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Coalescing binary systems of compact objects to (post)5/~-Newtonian order.
III. Transition from inspiral to plunge
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Late in its evolution, a binary system of compact objects will undergo a transition from an
adiabatic inspiral induced by gravitational radiation damping to an unstable plunge, induced by
strong spacetime curvature. This transition from inspiral to plunge is studied in detail using higher-
order post-Newtonian methods. First, we study the innermost stable circular orbits of binary systems
of nonrotating, compact objects of arbitrary mass ratio in the absence of gravitational radiation
reaction. The method uses "hybrid" two-body equations of motion that are valid through (post)-
Newtonian order [order (Gm/rc ) ], but that also include the test-body limit in the Schwarzschild
geometry exactly. Using a critical-point analysis, we show that circular orbits inside this innermost
orbit are unstable to plunge. The separation of the innermost stable orbit (in harmonic, or de
Donder coordinates) is found to vary with mass ratio, from the test-body value of 5m to about 6m
for equal masses, where m is the total mass of the system. The orbital energy, angular momentum,
and frequency of the innermost stable orbit are also determined as a function of the ratio of the
two masses. We study the sensitivity of these values to higher-order post-Newtonian corrections.
Incorporating gravitational radiation reaction in the hybrid equations of motion, we evaluate such
variables as radial velocity, angular velocity, energy, and angular momentum for a coalescing binary
at the corresponding innermost stable orbit, as a function of mass ratio. These variables could be
used as initial conditions for numerical calculations of the ensuing coalescence.

PACS number(s): 04.30.+x, 95.10.Ce, 97.80.Fk

I. INTRODUCTION AND SUMMARY

In two previous papers in this series [1, 2], we have
developed a framework for treating the relativistic in-
spiral of binary systems of compact objects and the
gravitational radiation emitted, using higher-order post-
Newtonian approximations to general relativity. Inspi-
raling compact binaries are considered to be the most
promising sources of gravitational radiation detectable
by laser-inter ferometric gravitational-wave observatories
(for overviews, see [3,4]). These systems consist of neu-
tron stars or black holes undergoing orbital decay under
the dissipative inHuence of the gravitational radiation re-
action, culminating in a final coalescence. Depending on
the nature of the system, the final stage could result in

(a) transition from steady inspiral to an unstable plunge,
leading to either a hydrodynamical coalescence or forma-
tion of a black hole, or (b) tidal disruption of any neutron
star in the system, leading to a collapsing or accreting
disk of matter Each of these scenarios could produce
a distinctive signature in the gravitational-wave form in
the late-time, high-frequency regime, from which useful
information about the system could be extracted [5]. In
this paper, we focus on the transition between the steady
inspiral and the unstable plunge.

In our earlier work [1], the equations describing
the evolution contain all post-Newtonian corrections to
the Newtonian two-body equations through (post)sI—

Newtonian order, the order at which the dominant
gravitational-radiation-reaction damping forces occur.
Schematically, these equations can be written

d x/dt = —(m /rx)[1+0(e)+O(e )+O(e )+. ],
(1.1)

where x and r = ~x~ denote the separation vector and
distance between the bodies, and m = mq + m2 de-
notes the total mass. We also define the reduced mass
p = m&m2/m. The quantity e denotes the small pa-
rameter that characterizes the post-Newtonian expan-
sion, e —v —rn/r, assumed to be smaller than unity
(G=c=1).

With the equations of motion, we formally evolved
binary-star orbits of arbitrary mass ratio from initial,
widely separated orbits that are approximately Kep-
lerian. Gravitational radiation damping causes the or-
bits both to become more circular if they were initially
eccentric, and to spiral inwards, culminating in a final
plunge, when the objects coalesce. In practice the evo-
lution must be terminated either when hydrodynamical
effects or tidal disruption become important, or when
the post-Newtonian approximation ceases to be accu-
rate. We found that, for equal-mass binary orbits evolv-
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ing from an initial, quasicircular, slow inspiral, there was
a transition to a rapid plunge when the separation r was
about 6m. Recall that in the harmonic or de Donder co-
ordinates used in this approach, the event horizon of an
isolated black hole is at r = m. In the case of a small
mass ratio, say, 1:10,gravitational radiation damping is a
weaker effect for a given total mass, resulting in a signif-
icantly slower inspiral, yet a plunge still occurred around
r = 6m. On the other hand, an orbital evolution using
only the Newtonian equations of motion with the radia-
tion reaction (i.e. , without post- or post-post-Newtonian
terms) results in a steady inspiral without a plunge, even
down to r 3m. These cases are illustrated in Fig. 1.

This suggests the presence of a phenomenon apart from
the radiation reaction that is contributing to the transi-
tion from a stably inspiraling orbit to an unstable plunge,
a phenomenon analogous to the existence of an innermost
stable circular orbit (ISCO) for a test particle orbiting a
black hole. For Schwarzschild black holes, the radius of
the ISCO is r = Gm, in harmonic coordinates. For test-
body orbits there is no gravitational radiation reaction,
and so a circular orbit of radius r ) 5m is stable (against
small perturbations), whereas an orbit of radius r ( 5m
is unstable and plunges into the black hole when a per-
turbation is applied.

This raises the question, is there an analogous ISCO
for binary systems whose components have comparable
masses? Of course, this cannot be answered rigorously
as in the test-body case, because the radiation reaction
is necessarily present; nevertheless, we can address the
question approximately by the artifice of "shutting off"
the radiation-reaction terms in the post-Newtonian equa-
tions of motion.

Using the equations of motion described schematically
in Eq. (1.1), but keeping only terms through (post)2-
Newtonian order, we find, using a critical-point analy-
sis, that an ISCO does exist at a separation of about
6.8m, for two equal masses, and at 6.5m in the test-body
limit. The latter value disagrees with the exact result
of Gm because of the use of the (post) -Newtonian ap-
proximation for the test-body equations of motion. In-
terestingly, when we carry out this method at the first
post-Newtonian order, we find that an ISCO does not
exist at all (see also Sec. III B).

In order to remedy this inaccuracy in the test-body
limit, we adopt a different equation of motion than Eq.
(1.1). The terms in Eq. (1.1) turn out to be of two
types, those that depend only on the total mass m and
those that depend on rl = p/m. The former terms can
be shown to correspond simply to the (post) -Newtonian
expansion of the exact equations of motion for a test
body in a Schwarzschild geometry of total mass m. We
rep/ace these terms by the e~act Schwarzschild expres-
sions. The remaining terms, dependent upon g, we leave
as a (post) -Newtonian expansion. The resulting hy-
brid "Schwarzschild —post-Newtonian" equations of mo-
tion, which we denote by the subscript H to distinguish
them from the standard post-Newtonian equations, are
valid to (post) -Newtonian order for arbitrary mass ra-
tio [or to (post) ~2-Newtonian order if we include the
radiation-reaction terms, which are also proportional to

rl], and are exact in the limit rl = p/m ~ 0. They are
given by

(d x/dt )H = —(m/r )[AHn+ BHv], (1.2)

where n = x/r, and where

I I

mi =m2(POST) ~ -NEWTONIAN

E

0—

—10—

—20 I » & & I

0 i i »
I

& i i i

I

»2
m& = ]Omg(PQS&s/2 NEWTONIAN

10—

2

0—

—10—

—20

20
I

mI = m2 NEWTONIAN+RADIATION REACI'ION

—10—

—2020
I I I I I I I I I I t I

—10 0
x/m

I I I l I

10

FIG. 1. Inspiral of circular orbits with the gravitational
radiation reaction. Top: Equal masses with (post) ~-
Newtonian equations of motion; note the transition to a
plunge around r = 6m. Middle: Mass ratio 10:1;transition to
a plunge around r 6m despite weaker radiation damping.
Bottom: Equal masses, Newtonian equations of motion with
the radiation reaction; transition to a plunge does not occur.
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1 —m/r ' 2 —m/r m. 2 2 ( m z 3 z)
(1+m/r)s 1 —(m/r)z r ( r 2 )

87 m 4 15 m 2 m 2+q —— + (3 —4il)v + —(1 —3tl)r' ——(3 —4il)v i ——(13 —4') v——(25+ 2') i—
4 r 8 2 2 r r

8 m. , 17m——'g —T 3v + ——
5 r 3 r (1.3a)

4 —2m/r . . 1 2 m 8 m 2 mr'+ 2rlr —' gr' —(15+4il)v —(41+ 8g) ——3(3+ 2')r +'-g —v + 3—
1 —(m/r) z 2 r 5 r r (1.3b)

In Eqs. (1.3), the four sets of terms in each expres-
sion denote the Schwarzschild, post-Newtonian, (post)z-
Newtonian, and (post) s~z-Newtonian terms, the last
three dependent upon il. Note that we no longer have
a consistent (post)z-Newtonian approximation, since we
have retained more "terms, " or accuracy in powers of
m/r, in the Schwarzschild sector than we have in the
il sector, but we believe that obtaining the correct test-
mass limit outweighs this concern. We discuss the accu-
racy of this approach later (Sec. III D).

We then use a critical-point analysis to End the ISCO
of the H equations [6]. We first drop the final, radiation-
reaction terms from AH and BH. Choosing the fixed or-
bital plane to be equatorial, we convert the H equations
of motion into a radial and an angular equation. Circular
orbits correspond to critical points r' =P = u = 0, where
~ is the angular frequency. We linearize about the crit-
ical point, and determine the innermost stable orbit as
that value of vo for which the perturbation changes from
oscillatory to exponential in time. In this procedure the
relevant expressions for AH and BH are treated as exact,
and the values of ro determined numerically.

The result as a function of the parameter g is plotted
in Fig. 2 [7]. Note that g is related to the mass ra-
tio by il = X/(1+ X), where X = mi/m2. , g = 0.25
corresponds to equal masses. The separation increases
from the exact Schwarzschild value of 5m at rl = 0 to

-0.035
BINDING ENERGY

-0.040

-0.045

-0.050

-0.055

t

about 6.03m for equal masses, and is roughly linear in
il. We also checked these results using a direct numerical
integration of the H equations of motion (without the ra
diation reaction) for perturbed circular orbits to search
for unstable points. It is interesting to note that, for two
1.4MO neutron stars, the ISCO radius corresponds to a
coordinate separation of about 25 km, which is larger
than the sum of the two neutron-star radii for all but the
stiKest equations of state.

The variable r is not a directly measurable or gauge-
invariant quantity, and so.its utility is limited. How-
ever, the binding energy per reduced mass E (total en-
ergy minus rest-mass energies of the binary components,
divided by reduced mass), and angular momentum per
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FIG. 2. Harmonic coordinate separation of the innermost
stable circular orbit as a function of g = p, /m.

FIG. 3. Energy per reduced mass and angular momentum
per reduced mass at the ISCO as functions of g.
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reduced mass J are invariant quantities. By analogy
with the equations of motion, we have developed hybrid
(post)2-Newtonian expressions for E and J that repro-
duce the Schwarzschild test-body results and that are
valid to (post)2-Newtonian order for an arbitrary mass
ratio. In the test-body limit, they correspond to the ex-
act Schwarzschild expressions, written in harmonic coor-
dinates. Through (post) -Newtonian order, they agree
with standard results obtainable from Lagrangian for-
mulations of the equations of motion [8]. The results are
plotted in Fig. 3. We also obtain the orbital frequency of
the ISCO measured asymptotically, f = ~o/2~, directly
from the critical-point analysis. The result is plotted in
Fig. 4. The gravitational-wave frequency is twice the
orbital frequency.

Using the hybrid equations of motion including the
gravitational radiation reaction, we evolve inspiraling or-
bits for various mass ratios up to the corresponding ISCO
radius, which we regard as the transition point between
inspiral and plunge. At this radius, we evaluate the ra-
dial and azimuthal velocities, the orbital frequency, and
the energy and angular momentum of the inspiraling or-
bit. The results for v„as a function of g are plotted in
Fig. 5, with corresponding values for v@ at g = 0 and
rl = 1/4 labeled. Values of the relevant orbital quantities
in the equal-mass case are listed in Table I. Because v„
is at most 10 times smaller than vy, it is adequate to use
the circular orbit results for energy, angular momentum,
and orbital frequency in the inspiral case, since v„aKects
these quantities only quadratically. Note that, for equal
masses at the ISCO, E = —0.94x 10 2m, so that a little
less than 1'%%ua of the total mass of the system has been ra-
diated away in gravitational waves. When properly con-
verted to the appropriate coordinates, these values may
provide useful initial conditions for large-scale numerical
simulations of the plunge and coalescence process.
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FIG. 5. Radial velocity v at the ISCO for inspiral orbits,
as a function of g. Azimuthal velocity vy for the correspond-
ing orbits is labeled for rl = 0 and 1/4.

II. HY'BRID EC}UATIONS OF MOTION
FOR BINARY SYSTEMS

The remainder of this paper presents details. In Sec. II
we develop the hybrid equations of motion and derive the
corresponding hybrid expressions for energy and angular
momentum. In Sec. III we use a critical-point analysis
to determine the coordinate separation of the ISCO, and
discuss the accuracy of the estimate by considering the in-
fluence of (post)s-Newtonian effects. In Sec. IV we study
orbital evolution using the hybrid equations of motion
including the radiation reaction to determine the actual
state of the orbit at the ISCO radius. In Sec. V we com-
pare our results with other work, discuss the relevance
of these results to observation of gravitational radiation
using laser-interferometric gravitational-wave observato-
ries, and make concluding remarks.

0.0105 A. Equations of motion

0.0100

We begin with the equations of motion for two bod-
ies of arbitrary mass developed by Damour and Deruelle
[9]. These equations contain all post-Newtonian correc-
tions through (post) ~2-Newtonian order, including ef-
fects due to the radiation reaction. They also contain

0.0095
0.0

!I I I !

0.1 0.2 Orbital variable Value

TABLE I. Orbital variables at the ISCO of inspiraling
equal-mass binary system.

FIG. 4. Orbital frequency of the ISCO as seen asymptot-
ically, as a function of g. Specific values of frequency in Hz
are shown for various masses. Gravitational-wave frequency
is double the orbital frequency.
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a:—ai —az = —(m/r )[An+ Bv], (2.1)

where A =—1+Ai+ Az+ Asia, B:—Bi+Bz+ Bsiz, the
subscript indicates the order of the post-Newtonian cor-
rection terms in terms of powers of the small parameter
e = m/r = v, and

Ag ———2(2+ g) —+ (1+3g)v — ar-m 2 3.2

r 2
(2.2a)

=3 (m'I
'

4 15
A., = -(12+ 29rl) — +g(3 —4')v'+ —ri(1- 3g)r'

4 8

3 2.2 1 m 2—-q(3 —4q) v r —-q(13 —4q) v—
2 2 r

—(2 + 25' + 2rl ) r'—
r (2.2b)

8 m. 2 17m
A5(2 ————rt—r' 3v

5 r 3 r (2.2c)

terms depending upon the spins of the bodies, but we
will defer consideration of spin effects to future publi-
cations. The Damour-Deruelle equations do not include
tidal efFects; for binary systems containing neutron stars
or black holes, these are expected to have little eKect
on the instantaneous orbit until the very latest stage of
inspiral and coalescence, although they could affect the
long-term accumulations of orbital phase [12].

Using an integral of the motion which can be taken as
the center of mass of the system, Lincoln and Will [1] con-
verted the two-body equations of motion to an effective
one-body equation of motion. The relative acceleration
is then given by

r —m & r+m
r g- 'i' T —m

+(r+ m) (d8 + sin ed/ ). (2.4)
Harmonic coordinates are related to the
usual Schwarzschild coordinates by the transformation
r, : rh + m. Using the geodesic equation, we obtain
the following relative acceleration:

as = —(m/r') [Asn+ Bsv], (2.5)
where

1 —m/r
(1+m/r)'

2 —m/r m .z—r +v )
1 —(m/r)z r (2.6a)

4 —2m/r
1 —(m/r)'

(2.6b)

Expanding Ag and Bg in powers of e gives

As = 1 —4—+ v + 9 — —2 r' + O—(e ), (2.7a)
m 2 m' m2 3

Bs = 4r i—2 r' + O(e ) .—m. 3
r (2.7b)

Therefore we see that A~M and B~M correspond simply
to the (post)z-Newtonian expansion of As and Bs.

We obtain a second set of equations of motion by re-
placing the test-mass terms A~M and B~M in Eqs. (2.2)
with the exact Schwarzschild terms As and Bs. The re-
sulting "hybrid" (H) equations of motion are given by
Eqs. (1.2) and (1.3). They are valid through (post)siz-
Newtonian order for arbitrary masses, and are exact in
the test-mass limit.

Bg = —2(2 —g)r', (2.2d)

Bz = r' ri(15+4')v ———(4+41q+8g )—1 2 2 m
2 r

—3rt(3+ 2')r' (2.2e)

8 m-, m-
B5//2

———g—v +3— (2.2f)
5 r r

where an overdot denotes d/dt.
Note that the terms in A and B can be separated into

two types, those that depend only on the total mass m
and those that depend upon the reduced mass p, = gm.
In the test-mass (TM) limit (p, ~ 0) A and B reduce to

m 2 m' m2
A~M = 1 —4—+v +9 — —2 r', (2.3a)—

r r r

B. Constants of the motion

The Damour-Deruelle two-body equations of motion
through (post) -Newtonian order can be derived from a
generalized Lagrangian [8], that is, a Lagrangian which

is a function of the positions, velocities, and accelera-
tions of the two bodies. Likewise the relative equations
of motion [Eqs. (2.1) and (2.2)] can be derived from a
generalized Lagrangian which is a function of the rela-
tive position, velocity, and acceleration of the system.
This Lagrangian can be obtained from the two-body La-
grangian (Eqs. (164)—(169) of [9]) by using the transfor-
mations

m, 1am 2 m
vg=v + —gm 2 m r

B~M = r(4 —2m/r) .— (2.3b)

We will now show that A~M and B~M correspond to the
(post)z-Newtonian expansion of the exact equations of
motion for a test body in a Schwarzschild geometry of
total mass m.

In harmonic coordinates, the coordinates in which
the Damour-Deruelle equations were obtained, the
Schwarzschild metric is given by

bm 1m+n'rj r(v . a) + ——(n v)m 2 r

mi 1 SmV2= v — + —g v
m 2 m r

bm 1m
+n'q r(v a) + ——(n v)

m 2 r

(2.8a)

(2.8b)
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a', = a' '+O(e)
m

a~ = —a' + O(~)
- m

(2.8c)

(2.8d)

These are obtained from an integral of the motion of the
two-body Lagrangian which can be taken as the center
of mass [10]. Using the transformations (2.8) on the two-
body Lagrangian of [9], we find that the Lagrangian for
the relative system is given by

1 2 m 1 4 1 m2 1 2 1 m2
L = p —v + —+ —(1 —3rI)v + —(3+ q) —v + —q —(n v)

2 r 8 2 r 2 r 2 r

+—(1 —7r)+ 13' )v + —(7 —10@—9g )v —+ —q(l —5q)v —(n v)
1 2 6 4 m 1 2m 2

16 8 r 4 r

+—q —(n v) + —(14 —27'+ 4g )v — + —(4+ 45' —4q ) — (n v)2 m 4 1 2 2
2 1 2 m 2

2

8 r 8 r 8 r
1 m 3 1 2 2 7 2m+—(2+ 15') — + —r)(1 —4q)r (v a) + —gv —r(n a)r 2 8 r
1 m 2 1 m——9—(n v) r(n a) ——9(3+169)—(n v)r(v a)).8 r 4 r (2.9)

Defining the quantities

OL d BI, BL
S7' —=

) 8
Bv' dt Oa' ' Ba' ' (2.10)

it is fairly straightforward to show that the relative equa-
tions of motion through (post) 2-Newtonian order, Eqs.
(2.1) and (2.2), are given by the Euler-Lagrange equa-
tions

OL/Ox' —dp'/dt = 0, (2.11)

where it is understood that wherever the acceleration ap-
pears in a higher-order term in Eq. (2.11), one substi-

E = (p v)+(s a) —L,

J = x. x p + v x s.

(2.12a)

(2.12b)

Evaluating these expressions and replacing the relative
acceleration by the appropriate lower-order expression
from the equations of motion, we obtain

I

tutes the lower-order equation of motion.
The relative Lagrangian is invariant with respect to

time translations and spatial rotations so that there exist
constants of the motion, namely, the energy and angular
momentum, given by

1 2 m 3 4 1 2m 1m2 1 2
E = p, —v2 + (1 —3g)v + —(3+@)v'—+ r] r' + ———

2 r 8 2 r 2 r 2 r

+—(1 —7ri+ 13' )v + —(21 —23@ —27r) )—v + —q(1 —15')—v r'
5 2 6 2 m 4 1 m 2 2

16 8 r 4 r
3 m 4 1 2 m'2 1 2 m22 1 m 3——g(1 —3g)—r + —(14 —55ri+ 4rI ) — v + —(4+ 69@+12rj ) — r ——(2+' 15')
8 r 8 r 8 r 4 r

(2.13a)

3 = 9(r x v)
1

1+ —v (1 —39) + (3+9)—+ —(1 —79+ 139 )v
1 2 m 3 2 4

2 r 8

1 2m 2 1 m. 2 1 2 m '
+—(7 —109 —99 )—v ——9(2 + 59) r + —(l4 —419 +—49') —

) .
2 r 2 r 4 r (2.13b)

These are (post) -Newtonian constants of the motion;
radiation damping is being ignored.

As we did with the equations of motion, we can sepa-
rate the energy and angular momentum into terms which
depend only upon the total mass m and those that de-
pend upon the reduced mass p, , apart from the overall
multiplicative factor of p, . In the test-mass limit we have,
for the "reduced" energy and angular momentum ETM
and JTM,

5 21 m 7 m+—V + —V —+ —V
16 8 r 4 r

+—r (2.14a)

1 2 m 3 4 3 m 2 1 m
ETM = ETM/p = —v ——+ —v + ——v +—

2 r 8 2 r 2 r
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12 m 7m 2JTM = JTM/P=(1'X v) 1+ —v +3 + v
2 r 2 r

3 4 7 m+ v4+ — — . 214b
8 2 r

f'dr r —m jzE'= — + 1+
(, dr r+rn (r+m)' (2.i6)

Combining Eqs. (2.15) and (2.16) to solve for dt/dr, sub-
stituting that into the first of Eqs. (2.15), and subtract-
ing the unit rest-mass contribution from E, we obtain the

I

We will now show that ETM and JTM are just the
(post)~-Newtonian expansions of the Schwarzschild re-
duced energy and angular momentum. For a geodesic,
these quantities are given by E = —gppu, J = gy@u~,
where u~ are components of the four-velocity, so that, in
harmonic coordinates,

(r + m)', (2.i5)
dt (r —m) - dP
dr (r+m) ' dr

where we have restricted motion to the plane 8 =
2 with-

out loss of generality. We also have the energy equation
from u~u~ = —1,

Schwarzschild "binding" energy and angular momentum

(r —m) 'i', (r+ m)'
Es —— 1 —v(r+ m) r2 r —m

., (r+ m') '
(m)'

(r —m) r

(2.i7a)

(r+ m)s
Js =

r —m
, (r+ m)'

r2 r —m

rt+ m't(m)'
(r —m) r

(2.17b)

It is straightforward to expand these quantities in terms
of e and obtain precisely Eqs. (2.14a) and (2.14b) through
O(ez). We see that the test-mass terms of the (post)-
Newtonian energy and angular momentum are just the
(post) -Newtonian expansion of the Schwarzschild en-

ergy and angular momentum. We therefore re@tace ETM
by Es and JTM by Js, and obtain the following hybrid
constants of the motion:

r'r —mi 1/2

&a=
Iir+ m)

I'9
4 1 zm 1m.2)—1 —ri I

-v —-v —— r'——
(8 2 r 2r

(2.18a)

2
- —Xi2

, (r+m)' ., (r+m) m 2

r~(r —m) (,r —m) r

—(7 —13r))v + —(23 + 27ri) —v ——(1 —15)7)—v r'
m 4 1 m 2 2

16 8 r 4 r
m, 4 1 m22 3 m 2

2 15 m
+—(1 —3rt) —r' + —(55 —4q) (—) v ——(23+ 4q) (

—
) r + —

(
—)'

8 r 8 r 8 r r

(r+ m)'
r4(r —m)

, (r+m)s .2 r+m) m 2 (3, m&
1 —v —r'

r2r —m r —m r 2 r)
3 4 1 m 2 1 m. 2 1 m ~ i—(7 —13)7)v + —(10 + 9)7)—vz + —(2 + 5q) r + —(—4l '—4q)
8 2 r 2 r 4 r (2.18b)

The Erst group of terms in each expression corresponds to
the exact Schwarzschild test-body (g = 0) values, the sec-
ond group to post-Newtonian, Bnite-mass terms, and the
remaining terms to (post) 2-Newtonian finite-mass terms.
These expressions will be used henceforth to evaluate the
energy and momentum of orbits evolved using the hybrid
equations of motion.

III. CRITICAL-POINT ANALYSIS
OF THE INNERMOST CIRCULAR ORBIT

A. General condition for stable circular orbits

r = —(m/r ) (A + Br') + re, (3.ia)

P = —P[(m/rz)B + 2r'/r] . (3.1b)

Defining ~ = P and u = r', we have the system of equa-
tions

I

the (post)z-Newtonian, Schwarzschild, and hybrid equa-
tions of motion. Orienting the coordinate system so that
the orbit is in the x-y plane, we separate the equation
into radial and angular equations

In order to study the existence of an innermost sta-
ble circular orbit, we drop the gravitational-radiation-
reaction terms from the equations of motion. We Erst
consider general equations of motion of the form of Eq.
(2.1) without reaction terms. Later we will specialize to

r=u,

u = (rn/r )(A+ Bu) +r~—
~ = —~[(m/rz)B+ 2u/r],

(3.2a)

(3.2b)

(3.2c)



3288 KIDDER, WILL, AND WISEMAN 47

where we note that v = u + r u . A circular orbit is a
critical point of this system where r' = u = u = 0, which
implies u = 0. We also note that for all cases considered
here, B is proportional to r'; thus, B = 0 at the critical
point [11].Equation (3.2b) then yields the circular orbit
condition

ap ——m, Ap/r p,2 3

from which we can obtain up as a function of rp. Per-
turbing about the critical values rp, up, and up = 0 by
variables e„, e~, and e„, respectively, and working to lin-
ear order in e, , it is straightforward to obtain the system
of equations

Post-Newtonian order (n)

1
2
3

5
6
7
8
9
10

risco/m

a
6.505

5.364
4.784
5.048
4.985
5.004
4 999
5.000

TABLE II. Test-body ISCO radii for (post) -Newtonian
expansion of SchwarzschiM equations of motion.

2 ~

r =au) eu =acr+be~) e~ =Ca~)

where

(3.4) Spurious root of equations for critical point.

a = 3~p —(m/rp)(OA/Or) p,

b = 2rpup —(m/rp)(OA/O~) p,

c = —~p 2/rp+ (m/rp)(OB/Ou)p

(3.5a)

(3.5b)

(3.5c)

We have used the fact that, for all cases considered, A de-
pends quadratically on u, so that OA/Ou oc u [11].With
the ansatz e, = E,e'~', we obtain the eigenvalue condi-
tions A = 0 and A = 6(—a —bc) i~ . The first eigenvalue
corresponds to a solution with e„=0 and e = (a/b)e-„,
whieh is a displacement from one circular orbit to a neigh-
boring circular orbit. The other eigenvalues correspond
to evolving orbits; for stable, oscillatory solutions, we
must have a+ bc ( 0, which translates into the condition

(up (OAI rp ('OA)
1 —2 +

Ap (O(d)p Ap iOr)p

This, together with Eq. (3.3), gives an equation for rp for
stable circular orbits. An innermost stable circular orbit
corresponds to a minimum rp that satisfies Eq. (3.6).

B. Innermost stable orbits
for Schwarzschild geometry

For test-body motion in. Schwarzschild geometry, we
use As and Bs from Eqs. (2.6), substitute r =u an'd

u2 + p u, and calculate the appropriate par-
tial derivatives. The circular orbit condition is then

= m/(rp+m), and the stability condition Eq. (3.6)
becomes (1 —5m/rp)/(1 + m, /rp) ) 0, which yields the
well-known innermost stable orbit at rp = 5m.

One can also calculate the innermost stable orbit at
each order of approximation to the Schwarzschild geom-
etry, post-Newtonian, (post)2-Newtonian, and so on by
simply expanding the functions Ag and Bg in powers of
m/r and truncating at the appropriate order, and then
repeating the above procedure. Because there is no radia-
tion reaction for test-body motion, this procedure can be

carried out to indefinitely high order in principle. The re-
sulting radii are shown in Table II. At post- and (post)s-
Newtonian order, the solutions correspond to spurious
roots that do not converge to 5m. Note that the conver-
gent solutions only approach 5m at (post)s-Newtonian
order. This suggests that motion in the Schwarzschild
geometry is not a rapidly converging series in a post-
Newtonian expansion. This behavior has also been seen
in the problem of gravitational radiation from test-body
motion in Schwarzschild geometry [5]. This is in part
what motivates our use of the hybrid equations of mo-
tion, to get the Schwarzschild behavior exactly.

C. Innermost stable orbits for hybrid equations
of motion

Taking now the hybrid equations of motion, Eqs. (1.2)
and (1.3), substituting u = r' and v = u + r w, and
taking the appropriate partial derivatives of AH and BH,
we substitute the results into Eqs. (3.3) and (3.6). These
are coupled, algebraic equations in cup and rp, which we
solve, treating them as exact. The equations are equiv-
alent to a polynomial equation for rp of high degree; in
order to select the appropriate root, we first solve in the
test mass (i) = 0) limit and then follow that root as i) in-
creases. The resulting values of rp are plotted in Fig. 2.
These, together with the resulting value of ~p, are then
substituted into Eqs. (2.18a) and (2.18b) to yield Fig. 3.
Figure 4 plots m f = 2mwup for the innermost orbit as a
function of g.

D. Accuracy: EfFects of (post)s-Newtonian terms

Because the separation radius of the innermost orbit
for equal masses corresponds to m/rp = 1/6, which is not
all that small, one might question the accuracy of our es-
timate. Indeed, if one repeats the analysis of the previous
subsection using the fully (post) -Newtonian equations of
motion, Eqs. (2.1) and (2.2), the results are rp = 6.51m
for the test-body limit and rp = 6.8m for the equal-mass
case, the former value coinciding, as expected, with the
(post)2-Newtonian Schwarzschild value of Table I. How-
ever, we conjecture that this discrepancy is dominated by
the Schwarzschild behavior, which is poorly convergent.
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Our hybrid equation of motion is an attempt to cure this
defect.

One might still ask how accurately we have determined
the variation of the innermost orbit with g. Indeed, if
we determine the innermost orbit using the hybrid equa-
tions together with only the first post-Newtonian, non-
test-mass terms, we find that ro decreases from 5m in
the test-mass limit to about 3.5m at rl = 0.13, where-
upon no further solutions exist. Including the (post)-
Newtonian non-test-mass terms leads to the solutions in-
creasing from 5m to 6.03m plotted in Fig. 2. Given the
large change between the post- and (post)2-Newtonian
approximations, we must address the accuracy of this
result. We have done so by looking at the e6'ects of
(post)s-Newtonian, non-test-mass terms on the estimate
of ro (we already have the test-mass terms exactly in the
hybrid equations). Unfortunately, such terms have not
been derived to date. Nevertheless, we can analyze the
effects of a range of possibilities. At (post)s-Newtonian
order, the terms in the hybrid equations of motion should
have the general form

ba = —l(rm/r ) [Asn + Bsv], (3.7)

(3.8a)

(
Bs = r Pov'+ Av' — +/3s

&") &")
(3.8b)

We now repeat the calculation of the innermost orbit for
the special case of equal masses (g = 1/4). We consider
the seven cases in which all but one parameter are zero,
while that parameter varies between +10 and —10. The
results are plotted in Fig. 6. We note that the maximum
variation from our value of ro = 6.03 is only about 5'%

over the range considered. For rI ( 1/4, the percentage
variations will be even smaller because of the overall g
dependence in Eq. (3.7).

IV. ORBIT EVOLUTION FROM INSPIRAL
TO PLUNGE

The foregoing results establish the location of an in-
nermost stable circular orbit for a binary system of arbi-
trary mass ratio, in the absence of the gravitational radi-
ation reaction. Of course, except in the test-mass limit,

where we have factored out an overall rl, as in Eqs. (1.3).
The term A3 will generally consist of a linear combination
of all terms of order es, such as vs, (m/r)s, v r', and so
on, a total of ten terms. Similarly, B3 will consist of i
times a linear combination of terms of order e~, such as
v4, v m/r, and so on, for a total of six terms. However,
because our critical-point analysis involves a first-order
perturbation about an orbit with r' = 0, we can ignore
any terms of quadratic or higher order in r'. This leaves
seven possible terms, and so we write

, (m~, fm~
' (mi '

As = aov + aiv — + nqv
l

— + ~s

I I I I I I I I I I I I I I I I63~ ~

6.2

610

6.0

5.9

5 '77 I I I I I I I I I I I I I I I I
~ f

-&o —5 0 5
RANGE OF PARAMETER

FIG. 6. EfFect of (post) -Newtonian terms on the separa-
tion of the ISCO. ER'ect of varying each parameter in Eqs.
(3.8) in turn between —10 and +10 is shown. Maximum vari-
ation is about O'Fo.

the gravitational radiation reaction is necessarily present.
We now use the full hybrid equations of motion to evolve
coalescing orbits with the radiation reaction down to the
corresponding innermost circular orbit. These evolutions
begin from a quasicircular orbit at a starting separation
of 15m, and are evolved numerically by direct integration
of the hybrid equations of motion. A potentially useful
product of such a calculation is a set of values of the or-
bital parameters, such as v„=—i, w, vy = r~, E, and
J that a realistic coalescing system might be expected
to possess. The radial velocity v„ is plotted as a func-
tion of g in Fig. 5. Because v„(& 1, the other quantities
can be estimated to suKcient accuracy using the circular,
noninspiraling orbits at the ISCO.

After the system reaches the innermost circular or-
bit, it undergoes a rapid plunge, and it is very likely
that fully three-dimensional general relativistic computer
codes (with or without hydrodynamics, depending on
whether neutron stars are present) will take over the anal-
ysis of the evolution. When properly converted into the
variables appropriate for numerical relativity, the results
shown in Fig. 5 could provide initial conditions for such
codes (see [13] for a review)'. This interface with numer-
ical relativity is currently under study.

V. DISCUSSION

The first detailed attempt to address the question of
the ISCO for binary systems of comparable masses was
made by Clark and Eardley [14]. They worked only to
post-Newtonian order, and used an effective potential ap-
proach analogous to that used for test-body motion in the
Schwarzschild geometry. Their result for r varied from
5m in the test-body limit (guaranteed by construction)
to 2.4m for equal masses, in strong disagreement with
the trend shown in Fig. 2. This, we believe, is a product
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(i) of the restriction to post-Newtonian order, which is
the first order at which an ISCO appears, and for which
we found a spurious root for test bodies in Schwarzschild
geometry (Table II), and (ii) of the efFective potential ap-
proach, which requires an ad hoc switching between har-
monic coordinates, in which the equations of motion are
expressed, and Schwarzschild-like coordinates, in which
the effective potential mirnics that of the Schwarzschild
geometry. It also requires repeated substitution of lower-
order equations in higher-order terms, which, while for-
mally consistent, generates uncontrolled errors in the nu-
merical estimates. Our approach is more direct in that it
finds the stable points of circular motion directly from the
equations of motion, using one coordinate system consis-
tently throughout. The'only errors are those ignored in
the (post)s-Newtonian finite-mass terms, and we have
tested our sensitivity to those (Fig. 6).

A quite different approach has been taken by Black-
burn and Detweiler [15]. Using an initial-value formal-
ism, they derive a variational principle for the geometry
of two orbiting black holes with standing gravitational
waves at spatial infinity. This leads to estimates for the
effective mass and angular momentum of the system, and
the angular velocity, as functions of separation. From this
they can estimate the location of an ISCO, and evaluate
the energy and angular momentum there. For a mass
ratio of 100:1, which is essentially the test-body limit,
they find values for the energy and angular momentum
at the ISCO that disagree with the exact Schwarzschild
values by 24% and 11%, respectively. The variational
principle is not expected to estimate the separation of
the ISCO accurately, and indeed their result is 60%%uo too
high. For the equal-mass case, they obtain E —0.7
and J 0.85, which are in strong disagreement with our
values of E —0.04 and J 3.8. In their coordinates,
the separation of the ISCO decreases by a factor of about
7 from the test-mass to the equal-mass cases, while our
coordinate separation increases by 20%%uo. Because these
are different coordinate systems, such comparisons must
be used with caution, but the relatively large binding
energy and small angular momentum obtained by Black-
burn and Detweiler suggest that they are indeed looking
at black holes with separations much smaller than those
indicated by our ISCO. Blackburn and Detweiler point
out, however, that in the equal-mass case, the presence
of gravitational radiation reaction weakens the assump-
tion that the system is quasistatic in a rotating frame,
and consequently their estimates must be regarded as
merely suggestive. If our results are to be believed, they
suggest that Blackburn and Detweiler have not succeeded
in pinpointing the correct ISCO in the equal-mass case.

For small g, the radius of the ISCO depends roughly
linearly on the mass ratio X, since X —g, varying from
5m to 5.6m as X varies from 0 to 0.14. The latter would
correspond to a 1.4M~ neutron star coalescing onto a
lOMO black hole; the orbital frequency at the ISCO
would be about 180 Hz. This variation in the ISCO ra-

dius may need to be taken into account in determining
whether tidal disruption of a neutron star orbiting a mas-
sive black hole occurs before or after the unstable plunge.

For two equal-mass neutron stars of 1 4Mc„ the
ISCO radius corresponds to a coordinate separation of
about 25 km. It is useful to compare this with typ-
ical neutron-star radii, as tabulated, for example by
Arnett and Bowers [16]. Converting from the radii
in Schwarzschild coordinates (the usual coordinates for
neutron-star models) to harmonic coordinates by sub-
tracting m = 2 km (m/1. 4M&), one finds radii for 1.4M~
neutron stars ranging from 5.2 km to 8.6 km for softer
equations of state (A, B, D, E, and F of [16]),from 9.8 km
to 10.6 km for stiffer equations of state (C, N, and 0), and
14 km for the stiffest equations of state (L and M). Thus,
for all but the most stiff equations of state, the ISCO ra-
dius is greater than the sum of the nominal radii of the
stars. Of course, at such separations, the tidal deforma-
tions of the stars must be taken into account. Neverthe-
less, these results suggest that whether tidal disruption
or unstable plunge occurs first will depend sensitively on
the assumed equation of state. Other authors have as-
sumed that tidal disruption will occur first for almost
equal-mass neutron star systems [12]. This question is
currently under study.

In this paper, we have not discussed the effects of spin
of the component bodies on the ISCO. The (post)s~z-
Newtonian equations of motion can be extended easily
to include such effects as spin-orbit and spin-spin cou-
pling (see, for example, [9]), and we have implemented
such spin terms in the equations of motion as well as in
the gravitational-wave forms [17]. We have studied the
effects on the ISCO of spins. aligned perpendicular to the
orbital plane. In coalescing binary neutron stars, the ef-
fects of spin on the ISCO are expected to be small. For a
1,4M~ neutron star spinning with a period of 2 ms, the
angular momentum per unit mass, which corresponds to
the parameter a of the Kerr metric, may be estimated
to be 0.2m. It is unlikely that neutron stars in the late
stage of coalescence will be spinning much faster than
this, since, as Bildsten and Cutler [12] have argued, tidal
torquing during the coalescence will be ineffective in spin-
ning up the neutron stars to rates exceeding those they
inherit from a previous mass-transfer stage. For spins
of this magnitude we have shown that the effect on the
ISCO is around 1%. On the other hand, if one of the
bodies is a rapidly rotating Kerr black hole, the effects
of rotation can be dramatic. Details of the effects of spin
on the ISCO are currently being studied.
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