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Scaling limit of a nonrelativistic model of confined "quarks"
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I calculate the structure function for scattering from the two-body bound state in its lowest level
in a nonrelativistic model of confined scalar "quarks" of masses m~ and m~. The scaling limit in
x = q /2(mz + mrr)q exists and is nonvanishing only for the values z = mz/(mz + m)3) Bzld
z = mrs/(mp + ms) which correspond to the fractions of the momentum of the two-body system
carried by each of the "quarks. " In the scaling limit, the interference from scattering ofF of the two
"quarks" vanishes. Thus the scaling limit of this model agrees with the parton picture.
PACS number(s): 12.40.Aa, 12.40.@q, 13.60.Hb, 25.30.Fj

I. INTRODUCTION

Since the scaling limit of the structure functions for
deep inelastic scattering concerns a regime which is at
an opposite extreme from the confinement regime, it is
interesting to see how asymptotic freedom, which is re-
sponsible for the high-momentum-transfer scaling limit
of deep inelastic scattering given by the parton model
[1], coexists with confinement, which is of crucial impor-
tance for low-energy hadronic physics. In the present
paper, I study the scaling regime in a nonrelativistic
model of scalar "quarks" bound by a harmonic potential
to get some clues as to how these disparate regimes can
coexist in such models. Insight gained might be useful
in studying the corresponding problem in /CD. Specif-
ically, I calculate the structure function Wc& for in-(Aa}

elastic lepton scattering from a bound state of "quarks"
of masses mA and mrs. I find that the scaling limit in
x = q /2(m~+m~)q exists and is nonvanishing only for
the values z = mA/(mA+ mrs) and z = mar/(mA+ mar)
which correspond to the fractions of the momentum of
the two-body system carried by each of the "quarks. "
For these values of 2: the scattering is that expected from
free "quarks. " Thus the scaling limit of this model agrees
with the parton picture. Because particles interacting via
a harmonic potential are much freer at short distances
than those which interact with a potential which is lin-
ear at large distances and Coulombic with a coupling
constant which decreases logarithmically, as in the case
of asymptotic freedom, at short distances, one can expect
a rapid approach to the scaling limit.

Section II describes the model. Section III contains the
calculation of the structure function. Section IV summa-
rizes the work and gives the outlook for future develop-
ments.

II. DESCRIPTION OF THE MODEL

The model has two species of nonrelativistic scalar
"quarks" of masses mA and mrr. (I could have called
one of these a "quark" and the other an "antiquark. ")
The second-quantized Hamiltonian of the model is

H= ) (2m)
i=A, B

d x 7'Qt(x, t) 7'g, (x, t)

+(k/2) d xd y@At(x, t)g~~(y, t)

The Heisenberg equation of motion for @A is

iayA(x, t)/Bt = —(2mA) 7' @A(x, t)

+k dsy @~t(y, t)(x —y)

x @rr (y, t)@A(x, t),

With a view to possible later work, I carried out the
calculation using the N quantum approximation (NQA),
which is exact in this model. A brief review of the NQA
in the form relevant to theories with a confining potential
is given in the Appendix. I emphasize that the NQA is
not necessary for this calculation; the usual Schrodinger
theory gives the same result.
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with a similar equation for g~. The solution of Eq. (2)
using the Haag expansion is given in the Appendix. The
equation for the two-body Schrodinger amplitudes, which
are identical to the Haag amplitudes described in the
Appendix, in terms of the relative coordinate r = x —y,
1s
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h, V'2"+»' I"Aa, (r) =~ F~a, (r),
2PA.a

F~a, (2:) =

( p~a~ li ()2n

Pxa mx
1+

727g
where H„ is the Hermite polynomial.

To fix notation, the solution of Eq. (3) is F~a „(x) =
H& F», , (&')

3

III. CALCULATION OF THE
STRUCTURE FUNCTION

A general formula for the structure function is

W„=) d k(P, Oij~(0)ik, a&(k, o, ij„(0)iP,O&(2~) 6 (q+P —Pj, )

= ) (P, oli, (0) IP + q, ~&(P ~ q, ~l~. (0) IP, O&(2~)'6(q'+ Zo(P) —&.(P+ q)); (6)

o, labels the quantum numbers of the intermediate states aside from the momentum. For the nonrelativistic model,
I calculate only Woo. I work in the rest frame of the target, P = 0; however, I will put P in the label of the states,
and set P = 0 in the 6 functions and in the final results, because putting 0 in the labels of the states might confuse
the states with the vacuum. The requirement that the charges Q, = f dszp, (z) obey (p, niQ;ip', n'& = 6„„6(p—p')
provides the normalization of the bound-state amplitudes,

d & F~a,~(r)+Aa, n'(r) = 6n, n' ~

The structure function for scattering from a single particle A or B "quark" is

~oo = d'~(» &Ip(0) ik ~&(k «ip(0) I» &&(2~)'6'(&+ q —&)

2
= (P, ~lp'(0)IP+ q, ~&(P+ q, ~lp*(0)IP, ~&(2~)'61 q'—

2m, )
= (2~)-'r (q' — ~, ~ = x, a.

2mi )
The structure function for scattering from the ground state of the two body bound AB system is

' ——) . d'k(P, Olp(0)ik, n&(k, nip(0)iP, O&(2+) 6' (q+ P —Pk „)

=) .(»Oip(0)IP+ q n&(P+ q nip(o)iP, o)(2&) 6(q'+ Eo(P) —E (P+ q)),

where all states are AB bound states. If the difference to —6 could be neglected so that the 6 function could be
taken out of the sum, completeness of the intermediate states would lead to

2

~oo ' = ) (» Ol [p~(0) + pa(0) llP + q n&(P + q, nl [p~(0) + pa(0)jl» 0&(2~)'6
i

q'—
2(mg + ma) ) (10)

and each direct term would have the form

2 2) (P, Oip, (0)iP+q, n&(P+q, nip, (O)iP, O&(27r) 6 q —
i

= (2~) 6
i q

which is the structure function for scattering from a particle of mass m~ + m~. This serves as a useful check on the
calculation. Taking into account momentum conservation, the relevant matrix element is
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(» oI~A(o) lp + q n) = (2~) '

= (2vr)

FAB,O (y) exp
I

—
l +AB, (y) d 'JJ

( imBq y l 3

mA+mB)
imBqg

+AB,O(y) exp
~

—
l FAB,n(V)dymA+mB j

(—i)" („)
(2~)3v n!

2 n/2 2

1 2m'(mA + ma)hv) ( 4m'(ma + ma)hv) '

q was chosen in the z direction, q = ~q~, and y is the z coordinate of y. With this choice, only the z-direction modes
of the higher oscillator states are excited. A similar formula holds for (t)B("). Inserting Eq. (12) in Eq. (9),

2
W(" ' = (2 )-') —'((t (") + y("))'~

~

q' - r00 ~ nI A B
) 2(mA+mB)

Since, if the n in the 6 function could be neglected, the sum on n would cancel the exponential in each of the direct
terms, this verifies the check of Eq. (11) above. For this nonrelativistic problem, I define the scaling variable to be

z = q /2(mA + mB)q0.

In terms of x, the structure function is

2~(AB) (2 )
—2 ) 1 (y(11) + y(11) )2P-n! " B (2(m +m )

(1 —z) —nb~
~

rx

—(2vr) {exp[—Q fA(z)) + exp[ —Q fB(z)]) ) .6
I

Q
* —n

I
h&

where Q—:q /2(mA + mB)Fuu is dimensionless, and

2f ()= 1 1 —z (m&1 —
z)ln

~z z (mB z

and fB is the same formula, except A and B are inter-
changed. The = sign is because Stirling's approxima-
tion for n~ holds only for large n. Each term of the sum
comes from a different excitation of the AB bound state.
These excitations play the role of resonances in hadronic
physics. The different "resonances" contribute on dis-
joint lines of slope one in the q -q /2(mA + mB) plane.
In order to discuss the scaling limit, I replace the sum on
n by an integral over n. Then

WAB = (exp[—Q fA(z)]

+ exp[ —Q'fB(z)])'. (18)

The details of the averaging procedure do not matter.
For example, averaging over q2 at fixed x gives the same
result. The functions fA and fB are positive between
0 & x & 1, except for quadratic zeros at

z = mA/(mA+ mB) and z = mB/(mA + mB), (19)

respectively; thus the structure function vanishes for
large q, except at these values of x which are the fractions
of the momentum of the target bound state carried by
the respective "quarks, " as expected by the parton pic-
ture of deep inelastic scattering. Note also that, unless

Then

(mA + mB) ( mA
3 Z

4m„'mB ( mA+ mB) (2o)

(AB) 2 vt'arm A m B
(2vr)2n(u(mA+ mB) Q' (21)

thus moments of q lVpp remain finite and nonvanish-
ing in the scaling limit. This result holds for either order
of doing i dz and replacing P„by f dn. However, if the
scaling limit, q ~ oo, is (improperly) taken before calcu-

lating the x moments, then, since Wpp is bounded and(AB) ~

vanishes in this limit, except at the two isolated points
given by Eq. (19), the z moments would appear to vanish
[s).

Sealing in deep inelastic scattering from the deuteron
considered as a bound state of a proton and a neutron,
with emphasis on the effect of Fermi motion, was dis-
cussed in [4].

The calculation of W&0 in Eq. (14) corresponds to(AB)

I

mA = mB, fA + fB has no zeroes; thus the interference
term vanishes in this limit, which verifies the incoherence
assumption of the parton picture [2]. The rapid Gaussian
decrease of Wpp with q away from the values of x at(AB)

which scaling occurs reflects the rapid vanishing of the
"quark"-"quark" potential at short distance mentioned
in Sec. I.

To evaluate x moments of WAB in the large-q limit,(pp) . 2

approximate fA by
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FIG. 1. Graph for TVgo in which light lines are on shell,
heavy lines are ofF shell, and the sum stands for the integrals
over k and k' and a sum over harmonic levels n. The line
labeled by the momenta P and P + q are two-body bound
states; the other solid lines are single-particle states. The
wiggly lines are currents.

Fig. 1; the parton model limit corresponds to Fig. 2. Note
that Fig. 1 is a two-loop graph while Fig. 2 is a one-
loop graph; thus in the scaling limit the graph with two
independent momentum integrations reduces to a single
such integration. Figure 3 shows the fixed-x and fixed-
resonance mass lines in the q -q /2(m~ + m~) plane.

FIG. 3. The allowed kinematic domain for the structure
function is between the 45, line x = 1, and the q axis,
x = 0. Generic fixed x and generic fixed resonance mass M,
are indicated.

IV. SUMMARY AND OUTLOOK

In a simple model, I verified that the deep inelastic
limit of the structure function approaches the limit of in-
coherent elastic scattering off its constituents as though
the constituents were free. This shows the way in which
the scaling limit can coexist with confinement. In the
present two-body model, each constituent "quark" car-
ries a fixed part of the total momentum. It would be
interesting to study a three-body bound state in which
the "quarks" can carry variable fractions of the total mo-
mentum, as well as a model in which there are a vari-
able number of constituents. The three "quark" masses,
the Lagrangian mass which occurs in the kinetic term
in the Hamiltonian (or the corresponding Lagrangian),
Eq. (1), the constituent mass which occurs in the (ana-
log of the) Schrodinger equation, Eq. (3), and the current
mass which occurs in the parton model limit, Eq. (15),
are all the same in this simple model. These masses will
differ in more realistic models.
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FIG. 2. Graph for the parton model limit of R'00. Here
there is just one integration, over k. The line labeled by P
is the two-body ground state; the other solid lines are single-
particle states. The wiggly lines are again currents.

APPENDIX: REVIEW OF THE
CONFINED IN FIELD VERSION

OF THE lV QUANTUM APPROXIMATION

The basic idea of the N quantum approximation is
that the complete and irreducible set of Heisenberg fields
which appear in the Lagrangian of a theory can be
expanded, following the seminal paper of Haag [5], in
(normal-ordered, if one chooses) products of the complete
and irreducible set of asymptotic fields for the stable par-
ticles of the theory, both the particles which correspond
to the Heisenberg fields and the particles corresponding
to any bound states which are present. The c-number
coefficients of the Haag expansion (I call these the Haag
amplitudes) are retarded (if in fields are chosen) or ad-
vanced (if out fields are chosen) amplitudes with the legs
corresponding to the asymptotic fields on shell and the
single leg corresponding to the Heisenberg field off shell.
Thus only one leg in any Haag amplitude is off shell. This
formalism is as close to being on shell as can be achieved
in a field theory. The Haag amplitudes are closely re-
lated to scattering and bound-state amplitudes. For the-
ories with confined particles, I assume that a state with
only one confined particle is allowed, but that scattering
states of more than one confined particle are prohibited.
In order to study the modifications necessary in the Haag
expansion of the Heisenberg Fields in normal-ordered in
(or out) fields for the case of theories with confinement,
I studied a model [6) in which nonrelativistic particles,
called "quarks, " interact with a harmonic potential. So-
lution of the model required that the in (or out) fields
be replaced by "confined in (or out) fields" which dif-
fer from the usual asymptotic fieMs by having vacuum
projectors Ao to the left of the annihilation parts of the
asymptotic fields and to the right of the creation parts
of the asymptotic fields. The insertion of vacuum [or in
quantum chromodynamics (@CD), color-singlet] projec-
tors enforces the prohibition of multiparticle scattering
states. For the model of [6] with confinement by a har-
monic potential there are no analogs of the unconfined
mesons and baryons of @CD, so the in and out fields are
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identical. For a realistic model with color and antiquarks,
the vacuum projectors should be replaced by projectors
onto the color-singlet states.

Although I use the confined in field formalism, as em-
]

phasized in Sec. I, the results do not depend on the use
of this formalism.

The relevant terms in the Haag expansion, with con-
fined in fields, are

@~(x,t) = Ap@~;„(x,t) + ) F~B „(x—y)Q~,.„(y,t)AoB„;„(R,t)d y,

where R = (m~x+m~y)/( m~+ m~), @~;„and Q~;„are Fermi in fields and obey Fermi equal-time anticommutation
relations (for this nonrelativistic model, either Fermi or Bose statistics could be chosen), and B„,;„ is the Bose in field
for the two-body bound state in oscillator level n and obeys Bose equal-time commutation relations. There is a similar
equation for the field @~ with A and B interchanged and F~~ „(x)= —F~~ „(—x). The form of the expansion for the
terms with bound states is dictated by the requirements of translation and Galilean invariance. Focusing attention on
the two-body bound states, the Haag amplitudes F~~,„,n = (ni, n2, ns), satisfy the Schrodinger equation, and thus
are the Schrodinger amplitudes for the oscillator bound states with energy e„=Q, (n, + 3/2)~, ~ = V k/2p~~, at
rest.

The expansions of the fields in annihilation operators are

g, (x, t) = (27r) ~ d pdEa, (p, E) exp( —iEt+ip x), i = A, B, (A2)

g, ,;„(x,t) = (27r) ~ d pa, ;„(p)exp( —ip t/2m, +ip x), i = A, B,

B„,;„(x,t) = (2n) ~ d pApb„; (p)exp[ —iE (p)t+ip ~ x],

E~(p) = p /2(mx + ma) + e~ for the two-body bound states. The equal-time anticommutation relations for the in
fields, [Q, (x, t), g, (y, t)]+ ——6,,6(x—y), lead to anticommutation relations for the annihilation and creation operators,
[a, ;„(p),a,„(q)]+ ——b;sb'(p —q). The charge density jo(x) = p(x) is p(x) = p~(x) + p~(x),

C~(x) = 0~(x)@~(x)

F&»(x —y)B . (R, t)ApB„;„(R,t)FA& „(x—y)d y, (A5)

where I have kept only the relevant terms in p~.
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