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Gravitationally collapsing dust in 2+ 1 dimensions
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We investigate the circumstances under which gravitationally collapsing dust can form a black
hole in three-dimensional spacetime.
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General relativity in 2+ j. dimensions has been a source
of fascination for theorists in recent years, primarily be-
cause of the potential insights into quantum gravity that
it overs. One has the full structure of the Einstein equa-
tions but with an enormous amount of technical simpli-
fication due to the smaller number of dimensions. One
consequence of this simplicity is that the metric outside of
a finite matter source is locally flat [1,2], and the mass
aKects the spacetime only globally, seemingly implying
that there are no black hole solutions to 2+ 1 gravity.

However, it has recently been pointed out by Banados
et al. [3] that if a negative cosmological constant is in-
troduced, so that the Geld equation is

Gpv = 87rGTpv Agyv~

where A ) 0, then there is a solution for the field around
a point source which has an event horizon, i.e., a black
hole. For zero angular momentum this is

dr2
ds~ = —dt's+a~(t)

~

+r~d9~),
pl —kr' (3)

where r and 6I are comoving radial and angular coordi-
nates, t is the proper time of the dust, and a(t) is the
scale factor. In these coordinates T„= pu„u„ is the
stress energy of the dust, where p(t) is the density of the
dust and u„= (1,0, 0). Conservation of stress-energy
TI'. = 0 then implies pa = pQaQ2, where pQ is the initial
density of the dust and aQ is the initial scale factor. The
field equations (1) become

ii = —Aa (4)

Consider a disk of collapsing dust surrounded by a vac-
uum region, with the metric in the exterior region being
given by (2). The dust is falling freely, so we may make
it the basis of a comoving coordinate system. We then
have a Robertson-Walker metric on the interior region:

dR2
ds = —(AR —M)dT + + R d82. (2)

and

Aa + k —8vrGpoao+a = 0,
Apart from not being asymptotically fIat, this solution
exhibits many of the properties of black holes in four
dimensions, such as a well-defined temperature and en-
tropy. It is therefore useful in that it provides another
opportunity to model classical and quantum dynamics of
black holes with a simpler set of field equations.

Here we investigate under what circumstances a disk of
pressureless dust [the three-dimensional (3D) analogue of
Oppenheimer-Snyder collapse] will collapse to the black
hole solution (2). Provided the initial density is suffi-
ciently large, we show that collapse occurs in finite proper
time, and external observers see the event horizon form
in in'. nite coordinate time. The other properties of this
collapse parallel the results in four dimensions, as well as
recent results in two dimensions [4].

Collapsing dust solutions in 3D have been studied be-
fore [2]. We therefore extend these results further, repro-
ducing the results of Ref. [2] when A = 0, and finding
new solutions for A & 0. In this latter case we find that
collapse to a point source is possible, subject to certain
conditions.

where the overdot denotes d/dt
The solution of these equations is

a(t) = ao cos(v At) + sin(v At),
A

where

ao = 8vrGpoa2o —k —Aao2 (7)

87rGpoao —k —Aao & 0.2 2

In particular, if we choose the initial conditions aQ

1, aQ = 0, this relation gives

k = 8vrGPQ —A.

(8)

Subject to the condition (8), this solution always col-
lapses to a(t, ) = 0 in the finite proper time

1-

= 1 (8~Gpoa~o —k —Ano2)
arctan

A «o (10)

to satisfy the second field equation. As we wish a(t) to
be real, we must require
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In the exterior coordinates, the stress-energy vanishes,
and the solution is the black hole (2). The dust edge is
taken to be at r = rQ in the interior coordinates, and
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at R = 'R(t) in the exterior coordinates. We now wish
to impose conditions to make the dust edge a boundary
surface. These are [5, 6]

[g,, ]
= 0 and [Z;,) =0,

where the overdot denotes d/dt, which gives

dT
dt

(A'R2 —M) + Z,2

A7V —M (14)

and 'R(t) = rpa(t), that is, the position of the dust edge
in the exterior coordinates is the proper distance from the
origin to the dust edge. Note also that the latter condi-
tion implies that the boundary conditions ap ——1,i p

——0
represent a ball of dust with initial radius 'Rp ——rp ini-
tially at rest in the exterior coordinates, and we see that
a = 0 corresponds to the collapse of the dust to 'R = 0.
We now need to compute

where [4] denotes the discontinuity in 4' across the edge,
K,z is the extrinsic curvature of the dust edge, and the
subscripts i, j refer to the coordinates on the dust edge.
The metric on the edge is

ds' = —dt'+ R'(t)d8',

so the condition (11) implies

i,2
—(A'R' —M)T' +, = —1,

in the exterior coordinates. We thus find that (11) jm
plies

(AZ, ' —M) + R' = 1 —kr,',
that is,

M = (Aa + k+ a )rp —1 = 8~Gppaprp —1,

(20)

where (5) has been used. i

Thus, the requirement that the dust edge be a bound-
ary surface fixes M in terms of the initial density pp.
Note that collapse to a black hole occurs only for pp suf-
ficiently large (as M must be positive), analogous to the
(1+1)-dimensional ease [4, 7). For pp ( s &,„,, the end
point of collapse is a naked conical singularity in anti —de
Sitter space.

So long as pp & 8 &. .. an event horizon will form87r Ga02r(~) '

around the collapsing dust at R~ = gM/A. The co-
moving time tp, at which the event horizon and the dust
edge coincide is found by substituting ra(t~) = Rh, which
gives

= 2 ra«p+ (a,",'+ a,",'A —M)'~'&
th, = arctan! ~sr.a. + ~u

(22)

and is clearly finite. This is not the case for the coor-
dinate time at which an external observer will observe
this formation. A light signal emitted from the surface
at time T obeys the null condition

where n is the normal to the edge, e&,.)
are the basis

vectors on the edge, and (' are the coordinates on the
edge. In the interior coordinates,

e(p) ——(1,0, 0), e(i) ——(0, 0, 1/rpa(t))

= AB —M
dT

and arrives at a point B at time

T =T+

(23)

and

n =!0, , 0!.t a{t)

(
' gl —kr',

'

)

(16)

1= T — arctanh —R
M

~ roa(t)
(24)

A straightforward calculation gives

gl —kr,'
Kpp ——Kpg ——0, Kig ——

rpa(t)
(17)

and

e(p) ——(T, 7Z, 0), e(i) ——(0, 0, 1/'R)

n. = (—Z., T, 0).
(18)

in the interior coordinates. In the exterior coordinates,
we find

and thus T —+ oo as rpa(t) —+ gM/A, so the collapse
to the event horizon appears to take an infinite amount
of time, and the collapse to R = 0 is unobservable from
outside.

The comoving time interval dt between emissions of
wave crests is equal to the natural wavelength A that
would be emitted in the absence of gravitation, and the
interval dT between arrivals of wave crests is the observed
wavelength A. Thus the redshift of light from the dust
edge is

It follows that

Kpp = — (A7V —M) + 7V,
N2

dT 1z= —1=
2 . —1

dt gl —krp2 + rpa(t)
(25)

T(AR~ —M)
Kpg ——0 Kgg ——

R
Note that this identification of the parameter M agrees with

that used in [3].
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and roa(th, ) = —gl —krp2, so z ~ oo as t ~ th T. hus
the collapsing fluid will fade from sight, as the redshift
of light from its surface diverges. These properties en-
tirely parallel those of Oppenheimer-Snyder collapse in
four dimensions.

If we now consider the case where the cosmological
constant is set to zero, we see that the event horizon is
no longer present, and collapse occurs to a naked source.
This is the scenario investigated in [2]; writing the in-
terior metric in the form (3), the solution of the field
equations is ap = — 8~Gppao —k+ aoA' (35)

(1). This corresponds to a positive cosmological constant
in the usual terminology, and we write (1) as

G„=SvrGT„+ A'y„, (33)
A' & 0. In the interior metric (3), the solution now be-
comes

a(t) = ao cosh(v A' t) + ao sinh(u A' t),
where

a(t) = ap + apt, where ap = + 8TGppa~z —k,

where we must require

xapoao

(26)

(27)

for a to be real [Eq. (104) of [2]]. This condition is
equivalent to the requirement that n & 0 in [2]. As
pointed out in [2], pressureless dust need not collapse;
only if ao is negative will collapse occur in time t, =
(8+Gpo —k/ao) ~ . The exterior metric (3) for A = 0
has the appropriate signature only if M is negative, in
which case we can convert it into the form in [2],

to satisfy the other field equation. We now see that, for
a(t) to be real, we must have

8vrGppao k + aoA (36)

1-
1 8vrGpoao2 —k + A'ao 0

arctanh
A' rA'a(~)

(37)

We also see that we must have ap & —ap~A' to achieve
collapse to a point. This is not surprising, as the positive
cosmological constant is causing an overall expansion of
spacetime. When collapse is possible, a(t, ) = 0 at

ds' = —dT" + da12+ ca12de2 (28) The exterior metric in this case is

by taking T' = MT, R' —= R /M an—d c = —M. If
we choose the dust edge to be at r = rp, R' = 'R(t), we
may apply the matching conditions (ll) to the metrics
(26) and (28). The metric on the dust edge is (12), so
(ll) gives ~cd = rpa(t) and

dTI ~2~2

Imposing the condition that the dust edge move at sub-
luminal speed ( &T, ! & 1) yields

dB2ds' = —(—A'R2 —M)dT2 + +. R2de2—A'R~ —M

where M must be negative in order to get the right signa-
ture (yielding an exterior de Sitter space metric), so we
will write c = —M from here on. There is a cosmological
event horizon at Rh = gc/A'. Taking the dust edge to
be at r = rp, R = 'R(t) & Rh, , and applying the condi-
tions (ll) to the metrics (34,38), we find 'R(t) = rQQ(t),

2 2f OG0

3. —kro
Q ]., (30) dT

dt

(A'7V + c) + R'
A'R2+ c (39)

which is easily seen to be equivalent to Eq. (103) of [2]
upon using the relationship

»n(v kyo) (31)

between the two interior metrics. The extrinsic curvature
is calculated as before, and (11) implies

C = 1 —87CGpoGOTO.

The condition (30) implies c & 1 —krp in our coordinates,
which is the same as (27).

Finally, we consider the case A ( 0 in the field equation

For A ) 0, we need not impose this condition, as the dust
edge asymptotically comes to rest at the horizon from the
point of view of an external observer.

and

c = 1 —(—A'a + k + a, )rp ——1 —8vrGpoaoro (40)

as before. From (36), we see that c & 1 —(—A'aQ2+. k)rp2
to satisfy this condition. The collapse condition ap
—apv A' implies c & 1 —krp2, which is more restrictive.

As the collapse in this case is to a naked conical sin-
gularity, we should again require

(41)

that is, the velocity of the dust edge in the exterior co-
ordinates of [2) should be less than the speed of light.
Thus, we require that

roa(l —kro —roa ) & c. (42)
Po

As a(t) is a monotonically increasing function of t in
(0, t, ), we may treat the left-hand side as a function of a,
and we then need only impose the condition at the point
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in the interval (ao, a,) where it is a maximum.
The situation then divides into three cases, depending

on the relative size of c. If c ( 2/3(l —kroz), the maximum
is at a„and we must impose

c & (1 —kro) —(1 —kro), (43)

which requires as a corollary 1—
krone & 1/3. If c & 2/3(1—

kro), but c ( 2/3(l —kro) + A'aors, then the maximum
is at an intermediate point, and we must impose

c& 1 —kro,
3 3

(44)

( r2a~
c & roan [

1—
1 —kro ) (45)

In summary, pressureless dust in 2+ 1 dimensions can
undergo a variety of collapse scenarios, depending upon
the relative signs and magnitudes of its initial density, ini-
tial collapse speed, and the cosmological constant (—A).
The stationary black hole solution found in [3] arises
naturally from gravitational collapse of pressureless dust

which requires as a corollary 1 —kro & 4/27. If c &
2/3(1 —kro~) + A'a&ore~, and A'a~eros ( 1/3(l —kroz), then
the maximum is at ao, and we must require

for a negative cosmological constant. Its properties are
similar to those of the higher-dimensional Oppenheimer-
Snyder case in that collapse to a point singularity occurs
in finite proper time, and the event horizon forms in in-
finite coordinate time, with an infinite redshift. Requir-
ing that the dust edge be a boundary surface gives a
relation between the parameter M in the exterior coor-
dinates and the initial density of the dust.

For A ( 0, collapse, if it occurs at all, is to a naked con-
ical singularity. The solution for A = 0 in our coordinate
system is equivalent to that found in [2]. The condition
that the dust edge move subluminally in the exterior co-
ordinates may be imposed as an additional condition, al-
though this does not provide any new information. The
results for the case A ( 0 follow the same pattern, al-
though here collapse requires that the initial velocity be
great enough to overcome the overall expansion of the
spacetime caused by the cosmological constant. Impos-
ing the condition that the velocity of the dust edge be less
than the speed of light yields a somewhat complicated re-
lationship between this quantity and the initial density.
Collapse to a naked conical singularity is also possible for
A & 0 if the initial density is sufficiently small.
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