—,~+4~R 1— 1
2R'

(63)

Here J(w) = j(w) —744. Below the Planck length scale
this way of representing nothingness breaks down. A
nonvanishing contribution appears, which corresponds
to a massless Beld in two dimensions with positive
Helmholtz free energy. In fact —48[RM(R) + R ] equals
(choosing adequate units to eliminate x's and other
constant factors) the partition function in R, x Si of
the nonsupersymmetric heterotic string described in [24,
11], which has Atkin-Lehner symmetry [11]. The term
—RM(R) acts effectively as though it represented the
contribution of a ghost field for the net number of bosonic
degrees of freedom of the theory in R2 so as to destroy
them. This phenomenon is generic for this kind of trivial
compactifications in which the solitonic contribution is a
common factor for all the conjugacy classes; the larger
d is, the softer the singularity. One would like to know
whether this phenomenon at the self-dual radius appears
for other kind of compactifications, and if so whether it
is related to "heteroticity, " i.e. , the property of being a
hybrid of a bosonic and a fermionic string.

What we have shown in the present work is that by
substracting from the free energy a term G(P), which
gives the infinite background for P~ ( P ( PH associ-
ated with the Hagedorn singularity (whose contribution
is negligible when P ( PH) we can see a completely anal-
ogous phenomenon for a large family of heterotic strings
gotten by compactifying nontrivially one of the originally
uncompact dimensions. This nontrivial compactification
has been dictated by the process of getting the Helmholtz
free energy for any heterotic string, supersymmetric or
not. Looking at (62) when d = 2 we see that at the self-

dual point (in this case, with P = 27rR, gn'/2) there is a
finite jurnp in the Brst derivative with a sign that is only
consistent with a loss of degrees of freedom. In particu-
lar for the supersymmetric heterotic string the self-dual

point corresponds to a cusp pointing to the minus infinity
direction in the graph of F(P) —G(P) vs P. When d ) 2
this cusp softens to give a cup. In the mass formulas the
presence of this critical compactification length depends
upon the existence of the U(l) Kaluza-Klein bosons as-
sociated with the Cartan subalgebra of the gauge group.

Regarding the problem from a thermodynamical point
of view we have shown that the theory presented in [5]
whose free energy is given by (37) is an example of a the-
ory with a thermal free energy, which is dual and at the
same time is a monotonically increasing function of P in
the would-be high-temperature phase. The complemen-
tary situation can be exemplified by the O(16)xO(16)
theory whose cosmological constant is positive [22].

Another related point is that of the associated density
of states as a function of the compactification scale. The
main issue is to try to get the density of states by inverse
Laplace transforming the partition function as a function
of R. To do that we need to know the analytic continu-
ation of Z(R) to the complex R plane, but how can we
perform the analytic continuation of a real function in-
volving an absolute value? For example, in the case of
the Atkin-Lehner symmetric theory, if we try to naively
analytically continue —RM(R) to the R complex plane
by directly substituting into the solitonic sum the real B
variable by a complex B, we would have obtained a com-
plex function having, in addition to two singular points
at +v n', a dense countable set of singularities located
over the imaginary axis (in fact all of the same type). In
the same way, if we substitute A by iB into the last part
of (63) we get that on the imaginary axis there are only
three singular points located at 0 and +i@o.

' The les.son
to be learned is that, in general, analytically continuing
each term in the series in the integrand is not equivalent
to the continuation of the integrated result. May be we
can relax this requirement and demand only some kind
of procedure to perform the inverse Laplace transform
without really writing down the analytical continuation.

Finally it would also be interesting to know how string-
field theory [25] might deal with these singularities when
one looks at the dependence of the action on the param-
eters of the background target, in particular, regarding
the structure of the possible unitary transformation re-
lating by duality diferent backgrounds of the same class.
Of course, a prerequisite would be having a heterotic su-
perstring Beld theory.
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