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Quasiclassical equations of motion for nonlinear Brownian systems
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Following the formalism of Cabell-Mann and Hartle, phenomenological equations of motion are derived
from the decoherence functional of quantum mechanics, using a path-integral description. This is done
explicitly for the case of a system interacting with a "bath" of harmonic oscillators whose individual
motions are neglected. The results are compared to the equations derived from the purely classical
theory. The case of linear interactions is treated exactly, and nonlinear interactions are also compared,
using classical and quantum perturbation theory.

PACS number(s): 03.65.Bz, 03.65.Ca, 05.40.+j

I. INTRODUCTION

A. Decoherence and the quasiclassical limit

Two of the most puzzling aspects of the quantum
theory have, until recently, remained unclear: the proper
interpretation of quantum probabilities, and the mecha-
nisrn by which deterministic classical "laws" can arise
from a probabilistic underlying theory. The idea of
wave-function collapse, while providing a useful approxi-
mate description of most experimental situations, begs
the question of why a system which otherwise undergoes
purely unitary evolution should suddenly and dramatical-
ly be collapsed upon rneasurernent by a scientist. The
procedure is highly asymmetric, instantaneous, and ir-
reversible, and moreover requires the existence of a "clas-
sical" measuring device outside the system being mea-
sured. When one considers a closed system the idea of
wave functions collapsing becomes highly ambiguous.
There is nothing outside the system to collapse it. The
quintessential example of this, of course, is the Universe
itself. Clearly, if the fundamental laws of the Universe
are quantum mechanical, there can be no separate "clas-
sical domain" to explain our observations. Since the clas-
sical realm is itself, presumably, merely a limit of the un-
derlying quantum reality, the probabilities must arise
directly from the quantum theory itself, without recourse
to the deus ex machina of the measurement device. And
somehow, the various potential futures of the Universe
must collapse themselves onto the one possibility which
we observe. Quantum cosmology requires a solid formal-
ism for the treatment of closed systems, and work in this
field should have that as its goal.

The recent work on the decoherence functional formu-
lation avoids the problems of earlier approaches [l —4].
Physics is described in terms of exhaustive sets of possible
histories, coarse grained, with the restriction that these
histories must be decoherent. That is, it must be possible
to assign probabilities to these histories such that they
obey the classical laws of probability with no interfer-
ence.

Cabell-Mann and Hartle have argued that it is possible,
in a highly coarse-grained system, to define the classical

equation of motion directly from the decoherence func-
tional itself [5]. I will, in this paper, attempt to show that
this definition gives the exact classical results, at least for
the case of systems interacting with baths of oscillators,
and further, that these systems are decoherent in the clas-
sical limit. Quantum eff'ects enter as a random, ffuctuat-
ing force from the effects of neglected degrees of freedom,
even in cases where the classical noise would ordinarily
be zero. Fluctuations, dissipation, and decoherence turn
out to be intimately interlinked.

The linear case has been treated before by a number of
people, both classically and quantum mechanically,
though not in precisely this same way [6—8]. The
correspondence of this quantum system to the classical
Langevin equation is thus nothing new. The decoherence
of similar systems has also been examined, using a some-
what different definition of decoherence, which for these
models generally corresponds to my definition [9]. How-
ever, to my knowledge, no one has considered the classi-
cal correspondence of these sorts of nonlinear systems,
nor the relationship between dissipation, noise, and
decoherence in these more general cases. Thus, the re-
sults herein are of interest in demonstrating that it is pos-
sible to define classical equations of motion directly from
the quantum theory in a broad range of systems.

B. Path-integral description
of the decoherence functional

We will not, for the purpose of this model, be using the
decoherence functional in its most general form. Instead,
we will consider only one type of history. Suppose that
our system is completely described by a set of generalized
coordinates q~ (collectively referred to as q). The most
fine-grained possible family of histories would be just the
set of all possible paths q (t). We can coarse grain this by
dividing the range of the q~ into an exhaustive set of in-
tervals b, ' (t, )at a sequence of. times t&, t2, . . . , where

t

the a; are an index labeling the intervals. We can then
specify one particular history by which interval was
passed through at each time, labeling it by the sequence
of indices a&, a2, . . . , which I will generally abbreviate as
a. Such a history includes all possible paths which pass
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through the given set of intervals at the given times.
The decoherence functional is a functional on pairs of

histories. The value of this functional on a pair of his-
tories a and a' is given by

D(a', a)= f 5q' f 5q 5(q& —
q&)

Xexp(i[S[q'(t)] —S[q(t)]J/A')

Xp(qp qo) .

Here we are integrating over all paths which pass
through the specified sequence of intervals. The func-
tional S[q ( t ) ] is the fundamental action. If
ReD(a', a)=0 for a'Xa, then the system is said to be
decoherent, and obeys classical laws of probability. The
diagonal elements D ( a, a } are the probabilities of each
history a.

The simplest form of this type of history is that where
the intervals are completely fine grained in certain vari-

ables, and completely coarse grained in others. We
divide the coordinates q~ into two groups: x~ (henceforth
known as the system coordinates), referred to collectively
as x, and Q" (henceforth known as the reseruoir coordi-
nates), referred to collectively as Q. Our histories will
then be complete trajectories x ~(t) for the system coordi-
nates, while the reservoir coordinates will be neglected
completely.

It is then convenient to break the fundamental action
of the system into several parts:

S[q(t) ]=S,„,[x(t)]+S„,[g(t) ]—f V(x (t), Q(t) )dt,

(1.2)

where S,„,[x (t)] is the action of the system, S„,[Q(t)] is
the action of the reservoir, and there is an interaction po-
tential V(x, Q) between them. The decoherence function-
al is then

D [x'(t),x(t) ]=exp(i [S,y, [x'(t) ]—S,y, [x( t) ] [ /fi)

X fSg' f 5Q 5(g'(t&) —g(t&))exp. i S„,[g'(t)] —S„,[Q(t)]

Xp(xo, gp', xp Qp)

—f [ V(x'(t), g'(t) ) —V(x(t), g(t) ) ]dt
0

(1.3)

II. LINEAR CASE

s„,[g(t}]=yf ' (g" ~', g" )dt . —
k '0

(2} The initial density-matrix factors

p(xo Qo'xo Qo)=X(xo xo)4'(Qo Qo) .

(2.1)

(2.2)

A similar assumption classically is to assume that the ini-
tial probability distribution of the reservoir coordinates is
independent of the initial state of the system coordinates.

(3) The interaction V(x, Q) is bilinear:

V(», Q) = —gy „xQ
k

(2.3)

I will generally assume that x is a single variable; mu&-

tivariable systems are a trivial generalization, where the
yk become matrices.

The case of a system interacting linearly with a reser-
voir is a famous one, and has been treated by a number of
people, quantum mechanically by Feynman and Vernon
and by Caldeira and I.eggett, and classically by Zwanzig.
For convenience, it is customary to make a number of
simplifying assumptions.

(1) The reservoir variables Q" are harmonic oscilla-
tors, i.e.,

We will relax these assumptions to a certain degree
later on, but for now let us consider this case. The classi-
cal case is exactly solvable. In this, the equation of
motion for the reservoir variable Q" is

d2 k

(t) = —a)qg "(t)+(yq/m )x(t) . (2.4)

Vk+ f sin[co& (t —s ) ]x (s)ds .
m cok

We can then use this in the equation of motion for x:

k

(2.5)

(t)+F(t)
Bx

2

+g f sin[co~ (t —s ) ]x(s)ds,Vk

k meek

(2.6)

This has a solution

Q "(tp )

Q "(t)=Q "(tp)cos[coz(t tp)]+ —sin[co&(t tp)]—
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where F(t) is the Langevin force. In this case, it is clearly

F(t) =g'Yj (gk(to)cos[cok(t to—) l

(F(t)) =o,

(F(t)F(s) ) =gy„cos[co„(t—s ) ] .
kT

m cok

(2.10a)

(2.10b)

Q (to)+ si n[ to k(t —to)]) .
COk

(2.7)

If we assume that the Q have a thermal probability distri-
bution initially,

Let us compare this to the quantum results. It is interest-
ing to first consider the system in isolation from the reser-
voir. In this case we would have

D[x'(t), x(t)]=exp(i [S,„,[x'(t)]—S,„,[x(t)]I/A')

which, when averaged over an ensemble, gives

(g"&=o (g" )=
m cok

&g"&=o, &g"'&= ",. . . ,

then

(2.8)

(2.9a)

(2.9b)

XX(xo xo) .

If the action S,„,[x ( t) ] has the usual form

S,y, [x(t)]=f L(x(t),x(t))dt,
fp

then we can change variables

X(t)=
—,
' [x'(t)+x(t) ],

g(t) =x'(t) x(t), —

and expand the phase in terms of g:

(2.11)

(2.12)

(2.13a)

(2.13b)

'f BI.S,„,[x'(t)]—S,„,[x(t)]=f (X(t),X(t))g(t)+ . (X(t),X(t))g(t)+O($3)dt
tp BX ax

d aI.. (X(t),X(t))+ (X(t),X(t)) g(t)dt . (X„Xo)g—(to)+O(g').M,
dt ()~

' BX ax
(2.14)

So the Euler-Lagrange equation of motion appears in the phase of the decoherence function.
One should not put too much weight on this occurrence. This system is not decoherent; substantial interference can

still occur between difFerent possible trajectories. There is no particular reason to expect g(t) to be small, so it is not
correct to neglect higher-order terms. This system, on its own, is still essentially quantum mechanical. It is not even
quasiclassical.

This still leaves the effects of the reservoir variables and interaction unaccounted for. Let us turn, then, to this por-
tion of the decoherence functional:

F[x'(t),x(t)]=f5Q'f 5Q 5(Q'(t )fQ(tf))ex—p 'i S„,[Q'(t)] —S„,[g(t)]—f V(x'(t), Q'(t))

—V(x(t), Q(t) )dt R X(g, Q, )

=exp[iW[x'(t), x(t)]/RJ . (2.15)

(2.16)

F[x'(t)x(t)] is termed the in/i'uence functional by Feyman and Vernon, and W[x'(t), x(t)] is the in+uence phase [6]. In
our simplified model, this is not difficult to evaluate exactly. It is generally assumed that the initial density matrix is in
a thermal state. We quote the results of Feynman and Vernon:

W[x'(t), x(t)]= ,' f dt f—ds[x'(t)—x(t)][k(t —s)x'(s)+k(t —s)x(s)],
0 0

where the real and imaginary parts of k(t —s) are
2

k~ (t —s) =g sin[tok(t —s )],7k
m COk

2
3 k

kJ(t —s)=g coth(A'col, /kT)cos[cok(t —s)] .
m cok

Changing to our variables X and g, we see that

(2.17a)

(2.17b)
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Yk f2
i6COk

W'[X(t), g(t)]=+ f dt f ds. 2$(t)X(s)sin[co„(t —s)]+if(t)g(s)coth cos[co„(t—s)]
0 0 kT (2.18)

Thus, we have a real term which is proportional to g(t)
and an imaginary term which is proportional to g(t)g(s)
The imaginary term is a double integral over a symmetric
kernel whose eigenvalues are strictly non-negative; thus,
for large g the decoherence functional will be diminished
by a decaying exponential

log. In the classical case, there is a random stochastic
force F(t) given by (2.7), which ensemble averages to zero
(F(t)) =0. As we see in (2.10b), however, the two-time
correlation function of this force does not vanish. As
R~O, we get coth(Aco/2kT)~2kT/fico. So the imagi-
nary part of W[X, g] has the form

exp —f dt f ds g(t)g( s)c os[ coi(t —s)] ImW[X(t), g(t)]= f dt f ds{F(t)F(s))g(t)g(s) .
'o 'o

(2.22)

Since g essentially measures how far you are from the di-
agonal of the decoherence functional, the off-diagonal
terms tend to vanish and the system becomes decoherent.

Furthermore, since large g is suppressed, it now makes
sense to discard terms of O(g ). Thus we can now say

S,„,[x'(t)]—S,„,[x(t)]+W[x'(t), x(t)]

dt f ds g(t)kt(t —x )g(s)4. Eo tO

ff+ f dt g(t)e(t)+O(g ), (2.19)
0

where

Here we observe the subtle linkage between noise, dissi-
pation, and decoherence. In interacting with the many
degrees of freedom of the reservoir, the system loses ener-
gy. It also is subject to random jostlings from the reser-
voir oscillators. But one last, purely quantum-
mechanical effect is that the state of the system is con-
tinually being "measured, " and thus the various possible
trajectories tend to decohere, at least on a scale large
compared to A. Later we will see that even in situations
where the classical noise vanishes, there is still quantum-
mechanical noise. This arises essentially from the zero-
point energy of the reservoir oscillators.

We can straightforwardly generalize to the case where
the potential is nonlinear in x, but still linear in Q. Sup-
pose that

e(t) =—d BL() +dL()t

2

f ds X(s)sin[coi, (t —s ) ] .yk t

, m~k
(2.20)

V(x, Q) = —pat. (x)Q" .
k

Here the inhuence phase is

(2.23)

If we compare this to (2.6), we see that

e(t)=0

is identical to the ensemble-averaged classical equation of
motion. Note that the bath of harmonic oscillators acts
as a retarded force on the system. In the limit as we go to
a continuum of oscillator frequencies with a high cutoff,
this retarded force becomes a dissipative term, i.e., a fric-
tional force. In this limit, Caldeira and Leggett show
that for a Debye distribution of oscillator frequencies, the
influence phase becomes [8]

W[x'( t), x ( t) ]

=g f dt f dsI[ai, (x'(t)) —a&(x(t))]
k

X [ &a( x( )s)k&(t —s)

—
a& (x (s) )ki,*(t —s ) ]},

where

(2.24)

W[X, g] = f —21 Xg(t)+ I g' (t) dt,
0

(2.21) 1
ki, (t —s) = [sin[cot, (t —s) ]2' COk

where I is the usual classical coefficient of friction,
defined in terms of y and the cutoff frequency Q. See
[7,8] for details.

We have seen that the real term of W[X, g] corre-
sponds to the classical retarded or (in the limit) dissipa-
tive force. The imaginary term also has a classical ana-

+i coth(Picot, /2kT)cos[coi, (t —s ) ]] .

(2.25)

We can again separate the real and imaginary parts, and
change to variables X and g. We then get, to O(g ),
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IV[X(t),g(t) ]= — g f dt f ds I ak(X(t) )ak(X(s) )g(t)sin[cok(t —s)]
m k 0 Q

i6COk
i—coth ak(X(t})ak(X(s})g(t)g(s)cos[cok(t —s)]] .

2kT
(2.26)

Again, we see that the real term has the same form as the
classical retarded force, which becomes dissipative in the
limit of continuous frequencies and high cutoff. The
imaginary term again corresponds to a double integral
over the two-time correlation function of the classical
stochastic force. It is strictly non-negative, and exponen-
tially damps the decoherence functional for large g.

III. NONLINEAR EXAMPLES

The problem with potentials nonlinear in Q is that the
path integral is no longer solvable in closed form. Thus,
it is difFicult to be certain that this correspondence with
the classical equation of motion which holds in the linear
case is truly universal. We can, however, consider weak
couplings, and solve for the equation of motion using per-
turbation theory. We can then compare the classical per-
turbative equation to that derived from the inhuence
functional.

A. Classical and quantum perturbation theory

Let us consider a system coupled to a bath of harmonic
oscillators with a potential of the form

Qo (t) = Akcos(cozt )+Bk sin(cok t ), (3.6)

where Ak =Q "~, and B„=(l/co„)(dg"Idt)~, .

The higher-order equations are driven oscillators. We
can solve for them exactly, matching initial conditions:

1 ~ . ~~k
Q~ (t)= J is[nco (kt

—s)] (x(s), QD(s))ds,
m COk

(3.7a)

dgz = —~l, g2+ g) (t), (x(t), go(t)), (3.5c)
dt m QQ2

etc., where we have Taylor expanded
Vk(x, go+ eg", + ) in powers of E.

Now we have equations for each Q;"(t) in terms of the
lower-order functions. Notably, the lowest-order equa-
tion is now a simple harmonic oscillator, and we can
solve for it easily in terms of the initial conditions

V(x, Q) = —eg Vk(x, Q"),
k

(3.1)
Q2 (t) = f sin[cok ( t —s) ]

m co&

where Vk(x, Q") can be nonlinear in x and Q". In gen-
eral, such a problem cannot be solved exactly. However,
if the coupling is weak (e ((1), then we can make a per-
turbation expansion, at least for reasonably well-behaved
potentials.

The total Lagrangian is

2 (x(s), go(s))g&(s)ds,
8 Vk

(3.7b)

L„„,i(x,x, Q, g) =L(x,x )+ g[(g )
—cok(g") ]

—eVk(x, g") . (3.2)

and so forth.
Having found the motion of the harmonic oscillators in

terms of x (t), we can now turn around and find the equa-
tion of motion for x. This is

8Vk

m ag
= —co„g"+ (x(t), Q") .

If we then write Q" as an expansion

Q k(t) =Q,"(t)+eg", (t)+E'Q,"(t)+

(3.3)

(3.4)

and equate equal powers of c,, we get a series of equations

~kgo ~

dg", „1BV„= —cokg f+ (x(t), go(t)),dt m 8

(3.5a)

(3.5b)

Let us suppose that the trajectory x(t) is known. Then
the equation of motion for the kth harmonic oscillator is d aI. al. 8Vk(t)= (t)+Eg (x(t), Q (t)) .

dt Q~ Bx Bx
(3.8)

Q"(t) is the expansion that we solved for above, and it
will depend on the earlier behavior of x, in general. Note
that causality is strictly obeyed. This classical causality
follows as a result of more fundamental quantum causali-
ty, as discussed by Gell-Mann and Hartle [5].

We treat this same problem quantum mechanically by
trying to find the influence functional E[x'(t),x(t)] as a
perturbation expansion. Assume that the reservoir starts
in a definite initial state ~a ), with wave function P, (g).
Then
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F, [ x', x]=f b(g'(tf ) —Q(tf ))exp ~ —{S„,[Q'(t)] —S„,[g(t)]]

~ f

X 1+ f [ V(x'(t), Q'(t)) —V(x(t), Q(t))]dt
'0

2

+ Vx't, 't —Vx t, t
f0 i0

2

X [V(x'(s), g'(s)) —V(x(s), g(s))]ds dt+ . ' y, [g'(t )]p,*[g(t )]Qg'Qg

f {V,.[x'(t)]—V..[x(t))]dt
0

ff
g f f {V,b[x'(t)]V„,[x'(s)]e ' —V,„[x(t)]Vb,[x'(s)]e

b

—Vb, [x'(t)]V b[x (s)]e " + Vb, [x(t)]V b[x(s)]e ' jds dt+
r

=1+ f V,', [X(t)]g(t)dt—
0

+O(E )+O(g ) .

z &f f {Vb, [X(t)]V,'b[X(s)]g(t)g(s)cos[cob, (t —s)]
f0 f0

—2i Vb, [X(t)]V b [X(s)]g(t)sin[cob, (t —s) ] [ds dt

(3.9)

F[x'(t),x (t) ]=gp„„F„[x'(t), x (t)], (3.1 1)

Here we have defined the functions

V„(x)=(a IV(x, g)Ia ) = fP, ( Q)P,*( Q) V( x, g)dr,

(3.10a)

Vb. (x)=&b
I V(x, Q)la &

= f$.(g)&b(g)V(x, g)« .

(3.10b)

In our case, we assume that the reservoir is a collection of
harmonic oscillators initially in a thermal state. In this
case, the states

I
a ) become the ordinary Fock states

I
n )

and the inhuence functional is

The ak~(x) and bkI(x) are arbitrary functions of x, only
assuming that the potential as a whole remains relatively
well behaved, integrable, etc. For convenience, I will

drop the index k for the rest of this derivation. It should
be understood that the final result is to be summed over
all the oscillators:

W[x'(t), x(t)]=g Wk [x'(t),x(t)] .
k

(3.14)

From the Eq. (3.5a), we can write down the equations of
motion for a classical oscillator Q(t)=go(t)+eg, (t)
+ . . . We then plug in the solutions (3.6) and (3.7a) to
get

where

p„„=Q [ 1 —exp( —
Amok lk T ) ]exp( nk hook lk T ) .—

k

(3.12)

B. Polynomial potentials

Qo(t) = A cos(cot )+B sin(cot ) =Pe' '+P*e '"', (3.15a)

Q, (t) = f sin[co(t —s)]
me@

N
X g (2j+1)a,.[x(s)]go~(s)

j=0

We will specifically consider a potential of the form
(3.1) where the individual potentials are polynomials in
Q". We will see that it is convenient to separate the even
and odd terms:

N
+ g 2jb~ [x (s)]QOJ '(s) ds. ,

(3.15b)

N N

Vk(x, Q")= saki(x)(g") '+'+ g baal(x)(g")2' . (3.13)
1=0 1=1

etc. , where P=( A iB)I2 The equ—ation o.f motion for x
is then
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N N

+e g a'[x(t)]Q +'(t)+ g b'[x(t)]Q (t)
j=l

T

+e g (2j+1)a'.[x (t)]Qp(t)+ g 2jb'[x (t)]QDJ '(t) Q, (t)+O(E )
j=0 j=l

+Er,(t)+E v2(t)+O(e ) . (3.16)

We are interested in the ensemble-averaged equation. We can make use of the fact that
T n

(pmpen ) —g
kT

2m co
(3.17)

So only the even terms contribute to the first-order component of the Eq. (3.16). QP(t) is readily found then with a bi-
nomial expansion of

2j 2j
(peirA+p+e —icot)2i g (peiu&)i(p+ —

e icut)2j —i

Ei=0
(3.18)

yielding

n!
i!(n i )!—

kTN

(r, (t) ) = g . ,

'
b,'(x (t))J 2m co

(3.19)

The second-order component is more complicated. Plugging expression (3.15b) for Q, (t) into (3.16), doing a binomial
expansion for the powers of Qo(t) and Qo(s), pairing e ' ' and e ' ' terms, and ensemble averaging gives us

N N

(r,(t) ) = f ~ g g sin[(2k+1)co(t s)]CJk(t,s)—
k=Qij =k

N N N N

g sin[(2k —1)~(t —s)]CJk(t, s)+ g g sin[2kco(t s)]D, i, (t—,s)"
k = 1 i j =k k=li,j =k

N N

g sin[(2k —2)to(t —s ) ]D, k(t, s ) ds,
k =1 i j =k

(3.20)

where

2E 2j
Cjk(t, s) =a [x (t) ]aJ [x (s) ](i +j)!(2i+1)(2j+1)

E
—k j —k

kT
2&i co

l+J
(3.21a)

2i —1 2j —1

Dilk(t, s)=b [x(t)]b [ x(s)](i +j —1)!4ij
E
—k j —k

'i+j —1

kT
2m co

(3.2 lb)

We can collect together and combine those terms with the same sine factor to get

t N N N N

(~2(t)) = f g g sin[(2k+1)co(t —s)]E, „(t,s)+ g g sin[2kco(t s)]F,"„(t,s—) ds,
0 k =Ol j =k k=oi j=k

where

(3.22)

Elk(t, s)=a [x(t)]a [x(s)](i+j)! kT
2m co

kT
Fjk(t, s) =b [x(t)]b.[x(s)](i+j—1)!

2m co

2i+1 2j+1
(2k+1)(i+j+1)

E
—k j —k

2i 2j
2k(i+ j)

(3.23a)

(3.23b)
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We are also interested in the correlation function (F(t)F(s) ), where F(t) is the force due to the interaction with the
reservoir. To second order this is

N N N N

(F(t)F(s)) =E g g 2cos[(2k+1)co(t —s)]G~JI, (t,s)+ g g 2cos[2kco(t s)—]H~~I, (t, s)
k =Oi,j =k k=li j =k

N
+ g H, o(t, s) +O(E'), (3.24)

kT
G~I, (t, s) =a,'[x (t)]a~'[x (s)](i+j+ 1)!

2m 6)

i+j+1

i —k
2j+1
j —k (3.25a)

kT
H, q(t, s) =b [x(t)]b'[x (s)](i +j)!

2m co

2i 2j
i' —k j —k (3.25b)

We can subtract off-the-average values to get

(F(t),F(s) ) = (F(t)F(s) ) —(F(t) ) (F(s)), (3.26)

for certain values of m, and zero for the rest. In compar-
ing to the classical result, we need keep only the highest
power of n, since the lower powers will be higher order in
Ace/kT as we let A~O. This will be

where ( F( t ) ) is the first-order ensemble-averaged force
from (3.19).

We can compare this result to that obtained from our
quantum-mechanical procedure. Suppose that the reser-
voir begins in a definite state ~!n ). Then the infiuence
functional is given by (3.9),

(m fr'[n ) =
k

1/2

1/2+

m =n+1 —2k, 2k &1, (3.31)

F„[X( t), g(t)] =1+Ea„,[X(t),g(t)]

+E'a„,[X(t),g( t) ]+.. . , (3.27)
(m /r'/n ) =

k

I /2

m '/'+

m =n —1+2k, 2k &1, (3.32)

and in the thermal case by (3.11),

F[X(t),g(t)]=1+Ea,[X(t),g(t)]+8'a, [X(t),g(t)]+. . .

and zero otherwise.
We can then use the fact that, as A~O,

where

=gp„„F„[X(t),g(t) ], (3.28) kT
p„„n =l!

%co
(3.33)

a, [X(t),g(t) ]=gp„„a„,[X(t),g(t) ] .
Thus from Eq. (3.9) we get

The inhuence phase is then

W[X(t),g(t) ]= —tA' 1nF [X(t),g( t) ]

= —ifiEa, [X(t),g(t) ]

—iRE [a2[X(t),g(t)]
—

—,'a', [X(t),g(t)]]+ . . (3.30)

a, [X(t),g(t) ]

=gp„„—f g b[ X(t)](n )r "~n )g(t)dt

0
(3.34)

From (3.9), then, we see that we must find an expression
for (m ~!r ~n ). This will, in general, be a polynomial in n,

which agrees exactly with the Grst-order term in the clas-
sical equation of motion (3.19).

Similarly, we can calculate the second-order term to
get
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a, [X(t),g(t) ]=— N N g~j f 2cos[(2k+1)co(t —s)]G; k(t, s)g(t)g(s)ds dt
k =Oij =k

N N t~+ y y f ' j'2cos[2kco(t s)]H—; &(t,s)g(t)g(s)dsdt
k=lij =k

N t~+i g g f f sin[(2k+1) co(t s)]—E; k(t, s.)g(t)ds dt
k =1ij =k '0 '0

N N t~+i g g f f sin[2kco(t s)]F—, k(t, s).g(t)ds dt
k=1ij =k '0 '0

tf+ g f f H; 0(t, s)g(tg(s)ds dt
ij=1 '0 '0

(3.35)

Here we have used the same definitions of E, k, etc. ,
where the classical system variable x has become the
quantum variable X.

We can clearly see from this the exact correspondence
with the classical equation of motion, at least to second
order in e. The real part of W[X(t),g(t)] is just an in-
tegral of the classical retarded force, just as in the linear
case, and the imaginary part consists of a double integral

f f [(F(t)F(s)) —(F(t) ) (F(s) ) ]g(t)g(s)ds dt;

(3.36)

linear interactions, as well as the possibilities of nonoscil-
lator reservoirs. This is, of course, a product of computa-
tional convenience, as it is very difficult to get analytical
answers in other cases. Are there any arguments that can
be made for more general systems?

In any case where the action can be decomposed,

S[x (t), Q(t)] =S„,[x (t)]+S„„[Q(t)]
+S,„,[x (t), Q(t)], (4.1)

it is possible formally to write the decoherence functional
in the form

note that the —(F(t) ) (F(s) ) comes from subtracting
a1/2 from the second-order term. Again, we note the
non-negativity of this imaginary part; the presence of
noise both makes the behavior unpredictable and causes
different trajectories to decohere. So we see that in per-
turbation theory, the nonlinear problem has exactly the
same classical correspondence as the linear problem.

D [x(t),x'(t)]=exp —[S, ,[x(t)]—S,„,[x'(t)]

+ W[x(t), x'(t)]] (4.2)

IV. MORE GENERAL CASES If we restrict ourselves, for the moment, to systems in a
factorizable pure state,

Though the above discussion is fairly general, it leaves
unexamined the far broader range of possible strong, non-

p(x ', Q', x, Q ) = 'l*(x ')%(x )N*(Q')@(Q),

then the infiuence phase is defined simply by (2.15):

(4.3)

e px[iW[ x(t), (x)t1 &f] = f nQ' f sQ 5[Q'(tf) Q(tf))

Xexp —[S„„[Q'(t)]—S„,[Q(t)]+S,„,[x'(t), Q'(t)] S,„,[x(t),Q(t)])—
X@'(Qo)@(QO) . (4 4)

By bringing the integral over the final condition Qf, Qf to the front, we can rewrite this as a product of two path in-
tegrals:
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exp[iW[x'(t), x(t)]/A] = f fdQfdQf5(Q'(tf) —Q(tf ))

X f 5Q'exp —[S„,[Q'(t)]+S;„t[x'(t),Q'(t)]]C)"(Qo

X f 5Q exp —
[
—S„,[Q(t)]—S;„t[x(t),Q(t)]](I)(Qo)

= f fdQfdQf5(Q'(tf ) —Q(tf ))tI)„*(t)(Qf')@ (,)(Qf )

f x'(t)(Qf ) x(t)(Qf ) Qf ~ (xt)~ x(t) ) (4.5)

where
~ @„(t)) and

~
N„.(t) ) are the states that

~
N ) will

evolve into under the inAuence of the interaction, given
the trajectories x (t) and x'(t), respectively.

Clearly, (N„(t)~@„(t))~1, which implies equally clear-
ly that ImW[x'(t), x(t)]~0. So the non-negativity that
we saw in cases I and II above is generally true. This is
also clearly the case for mixed states, since we can
represent any mixed state as

p(x', Q', x, Q) =gp;4';(x'))It;(x)C&,*(Q')@,(Q), (4.6)

where

(4.7)

so if the F;[x'(t),x(t)] (1, then clearly

exp[iW[x'(t), x(t)]/fi] =gp;F,.[x'(t),x(t)]~ 1, (4.8)

and 1mW[x'(r), x(t)] ~0 still holds. Also,
ImW[x'(t), x(t)]=0 for x'(t)=x(t). Thus, without as-
suming anything about the interaction or the reservoir,
we see that there will be a maximum at g(t) =0, and that
the off-diagonal g(t)WO terms will tend to be suppressed.
This is not surprising, as one expects almost any sort of
interaction with neglected degrees of freedom to result in
the loss of phase coherence. However, it does show how
these highly simplified models might actually demon-
strate behavior important to the rise of classical physics
from quantum mechanics in physical systems.

For example, in considering quantum gravity, decoher-
ence might arise from neglected gravitational degrees of
freedom. The usual semiclassical treatment of quantum
gravity, which omits the "back action" of mass energy on
the curvature of space-time, cannot exhibit this effect.
The weakness of the gravitational interaction would in
general make it less important in causing decoherence
than stronger forces, such as electromagnetism; but it
might well become important in quantum cosmology.

There are, of course, still questions. All that has been
demonstrated is the non-negativity of ImW[x'(t), x(t)].
Can there not be zeros for some choice of g(t)WO? And
how strongly, in general, are the off-diagonal terms
suppressed?

There can certainly be zeros for nonzero g(t) in some
cases. Indeed, if we consider the form of

ImW[x'(t), x(t)] for the linear case
tf tf

ImW[x'(t), x(t)]—f f g(t)g(s)cos[co(t s)]ds d—t
fo t()

(4.9)

(for a one-oscillator "reservoir" of frequency co), there are
an infinite number of choices of g(t) which make this
zero. Thus, one cannot call this system truly decoherent.
However, as the number of oscillator frequencies is in-
creased, the number of possible choices of g(t) is further
and further restricted, so that as the reservoir becomes
infinite only g( t ) =0 remains. One would expect similar
behavior in the more general case. While it is certainly
possible to construct cases where ImW[x'(t), x(t)] has
many zeros even for a very large reservoir, in practice
one expects ImW[x'(t), x(t)])0 for x(t)Wx'(t), as the
degrees of freedom of the reservoir are increased.

Similarly, the strength with which off-diagonal terms
will be suppressed depends on the details of the system.
However, one would expect that ~Ct„(t) ) and ~4„.(t) )
differ more in the case of strong interactions than small,
and hence that (@ .(,)~@„(t)) would be more strongly
suppressed in general.

V. CONCLUSIONS

It is clear that it is possible to define a "classical" equa-
tion of motion directly from the underlying quantum
theory, and that, at least in many cases, this corresponds
closely to the equation obtained from the classical theory.
While correspondences of this sort have often been
demonstrated in the past, never before has there been a
rigorous, a priori technique for deriving them.

Using the formalism of Gell-Mann and Hartle, we can
now see classical physics as, very simply, a limit of the
underlying quantum theory; and we can systematically
determine, at least in principle, the deviations from strict
classical equations due to quantum effects. Using the
decoherence functional as a criterion for determining if
an effect is experimentally observable, we can once and
for all avoid the problem of collapsing the wave function;
there is no longer any need for an independent "classical



47 QUASICLASSICAL EQUATIONS OF MOTION FOR NONLINEAR. . . 3393

realm" of measurement.
Note added. After the completion of this research, I

learned that Bei Lok Hu, Juan Pablo Paz, and Yuhong
Zhang had studied a very similar class of nonlinear
Brownian systems more or less simultaneously with me
[10]. While their study is from a considerably different
point of view, with very different goals, being chieAy con-
cerned with deriving master equations and treating the
thermodynamics of these generalized systems, their re-
sults overlap mine to a certain extent.
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