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Gravitation and cosmology in (1+1)-dimensional dilaton gravity
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The properties of a string-inspired two-dimensional theory of gravity are studied. The post-
Newtonian and weak-6eld approximations, "stellar" structure, and cosmological solutions of this theory
are developed. Some qualitative similarities to general relativity are found, but there are important
differences.
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I. INTRODUCTION

The study of theories of gravity in two spacetime di-
mensions can provide insight into issues in semiclassical
and quantum gravity, as these theories are mathematical-
ly much simpler than (3+ 1)-dimensional general relativi-
ty [1—7]. Recently two such theories, that of [1,2], re-
ferred to as the "R = T" theory, and the string-inspired
theory of [5,6], have attracted some interest, due primari-
ly to the fact that their field equations admit black hole
solutions, making them an interesting arena for the study
of quantum gravitational effects.

The latter theory of gravity arises from a noncritical
string theory in two dimensions. Setting to zero the one-
loop P function of the bosonic o model with two target
spacetime dimensions gives the effective target space ac-
tion

S = Jd x e V' —g [R +4(V@) +c] . (1)

e (R„+2V„V@)=8~GT~

R —4( V@ ) +4V 4+J =0 .

(5)

(6)

The stress-energy tensor T„ introduced by this pro-
cedure may be regarded as modeling some unknown
higher-order effects in the string theory. It may also be
shown that the action (4) is equivalent to that of a mas-
sive scalar field P=e nonminimally coupled to curva-
ture [8], which allows a less ambiguous interpretation of
the matter term. If an appropriate point source of matter
at the origin is introduced, the solution of (5) and (6) is a
symmetric version of the above black hole solution, that
is, (2) and (3) with x replaced by ~x~. We have shown that
this solution will result from a collapsing dust if we in-
clude appropriate surface stresses and dilaton charges [8].
The latter may be generated by the source J for this dila-
ton charge; in the dilaton vacuum J=c. These sources
obey the conservation laws

The resultant field equations give rise to a black hole
solution asymmetric about the origin:

8vrGV" T„=—
—,'e VP . (7)

ds = —(1 —ae ~')dt +

with the dilaton field

l —ae
(2)

N= ——x
2

(3)

where Q =c. We have argued [8] that from a gravita-
tional point of view, the asymmetry of (2) about the ori-
gin is somewhat objectionable, as it is dificult to see how
such a solution could arise from gravitational collapse of
clumped matter (for an alternative viewpoint see [9]).

Matter terms may be incorporated into the action as
follows:

—g e +R+4P@ +J+ ~ 4

where L~ is a matter Lagrangian, and J is a source term
for the dilaton field. The above action is a general com-
bination of two approaches [9,10] to coupling matter to
the string-inspired action studied in [5,6]. From (4) the
field equations are

The properties of this black hole solution have been stud-
ied in detail in Refs. [8,11]; they are broadly similar to
those found before for the black hole solution of the
R = T theory, although there are significant differences.

We regard the theory described by the action (4) as an
interesting theory of two-dimensional gravitation in its
own right. The purpose of the present paper is to explore
the dynamical properties of this theory in more detail,
comparing them to similar treatment of the R = T theory
in Ref. [2]. We find that the theory has a sensible post-
Newtonian expansion and weak-field limit, although in
the latter case the notion of a weak field is contingent
upon what one considers the vacuum of the theory to be.
The equation for stellar equilibrium in this system is ob-
tained. Finally, we consider the cosmological solutions of
the field equations, and find that while a dust-filled
universe will eventually collapse, the radiation-filled
universe cannot collapse at any time. We summarize our
results and discuss further areas of interest in a conclud-
ing section.

II. POST-NEWTONIAN CALCULATIONS

*Present address: Department of Applied Mathematics and
Theoretical Physics, Cambridge University, Silver Street, Cam-
bridge, CB3 9EW, England.

We wish to demonstrate that this theory has a sensible
Newtonian and post-Newtonian limit. We see that in the
first approximation Newton's theory holds, and the
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higher-order terms are qualitatively similar to those
found before for the R = T theory [2].

We consider a system of particles experiencing mutual
gravitational attraction, and let M, r, and v be typical
values of their masses, separations, and speeds. Compar-
ison with Newton s theory of gravity in one spatial di-
mension yields the Newtonian potential

(8)

where a constant of integration has been ignored. If we
consider a test particle falling into this potential from
lxl = r initially at rest, its maximum speed will be

R +2(q P cy) =8~G~ ~T

+R —4 [+( q q) )
~

]+4( +'lj72(y ) ++J=()

(22)

(23)

where X is the order in v /r. For the Newtonian ap-
proximation, we only need to determine gpp so we will
only need the p=O, v=O component of (22) to order
1V =2. For the post-Newtonian expansion, we will need
the 00 component of (22) to order 4, the 01 component to
order 3, and the 11 component to order 2, as well as (23)
to order 2.

First, we compute the Newtonian approximation. The
00 component of (22) to order 2 gives

v —GMr, (9) $1$1 2gpp
———$ 6~G0T~, (24)

which gives an approximate relation between M, r, and v

for a system of particles. The Newtonian approximation
gives the first-order terms in the small parameter v, so
the objective of the post-Newtonian approximation is to
supply the higher-order terms in the expansion of physi-
cal quantities.

We expect the metric to be approximately Minkowski-
an where gravity is weak, but we do not assume that it
has any particular form. The expansion of the metric is

which has solution goo = —4g, where

g(x, t)=2nG Jdx' Too(x', t)lx —x'l

is the Newtonian potential. Note that this differs from
the result goo = —2g of [2] by a factor of 2.

We now compute the post-Newtonian terms, g11, gp1,
g~, and 4&. The 11 component of (22) to order 2 gives

(26)

gpp
= —1+ gpp+ "gpp+

3 5
g01 g01+ g01+

g11 = 1+ g00+ gPP + gpp+ (12) —8181 gpp —8101 g11 +48181 N+ J—0 (27)

which has solution g11 =4 N. If we now consider the di-
laton equation (23) to order 2 we get

where g„denotes the term of order v in the expan-
sion. We can then calculate the Christoffel symbols and
thus the required components of the Ricci tensor:

and substituting g11=4 N gives

R —8181 gpp

R = —,'[a,a, 'g —
—,'a, 'g a, 'g„

—a,a, 'g +a, 'g a, 'g ],
R p1 2 ~1~1 g01

R» = —
—,'B,B, g»,

(13)

(14)

(15)

(16)

so the solution is g» =4p, and thus 4=p, where p is a
new field defined by

p(x, t)= Jdx'lx —x'l( —,'g" —
—,"J) . (29)

Note in particular that if J =0, p=g.
We now take the 01 component of (22) to order 3 to

determine gp1. This gives

B1~1 gp1
= —&6 O'T01+4B1~0 +

Tpp ='Top+'Top+ (17)

where R„denotes the term of order v /r in the ex-
pansion of R„. We interpret T, T ', and T" as the en-
ergy density, momentum density, and momentum Aux,
which leads us to make the following expansions:

= —16~G'T»+4a, a,p,
which gives gp1 =q, where q is a new field defined by

g(x, t)= Jdx'lx —x'l[ —8vrG'To, (x', t)+2P'] .

(30)

(31)

T01 = T01+ T01+1 3

T T + T +11

(18) Finally, we compute goo from the 00 component of (22)
to order 4, substituting for g» and N from above:

a,a, goo= —16mG Too+4(p —g) —16$

which gives goo =g, if we define the new field g by

g= fdx'lx —x'l[2(P —g') —8g' —8~G Too] .
(20)N= N+ 4+

J=c+ J+ J+ . It is also perhaps worth noting that
21

From our experience with the black hole solutions, we
also expect

(33)

where @ is the dilaton field and J is the dilaton current.
The field equations can be expanded in powers of our

small parameter, giving us the forms

8 J
p —j=—

—,
' fdx'lx —x'l

which will vanish if J is linear in time.

(34)
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This completes the calculation of the post-Newtonian
approximation. It should also be noted that because this
is a truncated series in powers of the distance r, it will be
a better approximation near the system, even though we
expect the spacetime to be asymptotically flat for con-
stant J and T„=O [8]. The main relevance of this calcu-
lation is that it shows that one can carry out an expan-
sion in this theory about its Newtonian limit. Expansion
at large distances (i.e., about the asymptotically liat solu-
tion) was considered in [6]; we shall not pursue this issue
any further here.

III. WEAK-FIELD APPROXIMATION

The weak-field expansion of this theory is somewhat
more complicated than that considered in Ref. [2] be-
cause the notion of a vacuum depends upon whether or
not one considers the vacuum to be that region of space-
time for which T„=O and J=O or for which T„=O
and J=c.

We consider the metric to be a perturbation on a Min-
kowski background and the dilaton field to be a perturba-
tion about a solution P of the vacuum equations:

g„=q„+h„, , 4& =P+ y

cillating matter which has an energy-momentum tensor
trace and dilaton current representable as a Fourier in-
tegral or sum over frequencies co. A single Fourier com-
ponent is

2(x, t ) =V(x, co )exp( i—tot ) +c.c. , (42)

and the retarded potential solution (41) giving gravita-
tional waves is then

h =H exp(ik„x")+cc.
with amplitude and wave vector

H=8vrGico ' fdx'V(x', co)exp( ik&x')—

(44)

h(x, t)=8m. G f dx' f dt'V(x', co)

X exp[ i to(—t' ~x —x'~ )]+c.c. ,

(43)

where c.c. denotes the complex conjugate of the preced-
ing term. If the source is finite, with maximum extension
R = ~x'~, and we are situated in a region of space outside
of the source with r = ~x

~
& R, then the metric perturba-

tion takes the form of a plane wave

and the source J to be

J=ce+8,
=—8vrGico 'P(k „co), (45)

where e=O or 1 depending upon the choice of vacuum.
Consider first e=O. The field equations are

R ' =16nGT+8,

2V„V y=8~G(T„g„T) ,'g—„4, ——
(37)

(38)

where R"' is the linear order Ricci scalar, the nonlinear
terms have been neglected, and the zeroth-order field
equations yield the solution / =0.

In two dimensions the identity R„—:—,'g„R forces the
relationship

k0= —co, k, =cd, (46)

where the complete Fourier transform of the energy-
momentum tensor trace is defined. Here we have used
~x

—x'~ =r —x'x with x =x Jr
As for the theory considered in [2] it is the global na-

ture of the gravitational "wave" which contains the non-
trivial physics. Such waves are coordinate waves locally:
they may be set to zero by performing a coordinate trans-
formation which "travels with the wave. " However,
while this may be carried out on either side of the source,
outside of the source the wave is of the form

(39) h =H exp[ ice(t —~x—~)], (47)

and so coordinates may be chosen so that h„=—,'g„h.
With this, (37) becomes

82h = —32+GT —2J, (40)

which is a wave equation with source term in the trace
h =h"„of the metric perturbation. Note that this differs
from the analogous equation in [2] by the ubiquitous fac-
tor of 2, and by the fact that the dilaton source may act
as a source of metric perturbations in the absence of
matter. The particular integral solutions of this equation
are given in terms of retarded and advanced potentials

h (x, t)=+16vrG fdx'f dt'[P(x', t'+ ~x —x'~)], (41)

to which any solution of the corresponding homogeneous
system [(40) with T =0=J] may be added. Here
V(x, t) = T(x, t)+(I/16vrG) J(x, t).

Spacetime is fiat outside any distribution of matter (i.e.,
any region where T„„=O=J). Consider a system of os-

where (6) and the relationship

R [e g]=e (R —2V N) (49)

have been used, quantities with carets being defined with
respect to the metric g . Equation (6) becomes, after
some manipulation,

and so such a coordinate transformation cannot be ap-
plied globally. An observer crossing the source will see a
flip in the wave's direction of propagation. In this sense
there is gravitational radiation in the weak-field approxi-
mation.

For the case T =0 and J =c (the "dilaton vacuum"
where e= 1), the full system of equations yields in general
the unique solution (2) and (3). In this case it is useful to
manipulate the field equations and redefine variables be-
fore proceeding with the weak-field expansion. Writing
g„=e g„, the field equation (5) becomes

—V„V (e )+g„,V (e )=8m.GT„+—,'J, (48)
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P=svrGe g" T„ (50)

Defining o.=e, the weak-field approximation is then
defined via

where p and f are given in terms of the sources above.
This represents a first-order perturbation about the black
hole solution (2).

g„'9 +~ r 0 o0+%

and the field equations become

—a„a o+q„(a cro —,
'—c)=0

at zeroth order, which has the solution

(51)

(52)

IV. STELLAR STRUCTURE

ds = B(—x)dt +dx (61)

We now consider the equations of Quid equilibrium,
which govern the existence of "stars" (clumps of matter
in one spatial dimension) in the theory. %'e use the static
metric of the form

Cera= —(x —xo) —M, (53) together with the field equations

where xo and M are constants of integration. xo merely
sets the origin of coordinates. In the dilatonic vacuum,
the zeroth-order equations are the full field equations (as
P vanishes), and the "physical" metric g„ is

9@V

(c/4)(x —xo) —M
(54)

which for nonzero M is equivalent to the black hole solu-
tion (2) under a change of coordinates.

The higher-order field equations then yield perturba-
tions about this solution. To first order we have, from
(50),

g +2V2@=8~Gee 2+

2V„V 4& —g„V @=8~G(T„,'g„T—)e—

R —4(V@) +4V N+ J =0 .

The metric gives

BIt
R= —2

B
and

B'
V20 =4 "+

B

(62)

(63)

(64)

(65)

a'A= —16 G
T

~o
(55) if the stress energy is the perfect Quid energy-momentum

tensor. The field equation (63) gives

which has the solution (41), with 9'= ,'T. The di—laton

perturbation equation which follows from (48) is

B'
@'=4m G(p +p)eB (66)

a„a,&+~„—.a'~+ '(x,„a.,f—, ~,~.at) where p is the pressure, p is the density, and '=d/dx.
Also, the field equations (62) and (64) give

= svrGT„+ —,
' g„cF (56) @' =4mG(p —p)e + —+-J 1 B"

4 2 B (67)

taking J =c + cP. The trace of this equation is

a q
= 0+8~GT+ —,'o— (57)

so we may obtain an expression for V N. Substitution of
this expression in (62) gives an equation quadratic in
B"/B, whose roots are

and has the solution

y(x, t)=+4mG jdx' f dt'[Q(x', t'+ ~x —x'~ )], (58)
Btt

B
=8~Gpe2~+ p

p +p

'2

as all quantities on the right-hand side of (57) are known.
Here 0—= T+ ( 1/4+ G )[J + (c /2)f ]. Homogeneous
terms may be added to y; these will be set by the full
equation (56) in a manner consistent with the lineariza-
tion of the conservation laws (7):

p
p+p

p
p+p

2

+ 16mGpe2~+ J
1/2

(68)

We also have the equation of hydrostatic equilibrium,
T==0,8~Ga~T„„+,'ag+4~Ga. ~, -

0'0
(59) —p'=(p+p)(»( —gw)'"]', (69)

which also follow easily upon taking the partial deriva-
tive of (56).

Finally, the linearized metric takes the form

which in our case reduces to
B' p'
B p+p

(70)

9PV
SPV=

(c /4)(x —x 0 ) —M

x 1

(c/4)(x —xo) —M
(60) g tl I( 2 r + I

)—p"=(p+p) p+p
(71)

Thus, the general equation for hydrostatic equilibrium in
our system is
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where B"/B is given by (68). Given an equation of state
p =p(p), the solution of (71) will give p=p(r) and hence
the metric.

If we compare this to Newton's equation of stellar
equilibrium,

4 G z PP
p

a =2a@,
and substitution of this in (79) gives

~ ~ ~

2 c
4

with the solution

(80)

(81)

we see that in the Newtonian limit p~O, J~O, 4—+0
(68) reduces to

4(t) = —ln cos t +—P
2

+So, (82)

II

=8~Gp .
B

(73)

Thus, in this limit our equation (71) will only differ from
the Newtonian equation (72) by a factor of 2 multiplying
G. a (t) = —A, tan t +P +—a,

2
(83)

where Q =c, and P and @o are constants of integration.
If we substitute this solution into (80), we find that a is
given by

V. COSMOLOGY

where I, and a are constants, and thus (78) implies po is
given by

Consider the two-dimensional Robertson-Walker
metric

Q ~u —2eo
p = e (84)

dx
ds = dt +—a (r)

l —kx
(74)

Note that we chose a = 1 and P=0 for convenience in the
previous paper [8]. We see that this solution will collapse
at

with the field equations (62)—(64). As previously noted in
Ref. [2], in two dimensions we do not have three different
cosmological models corresponding to open, closed, and
Oat spacetimes since the denominator in the second term
in (74) can be absorbed into a definition of the spatial
coordinate.

If we assume the perfect fiuid stress energy, (62) and
(63) become

Q A. sec [(Q/2)t+P]tan [(Q/2)t+P]
a —

A, tan[(Q/2)t +P]
(86)

=2 a
t, =—arctan ——P,

Q

and as the density varies inversely with a, the density will
diverge at the collapse. The curvature

e ~~ —C +—4 = 4vrG(p +p)—,
a

2 . . y —1
a =—a@+2 a4,

y y
(77)

e (2d —2&a —2@a)=8~6(p —p)a .

If we now take the equation of state to be p =(y —1)p,
then conservation of energy T";=0 will give .apr =aop$,
and substitution in (75) and (76) will give

a =a++a+,
which may be integrated to give

(87)

also diverges at t, . This collapse is similar that of the
cosmological solution of the R = T theory [2]. However,
in contrast to [2], one cannot construct a two-
dimensional analogue of the Friedmann-Robertson-
Walker (FRW) cosmology in general relativity using (83),
since a vanishes at only one time t„and diverges at finite
times both before and after t, .

In the case y =2 (radiation), (77) becomes

~ ~

e ——+2+ =8+Gp .
a

We also find that (64) becomes

(78)
a =aN+B, (88)

B a constant of integration. If we substitute this in (79),
we may obtain

a +2a + —2a +—2a N+ —,
' Ja =0 . (79) 2(a B) 1—a= + ca

a 2
(89)

The solution of these equations for general y is quite
dificult. However, a solution may easily be obtained for
two special cases, y = 1 and 2, corresponding to dust- and
radiation-filled spacetimes, respectively. For simplicity
we shall henceforth consider only J =c solutions.

The case y = 1 was studied in [8], but we include the re-
sults here in the interest of completeness. We find (77)
becomes

&b(t) = —ln cos —t +Pv'2 +No,

a(t)=A sec r+p
2

Considering first solutions with 8 =0, we find

(90)

(91)
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where y =a(a), and ~ is a constant. We can rewrite this
in a simpler form by scaling a =&ca l2B, y =y IB,
which gives

in(a +1—y)+ =En(a )+k,+1—y
(93)

k a constant.
We check now for collapsing solutions. If the solution

given implicitly by (93) collapses, it follows that this
equation must be satisfied as a —+0. Thus, we let a =e,
y = 1+e 5, and—consider (93) as e~O. We find (93) may
be rewritten as

ln(5)+ —=ln(e)+k,1

5
(94)

which implies

1 p 1 igg 1——e = ——e
5 e

since xe"~ —1/e for all x. Thus,

ee'& e,

(95)

(96)

which cannot be satisfied for finite k as e~O. Thus, (93)
cannot be satisfied as a ~0, so the solution described by
(93) cannot collapse.

Alternatively, since (89) implies that a is always posi-
tive, collapse is impossible if d is initially positive. If a is
initially negative but vanishes before the collapse occurs
(i.e., for a H(0, 1]), collapse is also impossible. Thus, if
the initial condition is y(& = 1)=y0, then

k =En(2+y0 ) + —1,2

2+yp
(97)

and collapse is possible only if y does not vanish for
a H(0, 1] (note that y and a do not necessarily have the
same sign). When y =0, a is given by

1
a

e —1

and thus y =0 for a H (0, 1] if e"~ 2, which implies

where 40, P, and 3 are arbitrary constants. This solu-
tion obviously does not collapse, and corresponds to a
universe which is expanding.

Turning now to the more general case, we may obtain a
first integral of (89) by treating it as a differential equa-
tion for a as a function of a. The implicit solution is

ln(ca +4B 4By)—+ =ln(a )+x,4By
ca +4B —4By

(92)

tion a (t) for a radiation-filled spacetime, we have been
able to demonstrate such a universe, in general, cannot
collapse. Time-reversal invariance therefore implies that
the scale factor reaches a minimal value at some time

EQ IIl

VI. CONCLUSIONS

The above considerations, when combined with the re-
sults in Refs. [8,11] on gravitational collapse, indicate
that the two-dimensional theory of gravity given by the
action (4) yields a classical theory of gravity which is as
rich in structure as the R = T theory proposed earlier [2].
Of course from a classical relativist s viewpoint, the pres-
ence of the dilaton introduces features which are marked-
ly different from the R =T theory. In the latter case,
curvature is generated solely by stress energy which is
prescribed from the matter Lagrangian. In the string-
motivated theory studied here, the dilaton field cannot be
decoupled from the remaining gravity-matter system:
even a vanishing dilaton field imposes constraints on the
stress energy in addition to those which follow from the
conservation laws. Indeed, upon reparametrizing the di-
laton field so that e =y, it is easily seen that the ac-
tion (4) (with J=0) is two-dimensional Brans-Dicke
theory with co= —1.

The post-Newtonian expansion is similar to that of
general relativity, although the presence of the dilaton
field introduces some extra complications. In the weak-
field approximation the trace of the metric perturbation
obeys a wave equation, although the form differs depend-
ing upon whether or not one perturbs about the Aat vacu-
um (T„,=0=J) or the dilaton vacuum (T„„=O,J =c).
The equation of stellar equilibrium was obtained, and we
saw that in the Newtonian limit, it reduced to a form
similar to the Newtonian equation. The Newtonian ap-
proximations to this theory were identical to those of [2]
apart from a factor of 2 multiplying G.

The development of the cosmological solution in [8]
was included. This study shows a dust-filled spacetime
will collapse in finite proper time for suitable initial con-
ditions, with divergent density and curvature, although a
solution which collapses cannot have developed from an
initial singularity, and vice versa. This solution is the
basis for the demonstration that the symmetric black hole
solution arises from gravitational collapse [8,11]. En the
case of a radiation-filled spacetime, we were unable to
solve the equations in general, although we were able to
show that the spacetime never collapses. The collapsing
dust solution has similarities to the collapsing dust in the
R = T theory [2], but the general properties of the cosmo-
logical solutions are quite different.

2 —2/(2+y0 ) 1
e

2+yo e
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