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Some computations in background-independent off-shell string theory
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Recently, background-independent open-string field theory has been formally defined in the space of
all two-dimensional world-sheet theories. In this paper, to make the construction more concrete, I com-

pute the action for an off-shell tachyon field of a certain simple type. From the computation it emerges
that, although the string field action does not coincide with the world-sheet {matter) partition function in

general, these functions do coincide on shell. This can be demonstrated in general, as long as matter and
ghosts are decoupled.

PACS number{s): 11.17.+y

I. INTRODUCTION

(1.2)

while L' will be an arbitrary ghost number conserving
boundary interaction:

18V(X,b, c) .
ar.

(1.3)

(The notation is standard: X is a Riemann surface with
metric h, inducing a length element dO on the boundary;
b and c are the usual antighosts and ghosts; the X' de-
scribe a map to 26-dimensional Minkowski space with
Lorentz metric il. ) Actually, in the construction in [1]
one must introduce a local operator 8 of ghost number 1

with

V=b, 8 . (1.4)

The beauty of the world-sheet approach to string per-
turbation theory has led many physicists to hope that
"the space of all two-dimensional world-sheet field
theories" might be a natural arena for string field theory.
This program has been obstructed by (i) the unrenormal-
izability of the generic world-sheet theory, and other
more or less related problems, and (ii) the fact that even
given a "space of all two-dimensional theories, " one has
not known how to formulate a gauge-invariant Lagrang-
ian in that space. In a recent paper [1], the second prob-
lem has been resolved in the case of open strings. Deal-
ing with open strings means that we consider two-
dirnensional Lagrangians of the form

L Lo+L

where Lo is a bulk action describing a closed-string back-
ground and L' is a boundary term describing the cou-
pling to external open strings. Lo is kept fixed and L' is
permitted to vary. For instance, in this paper we will
take Lo to describe the standard closed-string back-
ground,

For the definition of b, see [1].
The main result of [1]was to describe, given these data,

a background-independent, gauge-invariant Lagrangian S
on the space of 8's. The construction has many proper-
ties that agree with expectations from world-sheet pertur-
bation theory but have previously been hard to under-
stand in the context of a gauge-invariant Lagrangian.
For instance, the classical equations of motion derived
from S are equivalent to Becchi-Rouet-Stora- Tyutin
(BRST) invariance of the world-sheet theory. This is an
ixnproved version, which does not assume decoupling of
matter and ghosts, of the naive expectation that the equa-
tions of motion should assert conformal invariance. (If it
is the case that on shell one can always decouple matter
and ghosts by a gauge condition on 8, then in that gauge
the equations of motion derived from S are equivalent to
conformal invariance. ) Moreover, in expanding around a
classical solution, the infinitesimal gauge transformations
are generated by the world-sheet BRST operator.

The construction in [1] was, however, purely formal,
since it involved correlation functions in the theory (1.1)
for arbitrary V, and one certainly must expect ultraviolet
divergences. Here is where one faces the fact that we do
not know what "the space of two-dimensional field
theories" is supposed to be. Nevertheless, the definition
of S has the property, noted at the end of [1], that given
any concrete family of two-dimensional field theories, the
S function can be computed explicitly as a function on
the parameter space of that family. The original goal of
the present paper was simply to make the ideas of [1]
more concrete by computing the S function explicitly for
a certain simple family of boundary interactions. This
will be accomplished in Sec. II.

From the computation will emerge a simple relation
between the S function and the partition function of the
matter system. We will explore this relation in Sec. III.
The main conclusion is as follows: if matter and ghosts
are decoupled, then on shell, the S function is equal to the
partition function Z of the matter system. This relation
has been heuristically expected (and checked in some spe-
cial cases [2,3]) given the role of world-sheet path in-
tegrals in generating effective string interactions.
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II. SOME SIMPLE BOUNDARY INTERACTIONS

A. The model

The open-string tachyon corresponds to a boundary in-
teraction of the form

V= T(X) . (2.1)

For V of this form, or more generally any V that de-
pends on X only, not on b and c, it is natural to choose

o=cV, (2.2)

with c the component of the ghost field tangent to the
boundary. This is the most general situation that we wiH

consider in this paper.
In the present section, to obtain a family of boundary

interactions for which everything can be computed ex-
plicitly, we will take T(X) to be a quadratic function of
the coordinates

26 u.
T(X)= + g X;2m, . ) 8m

(2.3)

(2.4)for u;~0,

with parameters a and u;. The quadratic nature of the
boundary interaction ensures that the world-sheet theory
is soluble, so that we will be able to evaluate explicitly all
the correlation functions that enter in the definition of
the background-independent action S.

Before entering into actual calculations, let us make a
few general comments about this family of boundary in-
teractions.

(1) Linear terms in the X; have been omitted, because
as long as the u; are nonzero, linear terms can be ab-
sorbed in a shift in the X, .

(2) Once the u; are included, it would be unnatural not
to include the constant term a/2m in the action. This is
because under a change in the normal-ordering prescrip-
tion used in defining the quantum operator +26, u;X, ,

this operator will be shifted by a constant. With the ta-
chyon interaction (2.3) is associated a natural 27-
parameter family of quantum theories, but the parame-
trization of the family by 26 u's and one a is not corn-
pletely natural, having the ambiguity just cited. The
background-independent action S is well defined as a
function on the 27-dimensional space of quantum
theories of this type; identifying it as a function of a and
the u's requires a specific normal-ordering recipe.

(3) The world-sheet action is bounded below only if the
u; are positive. We should therefore expect the space-
time action S to have singularities for negative u,-.

(4) For u, =0, the theory is invariant under translations
of the X;. The strings propagate in an infinite volume,
and the natural object to calculate is the action per unit
volume. Taking u, )0 gives a potential energy for the
zero mode of the string, so oscillations of the string are
limited to a finite volume. If the u; are positive and
small, the action is ~ 1 for X, ~ 1/Qu;. One therefore
should expect that

M

B. First properties

Let us focus on a single scalar field X described by the
Lagrangian

L. = ' jd'~&hh Pa~a@+ " I d8X'.
8m r 8m. ax

(2.5)

The boundary condition derived by varying this action is

n a~+ux=o on ar . (2.6)

In keeping with the formulation of [1],we wish to con-
sider this theory on a disc X with a rotationally invariant
metric. We may as well take this to be the Aat metric

ds =do. +do o. +o. +1 (2.7)

We also set z =o.&+io2.
The Green's function of the theory should obey

1
a, a G(z, w)=5 (z, w),2' ~ Z

(2.8)

along with the boundary condition (2.6). These require-
ments determine the Green's function to be

G(z, w)= —1n~z —
w~

—in~ 1 —zw~ +-
u

—2u g [(zw )"+(zw )"] .
, k k+u (2.9)

The divergence at u =0 rejects the fact that there is a
zero mode (the constant mode of X) for u =0; the physics
behind this was discussed as point (4) at the end of Sec.
II A.

We now need to define the quantum operator X (z), for
z EBX. As BX corresponds to ~z~

= 1, we can write
z =e', and we write X (8) for X (z). We define

X (8)= lim [X(8)X(8+e) —f(e)],
e~O

(2.10)

where f(e) is a function of e, but not u, chosen so that
the limit exists. These conditions are obeyed by

where m is a constant proportional to the action per unit
volume at u; =0.

(5) The theory with a =u, =0 is conformally invariant;
this case corresponds to free boundary conditions,
n d~'=0 on BX (n is the normal vector to the bound-
ary of X). There is also a conformally invariant theory at
u, = oo (with boundary conditions X =0 on BX ). It
would be nice to be able to compare the values of the ac-
tion of two different classical solutions, but the present
example is not quite suitable for this, because the theory
at u; = ~ has an action, while the theory at u; =0 has an
action per unit volume, as explained in the last para-
graph.

In Sec. II B below, we will evaluate basic properties of
the model, determining the essential Green's functions
and correlation functions and the partition function.
Then in Sec. II C, we will compute the action function S
for this family of quantum field theories.

u; f (e)= —21ni1 —e "i (2.11)
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f is uniquely determined up to an additive constant
[which is the normal ordering constant mentioned in
point (2) at the end of the last subsection] plus terms that
vanish for e~0. The requirement that f is independent
of u ensures that when we compute u derivatives (to
evaluate the partition function and the S function) we
need not worry about terms coming from the u depen-
dence of the definition of X (8).

With the above choice of f, the expectation value of
X (8) is

Z, (u)=&u exp(yu)l (u) . (2.17)

Z(u;;a)=e 'QZ, (u;) . (2.18)

Note the expected small u behavior Z, (u) —1/&u for
u ~0 (where I has a simple pole), and the anticipated
singularities for negative u (from the other poles of 1 ).

For a slightly more general model with several scalar
fields X; and boundary interaction (2.3), the partition
function on the disc is therefore

(X'(8)&=——4u y2 1

u q, k(k+u) (2.12) The simple a dependence comes from the fact that the a
term is just an additive constant in the Lagrangian.

(In the present subsection only, the angular brackets refer
to normalized correlation functions. )

Now we can calculate the partition function on the
disc of the theory of one scalar field with Lagrangian
(2.5). We will call this partition function Z, (u). From

Zi = DX exp —I. (2.13)

An identity

Let us now pause to evaluate a correlation function
that is needed later. First of all, for boundary points
z =e', w =e ' the propagator [which we will write as
G(8, 8')] is

and the explicit form of L, we have

"»Z, = — ' f"d8&X(8)&
du 8~ o

2u &, k(k+u)+ g (2.14)

G(8 8')= —21n(1 —e' ') —2ln(1 —e ' ')+—
9

[
ik (8—8') + —ik (()—()')

]
, k(k+u)

(2.19)

The Euler I function I (u) obeys ([4], pp. 198—200) Expanding ln(1 —e +—' ') in a power series and collect-
ing terms, one finds

with y being Euler's constant, so

(2.15)
G(8, 8')=2 g exp[ik(8 —8')] .

1„,II I+u
(2.20)

d
inZ( = lnI +y+ 1

du du 2Q
(2.16)

Hence (up to an arbitrary multiplicative constant, which
can be absorbed by adding a constant to the a parameter
in the boundary interaction)

Now we want to evaluate

W= f cos(8 —8')(X (8)X (8')& .
(2~)'

(2.21)

Using the explicit form of the Green's function and doing
the angular integrations, this becomes

2~ dg ikO ik'0
4

d~ IO+ Ig e e
o 2m

' ' „,Ikl+u „, , lk'I+u

1 1 1„,lkl+u lk+ ll+u ll —kl+u „,Ikl+u Ik+ ll+u

=16 g =16 g„,Ikl+u Ik+ ll+u „, k+u
1

k +1+u
(2.22)

This is the desired identity.

C. Evaluation of the action

The definition of the background-independent action S
in [1] was as follows. Suppose that the boundary interac-
tion is V=b )8 where 8 has ghost number 1. (S de-

pends on 6, not just on V). I.et 0; be a basis of ghost
number 1 operators, so that 6 has an expansion
G=g;w'0;. Then S is defined' in terms of correlation

'With a diff'erent normalization from that in [1].
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functions on the disc by

. =—f d0d0'(O, (0) {Q,G](0')),
Bw

or equivalently

(2.23)

dS=d g u;Z —g u Z+(1+a)Za

This can be solved by

(2.31)

dS= —,
' +du)'f d0d0'(0;(0) {Q,G](0'))

l

=—' f d0d0'(d G(0) {Q,GJ(0') ) .
(2.24)

S= gu, —gu +(1+a) Z . (2.32)

Alternatively, using the fact that the a dependence of Z is
an overa11 factor of e ', this can be written

Here and henceforth the angular brackets refer to unnor-
malized correlation functions (one is not to divide by the
partition function).

Obviously, (2.24) determines S up to an additive con-
stant. The fact that S exists is, however, nontrivial. It
depends on the fact that the one-form on the right-hand
side of (2.24) is closed. In the example we are consider-
ing, the proof of this depends on the nontrivial formula
(2.22). The general proof depends on Ward identities dis-
cussed in [1].

In our case, we have

V= + guX2, (2.25)
2m Sm

and G=cV. In general, for any tachyon field T(X), one
has

{Q, cT(X)I
=cc' 2 g +1 T(X)

BX;
(2.26)

{Q,GI = cc' g u;(X; +4)+4a1

8~
(2.27)

The ghost correlation function that we need is therefore
(c(0)cc'(0')). Using the fact that the three ghost zero
modes on the disc are 1, e', and e ', and normalizing
the ghost measure so that (cc'c"(0)) = 1, we get

( c(0)cc'(0') ) =2[cos(0—0') —1] .

Consequently, the equation defining S boils down to

(2.28)

dS =—f d 0 d 0' 2[cos(0—0') —1]
2 0

(with c' the tangential derivative of c along the bound-
ary), so, in our case,

S= —gu, c} a+ g u, +1 Z . (2.33)
Ba

This is our final result for the space-time action for this
particular family of boundary interactions.

III. RELATION BETWEEN THE ACTION
AND THE PARTITION FUNCTION

Because of the way that world-sheet path integrals can
be used to compute string interactions, some physicists
have suspected (for example, see [2,3]) that the space-time
action S in string theory might simply equal the world-
sheet partition function on a disc (for open strings) or a
sphere (for closed strings). Actually, since ghost zero
modes make the usual partition function vanish, the idea
is really that, as long as matter and ghosts are decoupled,
S would equal the matter partition function, which I will
call Z. No one has ever proposed a generalization of this
conjecture that makes sense when matter and ghosts are
not decoupled.

A little reflection shows that the conjecture is more
plausible on shell than off shell. The S function is sup-
posed to be gauge invariant, and on shell Z possesses a
well-known gauge invariance: it is invariant under adding
to the world-sheet Lagrangian terms of the form {Q,a]
(where a must obey the severe restriction that {Q,u] is
independent of the ghosts, as Z is the matter partition
function only). There has never been any indication of an
off-shell gauge invariance of Z.

If we look back to the final result (2.32) or (2.33) of the
last subsection, it is clear that (in this particular approach
to background-independent string theory) it is not true in
general that S =Z. However, these two functions are
certainly closely related. In fact, using the formula
Z=exp( —a)g, Zi(u;), one finds from (2.32) that

as =Z —S.
Ba

(3.1)

x x u [x~(()')+4]+4a
)

. (2.29)
8~

dg +2 g 8~
0 Bu;

f d0d0'(X, (0)X (0')) =(8')
0 Bu;Bu

(2.30)

and also (2.22). The result can be written

The correlation functions that arise here can all be evalu-
ated, using

Consequently, on shell or in general as long as the a equa-
tion of motion is obeyed, Z =S. The purpose of the
present section is to show that on shell, Z =S in general,
and to get some information about the relation between Z
and S off shell.

Let V be a general boundary interaction constructed
from matter fields, and take G=cV. Let c'"'=d "c/d0",
the nth derivative of c along the boundary. In general,
{Q, GI =g„"=,cc["'F„,where F„are some matter opera-
tors. (This follows from the fact that {Q,c I

=cc"', while

{Q, V[, being an operator of ghost number 1 without an-
tighosts, can be expanded as a sum of expressions of the
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type c'"'F„.) Consequently, in evaluating (2.24), the
ghost correlation functions that we need are of the form
(c(8)cc'"'(8') ) for various n. In view of the form of the
ghost zero modes on the disc, these correlation functions
are all linear combinations of 1, cos( 8—8' ), and
sin(8 —8'). (2.24) can hence be written

dS = f d8 d 8'(d V(8) [ A (8')+ cos(8 —8')B(8')
0

+sin(8 —8')C(8')] ), (3.2)

with A, B, and C being suitable linear combinations of
the F„.

To proceed further, we will use the following trick
[which will enable us to avoid to have to explicitly find
the generalization of the key formula (2.22)]. Suppose
that the matter system consists of two decoupled subsys-
tems. Let Z& and Zz be the partition functions of the
two subsystems, so the combined matter partition func-
tion is Z =Z&Zz. Let 0; be a basis of local operators for
the first system, and let 0 be an analogous basis for the
second system. The boundary interaction is then
V=+;x'0, +g,y~OJ, with x ' and y~ being coupling con-
stants of the first and second systems, respectively. So

BZi+ d V(&) x
dx a dZp (3.9)

Using the fact that some of the quantities entering here
depend only on the x's and some depend only on the y's,
this implies that

BZ)
d V(&)

Bx
a; dx — g dZ)

r

BZ2
dy'a —d VJ

I (2) =g dZp

(3.10)

for some constant g. Using these formulas to express the
a; and a. in terms of the Z's and Vs, (3.8) can be rewrit-
ten

These functions can be related using the fact that
d S=O. Calculating the exterior derivative of the one-
form on the right-hand side of (3.8), and setting to zero
the coeScient of dx'dy J gives

BZ20=dZ& dy'a; —d V
By

d V= g dx'0, + g dy&O, .
l J

(3.3) B J BdS=d V(,),. + V(2) . +g Z, Z2Bx' By'
(3.11)

We can expand 3 in terms of the 0's and 0's with some
unknown coefBcients:

c4 = g VI~)(x)0& g Vtp)(y)0&
l J

(3.4)

B and C can be similarly expanded. (3.2) can therefore be
written out in terms of two-point functions of 0's and
0's. The terms in (3.2) involving (0;0 ) can be very
simply evaluated to give

B
dZ] V(2) Z2 + V( ) ) . Z] dZ2 ~

k Bx'
(3.5)

g dx 'a;(x ) Z~, (3.6)

The (0;0.) terms contribute a one-form of the general
form

And so

B J BS= V()) . + V(2) . +g Z)Z2 .
Bx' By J

(3.12)

So far, we have considered "matter" to consist of two
decoupled systems, but this restriction is unnecessary.
To any matter system of interest one can always add an
auxiliary decoupled system and carry out the above
analysis. Then the auxiliary system can be suppressed by
setting its couplings to a fixed value. The conclusion is
that in general there is a vector field V on the space of
world-sheet theories, and a constant g, such that

and the (0;0, ) terms contribute a one-form that can be
written

S= V +g Z .Bx'
(3.13)

Z, g dyja, (y),
J

with unknown functions a; and a -. So

(3.7)
Moreover, V vanishes for classical solutions, since it was
constructed from A and so ultimately from [Q,6].
Therefore, on shell S is a constant multiple of Z, as prom-
ised. Our earlier formula (2.33) serves to illustrate (3.13)
for some particular boundary interactions.

BZp . BZ]
dS =dZi V(2) + V(i) . dZ2

Byk Bx'

+ g dx 'a, Z2+ Z, g dy'u, . (3.8)
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