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Exact integrability of strings in D-dimensional de Sitter spacetime
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We show the complete integrability of the string propagation in D-dimensional de Sitter spacetime.
We find that the string equations of motion, which correspond to a noncompact O(D, 1)-symmetric o.

model, plus the string constraints, are equivalent to a generalized sinh-Gordon equation. In D =2 this is
the Liouville equation, in D =3 this is the standard sinh-Gordon equation, and in D =4 this equation is

related to the B2 Toda model. We show that the presence of instability is a general exact feature of
strings in de Sitter space, as a direct consequence of the strong instability of the generalized sinh-Gordon
Hamiltonian (which is unbounded from below), irrespective of any approximative scheme. We exhibit
Backlund transformations for this generalized sinh-Gordon equation, which relate expanding and

shrinking string solutions. We find all classical solutions in D =2 and physically analyze them. In D =3

and D =4, we find the asymptotic behaviors of the solutions in the instability regime. The exact solu-

tions exhibit asymptotically all the characteristic features of string instability: namely, the logarithmic
dependence of the cosmic time u on the world sheet time v for u ~+ 00, the stretching (or the shrinking)

of the proper string size, and the proportionality between ~ and the conformal time.

PACS number(s): 11.17.+y, 11.10.Lm, 98.80.Hw

I. INTRODUCTION AND RESULTS

In Ref. [1] a program for studying the classical and
quantum string dynamics in curved spacetimes was start-
ed.

Since the equations of motion and constraints for
strings in curved spacetimes are highly nonlinear (and, in
general, nonexactly solvable), we proposed a method (the
"strong-field expansion") to study systematically (and ap-
proximately) the solutions of the string equations and
constraints in the strong-curvature regime, and to find
the scattering matrix, mass spectrum, critical dimension,
vertex operators, and particle transmutations [1—3]. (For
strings propagating on gravitational shock-wave and
plane-wave backgrounds, see Refs. [4—7], and for strings
propagating on cosmic-string spacetimes, see Ref. [8].)

Strings in D-dimensional de Sitter spacetime were first
studied with the method mentioned above [1]. One of the
results was that for a large enough Hubble constant, the
frequency of the lower string modes, i.e., those with

~ n~ (a'mH (a' being the string tension and m the string
mass), becomes imaginary. This was further analyzed [9]
as the onset of a physical instability, in which the proper
string size starts to grow (precisely like the expansion fac-
tor of the de Sitter universe). The perturbative expansion
of the solutions around the center of mass of the string is
a suitable method for describing the oscillatory or stable
behavior of the string. This expansion holds for large
world-sheet time r (asymptotically, for large de Sitter ra-
dius, r being proportional to the cosmic time), but it does
not hold for describing the unstable regime, where the
proper string amplitudes grow exponentially. In order to
describe the highly unstable regime, another approxima-

tive scheme, the "small-~ expansion, " was then
developed, and asymptotic string solutions nonoscillating
in time were found [10].

String behavior oscillatory (stable) in time, as well as
behavior nonoscillatory (unstable) in time, was found for
the large radius of the de Sitter universe. Behavior
nonoscillatory in time was also found, in the small-~ ex-
pansion, for a small radius R of the Universe [10]. Both
large- and small-R behaviors appeared related somehow
by the mapping R ~R

In order to go further in the understanding of the
string dynamics in de Sitter spacetime, we give in this pa-
per a different formulation of this problem and search for
its exact solvability.

The string equations of motion in curved spacetime are
generalized nonlinear o. models. de Sitter spacetime is
maximally symmetric; the string equations in D-
dimensional de Sitter spacetime correspond to a noncom-
pact O(D, 1)-symmetric tr model in two dimensions. This
model is integrable.

In addition, the two-dimensional (world-sheet) energy-
momentum tensor is required to vanish by the con-
straints. For our purposes here, it is convenient to con-
sider de Sitter spacetime as a D-dimensional hyperboloid
embedded in (D +1)-dimensional Rat Minkowski space-
time of coordinates (q, q ', . . . , q ). The complete de Sit-
ter manifold is the hyperboloid

—(q ) + g(q') =1 .

The string system of equations can be then simplified
by choosing an appropriate basis for the string coordi-
nates in (D+1)-dimensional Oat embedding space. The
construction of this basis is analogous to the reduction of
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g=(cr+r)/2, il=(o. —r)/2,
and the function a(g, g) is defined by the scalar product

(1.2)

The vector fields u; and U; take into account embed-
ding dimensions beyond 3 and relate to Bp and B„q, re-
spectively. In D=2, we have u =v=0, and Eq. (1.1)
reduces to the Liouville equation

(1.3)

In D =3, we find u =u(g), v =v(g), and then, using the
reparametrization in variance on the world sheet, we
change the variables

such that

a(g, i))=a(g', il')+ —,'ln[u(g)v(rl)] .

Then Eq. (1.1) reduces to the sinh-Gordon equation

a .a.a —e '&'&'+e '&'&'=0.

(1.4)

(1.5)

In D =4, we find that the scalar product u; v; =cosp is
determined by the equation

B„t)& P—e sinP =0,
and Eq. (1.1) reduces to

(1.6)

the O(N)-symmetric nonlinear o model [12]. We find
that the string system of equations is equivalent to a gen-
eralized sinh-Gordon equation

D+ 1

d&d~(g, rl) e—'~'"'+e '~"' g u;v; =0,
i=4

where

stretching and shrinking is a typical feature of string in-
stabilities, here appearing as a direct consequence of the
generalized sinh-Gordon equation, without the need of
searching for explicit solutions.

The string equations of motion and constraints enjoy
an exact symmetry transformation which is defined by a
first-order differential equation in (cr, r) and whose com-
patibility condition yields the equations of motion. This
is a Backlund transformation which relates solutions of a
expanding string metric of radius R into solutions of the
contracting or "dual" string metric of radius R =R
We relate the solutions a and a of the generalized sinh-
Gordon equations through this Backlund transformation.

We also analyze solutions of this problem. First, we
solve the D=2 case. In this case, we find all the solu-
tions. The solution corresponding to the center of mass
of the string (geodesic motion) appears in a separate sec-
tor from the solutions describing the true string proper-
ties. En two dimensions there are strings wound around
the de Sitter universe and evolving with it. These solu-
tions depend on two arbitrary functions which just reAect
the conformal invariance on the world sheet. (There are
no further arbitrary functions since there are no trans-
verse degrees of freedom in D =2.) Here rH [O, m.] and a
half of the string evolution (0(r(~ /2) corresponds to
the expansion time (0 & u & ~) of the de Sitter universe, u

being the cosmic time. [Similarly, (m/2( &rm) corre-
sponds to the contraction phase ( —~ & u (0).] (See Fig.
1.) The string can wind n times around de Sitter space
(here a circle), n being an integer. In such a case, the
string-evolution period is reduced to b,r=m. /2n (instead
of being ~/2); i.e., in r, the string expansion (and contrac-
tion) is n times faster.

Asymptotically, for u —++~, the cosmic time u de-
pends logarithmically on ~. In the context of cosmologi-

B„.8&a —e +e cosP=O, (1.7)

as was found in Ref. [11].
The result that the string propagation in D-

dimensional de Sitter spacetime follows a generalized
sinh-Gordon equation (in particular, in D =3, this is just
the standard sinh-Gordon model) shows that the presence
of instability is a general exact feature of string propaga-
tion in de Sitter spacetime, irrespective of any approxi-
mation scheme or any particular solution. The strong at-
tractive potential corresponding to the generalized sinh-
Gordon equation is unbounded from below, and this indi-
cates that the string time evolution tends to the absolute
minima at a= —ao and + ao. [This unstable behavior is
explicitly exhibited by the form of the solutions —see
Eqs. (5.13), (5.14), (5.17), and (5.20), for instance. ] The
function exp[a(cr, r)] is a measure of the proper length of
the string. The invariant length of the string is given by

q1
q2

dg2 ea(~, r)(dO'2 dT )
1

2H

and it grows infinitely when a~+ ~. Similarly, when
a~ —ao, the string collapses to a point. This infinite

FIG. 1. One-sheet hyperboloid represents the (1+1)-
dimensional de Sitter spacetime embedded in a three-
dimensional space. The solid circle represents a string solution
A [Eq. {3.16)] at a given time.
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cal backgrounds, this logarithmic behavior is typical of
strings in the de Sitter universe. In these asymptotic re-
gions, the proper length of the string stretches infinitely;
i.e., the conformal factor exp[a(o, r) ] blows up.

This is the same unstable behavior found in
inflationary backgrounds [10], as well as for strings fal-
ling into spacetime singularities [7]. In such asymptotic
regimes, w is proportional to the conformal time, another
relation typical of strings in the presence of strong gravi-
tational fields or near spacetime singularities: In the
asymptotic regimes where the string stretches or shrinks
indefinitely (and is thus unstable), the string evolution is
governed by the conformal time.

The solution corresponding to the center of mass is the
trajectory of a massless particle. Transverse dimensions
are absent in D =2, and then only massless states appear.

We also analyze solutions for D=3 and 4. We find
that, for ~—+0,

where

q0=sinhHt0+ e ' g (X')
2

2 Ht D 1

q'=coshHt0 — e ' g (X')
2

(2.5)

Hto
q,. +1=He X', i =1, . . . , D —1,

—oo &to, x'&+ oo

The complete de Sitter manifold is the hyperboloid

(2.6)

The coordinates (t0,x') and (rj, x') cover only half of the
de Sitter manifold q +q' & 0. Further systems of coordi-
nates, which will be used below, are defined by

ct(cr, r) =+21nr~+ 0O . q =sinhu, —~ ~u ~ ~,
This behavior rejects the string instability in de Sitter

space, as a consequence of the unboundness of the sinh-
Gordon potential.

The study of exact string solutions in a de Sitter
universe including higher dimensions will be published
elsewhere [13].

This paper is organized as follows. In Sec. II, we for-
mulate the problem and find the reduction of the O(D, 1)
0. model and constraints to the generalized sinh-Gordon
equation in D dimensions. In Sec. III we solve complete-
ly the D =2 case and analyze the physical meaning of the
solutions. In Secs. IV and V we study the D =3 and 4
cases, respectively, and find the explicit behavior of the
solutions related to the unstable character of the general-
ized sinh-Gordon Hamiltonian.

II. STRINGS
IN D-DIMENSIONAL DE SITTER SPACETIME

AND A GKNKRALIZKD sinh-GORDON EQUATION

q;=Q;coshu, 1~i ~D,
where q belongs to the D-dimensional unit sphere

D

gQ, =1.

(2.7)

The metric in these coordinates takes the form

dS = [ —du +(dq) cosh u] .
1

H
(2.8)

S=,f [8 q B~q+A(o, r)(q q
—1)]der dr .1

2~a' (2.9)

Here we use the scalar product

We will consider a string propagating in this D-
dimensional spacetime. In the conformal gauge, the
string action is given by

Let us consider D-dimensional de Sitter spacetime with
a metric given by

D
a b= —a0b0+ g a;b; . (2.10)

2HtdS~= dt0+e '—g (dX') (2.1)

Here to is the so-called cosmic time. In terms of the con-
formal time g,

A, (o, r) is a Lagrange multiplier that enforces the con-
straint Eq. (2.6), and (o., r) parametrizes the string world
sheet, as usual. Extremizing the action Eq. (2.9) and
eliminating the Lagrange multiplier, we find the equa-
tions of motion,

—Htog= ——e
H

—~ &g~0, (2.2)
q&„+(q& q„)q=0, (2.11a)

the line element becomes

dS = 1

H g

D —1—dg + g (dX')
i=1

(2.3)

with

q-q =1, (2.11b)

dS = 1

H

D—(dq ) + g (dq') (2.4)

The de Sitter spacetime can be considered as a D-
dimensional hyperboloid embedded in a (D + 1)-
dimensional Aat Minkowski spacetime with coordinates
(

0 D).

where

g=(o+r)/2, r)=(o —r)/2,

qq

and so on. The string constraints on the world sheet are
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T(~ =q( ——0,2=

T„„=q„=O, (2.12)

D+1
q~~=aggg+ g u;b;

i=4
(2.20)

Equations (2.11) describe a noncompact O(D, 1) non-
linear o model in two dimensions. In addition, the (two-
dimensional) energy-momentum tensor is required to
vanish by the constraints Eqs. (2.12). This system of
linear partial differential equations can be simplified by
choosing an appropriate basis for the string coordinates
in (D+1)-dimensional Minkowski spacetime. The con-
struction of this basis is analogous to the reduction of the
O(N) nonlinear 0 model.

We choose as a basis the vectors

e, =(q, q&, q„,b&, . . . , bz+&), 1 ~i ~D+1, (2.13)

where the b; form an orthonormal set;

b b=5;

D+1
q„„=a„q„+g v;b; .

i=4

From Eqs. (2.15) and (2.17a), it follows that

(x — e '~
q

—a(&, )

Then

Inserting Eqs. (2.20) and (2.21) in Eq. (2.22) yields

D+1—e ~'"'+e '~'" ~~ u. .U. =O .l I

i=4

(2.21)

(2.22)

(2.23)

and

b .q=O,
b- q =0,
b; q~=O.

(2.14)

This is the evolution equation for the function a(g, g)
determining the scalar product q& q„, for all D. This is a
generalization of the sinh-Gordon equation. It remains
now to find the evolution equations for the fields u; and
v, . In order to find the equations for u,. and U, , we ex-
press the derivatives of the basis vectors Eq. (2.13) in
terms of the basis itself:

We define

e '&&'= —
q .q„.

It is easy to show from Eqs. (2.11b) and (2.12) that

(2.15) Be. ()e;= A;, (g, ri)e, ,
' =B,i(g, g)e, .

3'g
(2.24)

q q„=q q&=0,
(2.16)

For the first three vectors, Eqs. (3.17a), (2.20), and (2.21)
yield the coefficients A," and B; (i = 1,2, 3) and
1 ~j ~ D + 1). For the remaining vectors, from Eqs.
(2.14) and (2.20) we find

q „=qe '~'"', (2.17a)

In the basis Eq. (2.13), the second derivatives of q are
expressed as b, &=e u;qz. + g [bj (b;)~)bz,

(2.25)
b, „=e u, q~.+ g. [bz (b, )z]bj. ,. 4~i,j ~D+ I,

JPl
D+1

q+=Bq&+Cq„+ g u;b;,
i=4

D+ 1

q„„=Eq&+Fq„+ g v b; .
i=4

Here

(2.17b)

(2.17c)
D+1

(u;)„= g u b, (b;)„,
J =4,JWl

(2.26a)

where the coefficients b (b; )& and b~ (b; )„depend upon
the explicit choice of the vectors b4, . . . , bD+1.

With the help of Eqs. (2.18) and (2.20), we get

u,. =b, .qg, U, =b; q„„. (2.18)
D+1

(v, )~= g u, b, .(b, )g. ,
j=4,j&i

(2.26b)

The coeKcients B, C, E, and F are determined by using
Eqs. (2.9), (2.11), (2.16), and (2.17a). We find where we have also used Eq. (2.17a). Notice that

C=E=O,

Therefore we have

(2.19)

bj (b;)„=—b; (b, )„

since

b; bj=5,", 4~i,j ~D+1 .

Finally, the complete matrices A; and B;.are given by
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0 0
0

0 0

e 0
0 0

0

e u4

0
0

b; (bj )r

0

b4 (b2+i)1
(2.27a)

0 0 e uLi+i br+i). (b4)g 0

0 0
0
0

v4e

0

0
0

V4

0

b; (b )„.

0
0

VD+1

b4 (be+i)„
(2.27b)

0 Un+ie 0 br'+&'(b4) 0

The compatibility condition for Eqs. (2.24) is expressed then (X,X') are solutions of the same system of equa-
tions for the metric

B„A i3gB + [ A—, B ]=0 . (2.28)
dS = —(dX ) +R (dX')

X —X —R g [(X ') —(X') ]=0,
dXP

(2.29a)

In the forthcoming sections, we will discuss these equa-
tions for D =2', 3, and 4.

Let us now investigate the exact symmetries of these
equations. For this purpose it is convenient to use the
coordinates (X,X'), i =1, . . . , D —1, given by Eqs. (2.5).
In terms of these coordinates, the string equations of
motion and constraints are expressed as

= —(dX ) +R (dX') (2.33)

Equations (2.31) transform a solution of the nonlinear
equations (2.29) and (2.30) into a solution of the same sys-
tem. This is therefore an auto Biicklund t-ransformation
[Note that under Eq. (2.31), Eq. (2.29b) for X' becomes an
identity, while the compatibility condition for the trans-
formations (2.31) yields Eq. (2.29b).] In terms of the
coordinates (X,X'), the scalar product Eq. (2.15) defining
the function exp[a, (o, r)] is expressed as

~ ~ 2 dR p ' -p. .X' —X ' —— (X X'—X X')=0,
R dX

(2.29b)
D

&a H2 (XO)2 (X'0)2 R 2 g [(Xi)2 (X'i)2]
1 =2

(X ) +(X ) —R g [(X') +(X') ]=0,

X X —R gX 'X'=0 .

(2.30a)

(2.30b)

i.e.,
D

e =H XX —R ~ X'X'
1 =2

(2.34)

Let us now consider the transformation

X'=X',
X'=R X'
X'=R X'

where R—:R '. That is,

(2.31) or

Using the transformation (2.31), we have

D
&a —&a 2R2 y XiXi

1 =2

D
e =e —2R g X&X'„.

1=2

(2.35)

(2.36)

X' =R X'

R 2X1
71 7l

Under the transformation (2.31), Eqs. (2.29) and (2.30)
remain invariant. This means that if (X,X') are solu-
tions of Eqs. (2.29) and (2.30) for the metric

D+1
BP„a—e —e g u, U, =O,

i=4
(2.37)

Equation (2.35) [or Eq. (2.36)] connects two solutions of
the generalized sinh-Gordon equation (2.23). That is, if
a(o. , r) is a solution of Eq. (2.23) for an expanding metric
[Eq. (2.32)], then a(cr, r) is a solution of the equation

dg2 (dXO)2+R 2(dXi)2 (2.32) for a contracting metric (2.37).
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This Backlund transformation relating o. and a is
different from the well-known Backlund transformation
relating two solutions ao and a of the sinh-Gordon equa-
tion [15],namely,

Ugcoshu =+up

v~coshu =+up&

where c =1. In addition,

(3.7a)

ao+a
2

O.'O= Asinh
2

CXO+ CX

'sinh
2

q& q„=cosh uv&v„—u&u„=(E —1)u&u„.

The general solution of Eq. (3.7a) is given by

v =+2arctan(e")+ G(71),

v =+2earctan(e")+F(g),

(3.7b)

(3.8)

where 3 is an arbitrary parameter.
The transformation (2.31) was suggested by the asymp-

totic behavior of the string solutions for R ~ ~ and
R ~0 in the highly unstable regime. (The relation
R —+R ' precisely connects these behaviors. ) It was
called "R duality'* [l4], since it appears as an extension of
the target space duality of string theory in compactified
spacetimes with radius R, in which case the string spectra
for radii R and o."hR ' are equivalent.

As we will see in Sec. IV, Eq. (2.23) in D =3 becomes
the sinh-Gordon equation. In this case we have the addi-
tional symmetry a~ —a.

A. Case A: c= —1

Here we find

v =
—,
' [F(g)+G(i) )],

F —G
u =ln +tan

4

(3.9)

where F and 6 are arbitrary functions of the indicated
variables. We have here two different cases, depending
on whether (A) e = —1 or (B) e = + l.

III. STRINGS
IN TWO-DIMENSIONAL DE SITTER SPACKTIME

This corresponds to the previous solutions Eq. (3.4).
From Eq. (3.7b) we have

Let us now study the case D =2. In this case a com-
plete basis is formed by

F'(g)G'(g)
q& q„=—e

sin [(F—G)/2]
That is,

(3.10)

e;=(q, q&, q„) .

Therefore Eqs. (2.20) and (2.23) become

and

(3.1)

(3.2)

f(g) —e lF(g)

g(+) —eiG(g)

B. Case 8: c.=+1

(3.11)

(3.3) In this case

This is the Liouville equation whose general solution is
given by

q&-q„=o,

0gB q —0
(3.12)

(g ) I
2f'

[f(k)+g(n) ]' (3.4) and, therefore, the parametrization in terms of the field
a(g, g) breaks down. Equations (3.8) yield

where f and g are arbitrary functions of the indicated
variables.

The D=2 case can be solved directly from the equa-
tions of motion [Eq. (2.11)]and the constraints Eqs. (2.12)
in the coordinates (2.7). In this case these coordinates are
given by

F=G =const=—C .

Then

u =ln +tan (3.13)

qo =sinhu, —~ ~u ~+~,
q& =coshu cosu, O~u ~2m,

qz =coshu sinu, 0 v 2m .

The constraints Eqs. (2.12) take the form

q&=(v&) cosh u —(u&) =0,
q„=(v„) cosh u —(u„) =0 .

Therefore we have

(3.5)

(3.6)

qo = + cot(v —C),
q, =+cot(v —C)cosC+ sinC,

qua=+cot(v —C)sinC+cosC .

Therefore we find

(3.14)

Now we consider the equation of motion [Eq. (3.12)] to
find the dependence on g and i). From Eqs. (3.5) and
(3.13), we find
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v =C —
m /2+ arctan[R (g)+S(q)],

coshu =
( 1+[R (g')+S(g) ] J

'
(3.15)

Let us consider the invariant interval

2= 1dS = [
—du +coshudv ]H

(3.20)

where R(g) and S(g) are arbitrary functions of the indi-
cated variables.

Let us analyze now the solutions for these two cases.
The two arbitrary functions appearing in the solutions for
the cases 3 and 8 correspond to the conformal invari-
ance of the world sheet. There are no further arbitrary
functions since we do not have transverse degrees of free-
dom in D=2.

between two points on the string. For the solution Eq.
(3.17), we have

ndS =
2 (der dr—).8 sin nz

(3.21)

In the asymptotic regions r~0+ and r~~ /n, the
conformal factor blows up. The proper length of the
string stretches infinitely as

C. Case A: c= —1

Using the world-sheet conformal invariance, we can al-
ways choose a gauge where

1 bo. for ~~0+
H~

hX= '

Ao for ~~~ /n .
H(rr/n —r)

(3.22)

i.e.,

v=o, 0&o.~2~,

sinhu = —cot~, —~~u~+~ .

u =ln tan —,0&~~v,
2

(3.16)

This is analogous to the unstable behavior found in D-
dimensional inflationary backgrounds [9,10], as well as
for strings falling into spacetime singularities [7].

It is interesting to relate the string solution to the
cosmic and conformal times to and g respectively.

From Eqs. (2.7) and (3.16), we find

This describes a string wound around the de Sitter
universe and evolving with it. A half of string evolution
n /2 & r & m corresponds to the expansion time 0 & u & ~
of the de Sitter universe and similarly for the first half
0 & ~ & ~/2, which corresponds to the contraction phase—~ & u & vr (see Fig. 1).

Equation (3.16) describes a string wound once around
de Sitter space (here a circle). More generally, we may
have

v =no, 0&o. +2m,

coso.
q = —cot~, q =

sin~
sino
Sin7

(3.23)

and then, using Eqs. (2.2) and (3.23), we have

—e =Hg=0 SlnT

cosv coso
(3.24)

The coordinates (to,X, ) or (g,X, ) only cover the sector
o &r of the string world sheet. (For simplicity, we have
taken here n = 1.)

In the asymptotic region ~—+~, the conformal time g
behaves like

n7.
u =ln tan

2
0&~~m/n,

(3.17) 7 ~0, 0&o- &~ .
2H sino. /2

(3.25)

where n is an integer number.
This solution describes a string wound n times around

de Sitter space. In this case the string-evolution period is
reduced to b,r=rr/(2n) (instead of being 7r/2); that is, in
time r, the string expansion (and contraction) is n times
faster.

Note that, for u ~—~,

In this asymptotic regime, the string time ~ is proportion-
al to the conformal time g. This relation is typical of
strings in strong gravitational fields such as inAationary
backgrounds or a string falling into spacetime singulari-
ties: In the asymptotic region where the string stretches
indefinitely (and is thus unstable), string evolution is
governed by the conformal time.

Note that, alternatively to Eq. (3.16), one could take
the choice

i.e.,

n7
u =ln

2 V=1

u =ln(tano /2) .
(3.26)

0

and that, for u ~+ ~,
(3.18) However, the physical meaning of this choice is not clear

to us.

D. Case B: c, = + 1

7T n7
u = —ln

2
(3.19) Let us consider now case B [Eq. (3.15)]. Using the

world-sheet conformal invariance, we can always choose

1.e., v =C —~/2+arctan~,

coshu =(1+@)'
(3.27)
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qO The vectors (q, q&, q„,b) form a basis. In addition,

b, b'=1 .

In this case Eqs. (2.25) take the form

b„=ve q&,

b&=ue q„,

(4.2)

(4.3)

where u —=u4 and v —=v4. Here the compatibility condi-
tion Eq. (2.28) yields

ql

0 e 8&v

0 a&„+uve —e

0

0

0
—a&„+e —uve

e B„u

B~u

8 v

0

(4.4)

FICx. 2. Same as in Fig. 1, but now the string solution B [Eq.
(3.28)] is drawn. This is in fact a geodesic.

This implies

u =u(g), U =U(g),

Therefore the string motion Eq. (3.14) yields a&„—e +uve =0 . (4.5)

q =7)
q

' = —~ cosC —sinC,

q = —r sinC+ cosC .

(3.28)

This solution actually describes a particle trajectory since
it was possible to gauge away the parameter o.. Equation
(3.28) describes a geodesic in two-dimensional de Sitter
spacetime, that is, the trajectory of a massless particle.
Since transverse dimensions are absent, only massless
states appear in this two-dimensional case. The solution
Eq. (3.27) or (3.28) is a particular case of the center-of-
mass solution described in Ref. [1]when D =2 and m =0.
When ~ goes from —~ to + ao, the light rays go from

q = —~ to q =+ao. At the same time, the angle v

varies through an interval of rr: v( —ae)=v(+De)+sr.
In Eq. (3.27) the signs + correspond to a motion in the
positive or negative direction of the de Sitter spatial cir-
cle (see Fig. 2). It should be noted that traveling from
q =~= —~ to + ~, the particle goes over half of the de
Sitter circle.

The solutions described in cases A and B contain a/l
the string so)utions in two-dimensional de Sitter space-
time.

IV. STRINGS IN
THREE-DIMENSIONAL DE SITTER SPACETIME

In particular, in the D =2 case, b =0, and then, from Eq.
(4.3), it follows u = u =0; that is, in D =2, we have

a —e =0

which is the Liouville equation, as we have found in Sec.
II.

It is convenient to transform the variables as

a(k, g) =a(k', rj')+ in[ f(r) )g(k) l

where

(4.6)

and

f'(g)=v(g), g'(g)=u(g) . (4.7)

Then Eq. (4.5) takes the sinh-Gordon form

n&.„.—e +e =0 . (4.8)

In this way the string equations and constraints in three-
dimensional de Sitter spacetime reduce to the sinh-
Gordon equation.

The string coordinates q and its derivatives q& and qz
are related to a(g', g) through

In D =3 we have a four-dimensional embedding Min-
kowski spacetime where the antisymmetric Levi-Civita
tensor allows us to construct a vector b—:b4 orthogonal
to the vectors q, q& and q„, namely,

e = —q&.q„,
b.q~~

= 1, b.q„„=1,
where

(4.9)

b, =—e e,b,dqb(q&), (q„)d . (4.1) b. =e e.b,dqb(qq), (q„)d,
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and we dropped the primes in g' and i)'. In order to
make these equations explicit, it is convenient to perform
a stereographic projection of the three-dimensional unit
sphere q [see, for example, Eq. (2.7)]:

a„[(u,)'+(u, )']=0 .

Then we write

u4 = U(g)cosP(g, g),

(5.2)

q) +EQ2

1+q3

i/28'=
1+q3 b~ (bg)„=

(u4)„
13

—.
'yI

Q5

u~ = U(g}sinf3(g, g},
(4.10) and, from Eqs. (5.1) and (5.3), we have

(5.3}

(5.4)

ug

coshu

Using (u, u, m) as coordinates of de Sitter spacetime, Eqs.
(2.12) and (4.9) are expressed as

2

=4 8'g Wg

(1+WW)

Similarly, by using Eq. (2.26b), we find

U4 = V(i) )cosy(g, i) ),
U, = V(i))siny(g, i)),

(5.5)

u~

coshu

8 „8'„=4
(1+WW)

(4.11)
and then we have

b~ (b4)g= —yg. (5.6)

( W~W„+ W„W()
e =u u —2 " " coshu,

(1+WW)
(4.12)

We are now in a position to write the complete ma-
trices A and 8 [Eqs. (2.27)] of the linear system Eq.
(2.24):

a (W&W„—W&W )cosh u
1+8'8
X [u&&[cosh u —2u&u„/(e —2u&u„)]

+(u&) (tanhu)[sinh u —2 —e /(e —2u&u„)]

0 I

0 ag

e 0

0 0
Q4 Q5

0 0 0

0 0 u4e 0 —
yg

(5.7a)

and

+ e u~ a~ /(e 2u ~—u „)], (4.13a) 0 0 u5e yg

0 0 1 0 0
( W& W„—W& W„)cosh u

1+8'8'

2ugu~
X . u cosh u

e —2u&u„

0
0

0 v4e

0 v&e

ea
B= 0

0 0 0
a v4

0 0

(5.7b)

+(u„) (tanhu ) sinh u —2— ea

e 2Q(u ~
Here the compatibility condition Eq. (2.28) yields
nontrivial equations

+e u a„/(e —2u&u„) ',

where a(g, i)) obeys the sinh-Gordon equation

a&„—e +e =0,
where we dropped the notation A in a.

(4.13b)

(4.14)

a&
—e +(u4v4+u~u5)e =0,

(y —P)&„+(u5U4 —
u4U~)e =0 .

Equation (5.8a) is just Eq. (2.23) for D =4.
From Eqs. (5.3) and (5.5), we find

a&„—e + U(g) V(i))e cosP=O,

P&„—U(g) V(il )e sinP=O,

(5.8a)

(5.8b)

(5.9a)

(5.9b)

(u4)„=usb5 (b~)„,

(u5 )„=u4b4 (b5 )„= b5.(b4)„u4 . —

A consequence of these equations is

(5.1)

V. STRINGS IN
FOUR-DIMENSIONAL DE SITTER SPACETIME

Here we have a five-dimensional embedding Min-
kowski spacetime, where one has to choose two orthogo-
nal vectors b4 and b5 forming a basis together with the
vectors q, q&, q„. In D =4, Eqs. (2.26a) take the form a&.„.—e +e cosP=O,

P&.„—e sinP=O .

(S.IOa)

(5.10b)

It must be noted that when P=0, Eqs. (5.9) [or,
equivalently, Eq. (5.10)] give Eq. (4.5) [or its equivalent
Eq. (4.8)] of the D =3 case.

where P(i), g) =P—y.
As for the D =3 case, it is convenient to perform the

transformation defined by Eqs. (4.6) and (4.7), which
yields
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Equation (5.10) can be derived from the (reduced} La-
grangian

X=—2)(c)„a) + —,'(c)P) —V(a, P),
V(a, P) = —e —e cosP .

(5.11)

UD 2+ ) (a ) = —2 cosha,

UD —3+)(a)= —e —e cos13,
(5.12)

In Ref. [11]this Lagrangian was derived from the string
equations in de Sitter spacetime. This potential can be
related to the B2 Toda field theory upon changing P~iP

The effective models derived in 2+1 and 3+1 dimen-
sions [Eqs. (4.14) and (5.10)] have, as potentials,

2a, i)
= —ln ——r[C, cos()/7 lnr)

f3, c)=")/r A cos

+C2sin(&7 lnr)+ C3 ]+ 0(r ),
(5.17)

v'7 V'7

2
ln~ +B sin ln~

2

strongly attractive points a = + ~ in the (3+ 1)-
dimensional case. The absolute minimum at the point
a= —oo, P=O represents the limit of a collapsing string
configuration, whereas the absolute minimum at the line
cc=+ ~, ~P &n/2 describes an expanding string. The
asymptotic behavior of the solution near the shrinking
point a —+ —~, )c)~0 is given by

respectively. They are unbounded from below, and they
indicate that the string time evolution should tend to the
absolute minima at a= + ~ and —~ (with ~13~ & ~/2 in
the 3+ 1 case). It is then interesting to study the string
behavior near such strongly attractive points a =+~.

Let us start by the (2+1)-dimensional case (i.e. , the
standard sinh-Gordon equation). By choosing the time
origin such that a=+ ~ at ~=0, we find, from Eq.
(4.14),

e, ' D') = +B(cr)+ [3B (o )+B"(o ) —1]+O(r ),a(o. ~)

(5.13)

where the coefficients C„Cz, and C3 in a(o, r) are relat-
ed to the 3 and B coefBcients as

Ci= [2&7AB+9(A —B )],176

C2= [18AB—&7(A —B )],176

C= ——(A +B ).1
3 4

(5.18)

For a —++ oo (stretching of the string), P decouples from
a; the asymptotic behavior is given by

where B(cr) is an arbitrary periodic function of o.
Now in order to find q(cr, r) near r=O, we must satisfy

Eqs. (2.11), (2.12), and (2.15). A consistent solution near
~=0 has the form

a= —ln +O(r ),
2

sina 4@=a+br
24

(5.19)

V()(o )
q(o, r)= + V, ( r)c+ Vr~( )c+rr V3(o )

In order to find q(o, r), we must satisfy Eqs. (2.11),
(2.12), and (2.15). We find

I

+r V„(o )+O(r ), (5.14) 1
q(o, r) = V()(o )

7

A (o. ) —B (o )

88
where V, (o )=0, Vi)(cr) is a null vector with VI) having
unit norm:

V V =0 V' ~ V'=1
A(cr)B(o )

44

V() VI) = ,'B(o). —.
The vector V2(o) is given by

V2(o }=—
—,
' VI)(o )

— Vi)(o ) .

(5.15)

(5.16) where

A (o)+B (o)
4

+O(r, rC, rS ), (5.20)

It follows from Eqs. (5.15) and (5.16) that

2V2 V()=1, V() ~ V2= V(). V2=0, V2 V2= B(o )/8 . —

The vector V3 must obey

V V =V V'=0

Finally, we have, for V4(o ),

V ( )
1 V" +BV + 3B(cr) +B"(o }—1

V4 o
4 2 2 10 0

Let us consider now the string behavior near the

C(r) =cos(V'7 lnr),

S(r) =sin(&7 lnr),

and A(o ) and B(o) are the coefficients of the r~O be-
havior of P. For A =0 and B=0 (i.e., P=O), we recover
the (2+ 1)-dimensional case.
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