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Gravitational action for spacetimes with nonsmooth boundaries

GeofF Hayward*
Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada V6T BA6

(Received 30 No~ember 1992)

In this paper, I examine the gravitational action for spacetimes with nonsmooth boundaries. By
two independent techniques, I derive the contribution to the gravitational action of spacelike and
timelike two-surfaces on the boundary at which the unit normal changes discontinuously. I discuss
the relationship between constraints imposed at such two-surfaces and their contribution to the
gravitational action. I derive the form of the action and the juncture conditions appropriate to cases
in which a spacetime includes a singular matter distribution whose world history corresponds to a
timelike two-dimensional surface.
PACS number(s): 04.20.Fy

I. INTRODUCTION

1
8x

Kvhd z+C[h,s],

Over the last two decades, it has become apparent that
boundaries and boundary conditions play a pivotal role
in many branches of gravitational physics. Much of the
importance of this role can be attributed to the direct
impact of boundary conditions on the appropriate form
of the gravitational action. It is well known, for instance,
that the gravitational action appropriate to a manifold
with a smooth boundary of fixed intrinsic geometry in-
cludes a boundary term [1, 2]

boundary joint yields a surface at which the normal goes
null and this gives rise to an ambiguity.

In Sec. III, I provide an alternate derivation of the
contribution of a joint to the gravitational action which
proceeds directly from the variational principle. Taking
first-order variations of the action, I demonstrate how
constraints imposed at the nonsmooth portions of the
boundary influence the appropriate form of the gravita-
tional action. This derivation may be applied unambigu-
ously to any spacelike or timelike joint.

In Sec. IV, I discuss joints associated with singular
matter distributions inside a spacetime and derive the
juncture conditions at such joints.

where h, ~ is the intrinsic three-metric of the boundary,
K,s is the extrinsic curvature, and C[h,s] is an arbitrary
functional of the fixed boundary three-metric.

Here, I consider the gravitational action for spacetimes
with boundaries or internal three-dimensional matter dis-
tributions which are nonsmooth in the sense that the unit
normal changes direction discontinuously at some two-
surface. I refer to two-surfaces where such discontinuities
occur as "joints."

Spacetimes whose boundaries have joints arise
in a number of different contexts in gravitational
physics [3—5]. For instance, they arise naturally in the
Hamiltonian treatment of geometrodynamics for spa-
tially bounded spacetimes [6, 7]. Also, certain two-
dimensional singularity surfaces, such as those associated
with cosmic strings, may be viewed as examples of joints.

DifFerent authors have recognized that joints make a
finite contribution to the gravitational action [3—5]. In
Sec. II, I derive this contribution by viewing a boundary
with a joint as a limiting case of a smooth boundary.
This limiting procedure can be applied unambiguously
to all timelike joints and to a certain class of spacelike
joints. However, for some spacelike joints, smoothing the

II. EVALUATING THE CONTRIBUTION
OF A JOINT TO THE ACTION BY' SMOOTHING

1I=
16m

1

87'
Kh'i d x+C. (2)

Suppose that a timelike joint 88 bifurcates 8 into two
sub-three-manifolds Bo and Bi [see Fig. 1(a)]. Let ng be
the unit normal to the boundary on the Bo side of M,
and similarly, let ni be the unit normal on the Bi side
of 88. The local angle between the two normals at some
point on the joint is defined by

Since the unit normal changes direction discontinu-
ously at a joint, the extrinsic curvature has a divergence
there. A consequence is that the joint makes a finite
contribution to the boundary term in the gravitational
action. To derive what this contribution is, replace the
joint by a rounded three-surface, evaluate the extrinsic
curvature on this rounded edge, and then take the limit
that the rounded edge collapses onto the joint. Versions
of this procedure were employed in Refs. [5, 4].

Focus first on the case of a joint which is everywhere
timelike. Let M be a four-manifold with a timelike
boundary 8. The action appropriate to fixing the in-

trinsic three-geometry of 8 is
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Axis

Hp

Hwedge

ds = g„„dx~dx" = (N + h,~¹¹)dr

+2h, q ¹
dx~ dr + h, ~

dx' dx~,

where N and ¹ are the radial lapse and shift and where
h,~ is the three-metric of a surface of constant r. Without
loss of generality, choose the foliation such that N =
N ~„o is bounded and nonzero everywhere on the axis.

Now perform a 1 + 2 foliation of the three-geometry
of the boundary of the cylinder. Let a coordinate
x~ —= 0 with period 27t. parametrize the S of the cylin-
der's boundary. The three-line element on the cylinder's
boundary is then

~'~ds' = h, , dx' dx&

= (M + o'~BM M ) d8 +2cr~isM+dx~d8
+~QQ dx dx )

(b)

FIG. l. (a) A timelike joint 88 bifurcates a boundary
into smooth surfaces 8& and 8q. (b) A "cylinder" is wedged
between Bo and Bq. The two-surfaces of intersection between
the cylinder and Bp and 8& are, respectively, BHO and t98&.

where M and M+ correspond to the lapse and shift asso-
ciated with the 8 foliation and where o ~~ is the intrinsic
pseudo-Riemannian two-metric of a surface of constant 0
and r. (Indices A, B range from 2 to 3.)

If the axis is to correspond to a regular two-locus as em-
bedded in the four-geometry of M, certain local smooth-
ness conditions must be satisfied. In particular, it is nec-
essary that, as r —+ 0,

r (M„—M"M~)

Khi d x= Kh~ d + Kh~ d

Now wedge a "cylinder" between 80 and 8~. In fact,
this "cylinder" is a just an arbitrary four-manifold which
has a boundary with topology Si x 2&2), where K&2) is
the topology of 88 (no symmetries of any sort are as-
sumed). Let BBo and 08q correspond to the intersection
two-surfaces of the cylinder with Bq and Bq, respectively.
Let B,gs, correspond to the portion of 8 wedged be-
tween 08o and 88q. Let 8,» correspond to the portion
of the cylinder boundary wedged between 080 and BBq
[see Fig. 1(b)].

Define a new three-surface 8, = (8 —B~,gs, ) L] 8«~.
By construction, the three-geometry of 8, is everywhere
Ci as embedded in the four-geometry of M. Therefore,

1 = —(M„—M MA)
1 A

r=o

The easiest way to derive these conditions is to go into
a locally Gaussian coordinate frame on a small four-patch
which includes a thin slice of the axis. Thus, let AM be a
thin slice of the cylinder which extends from xo
xo + bx . Perform the coordinate transformation

r r)
8=8+¹r,

x" = x" + (N" + M"N")r + M"8,

where N', M are the limiting values of N', M as r ~ 0
on AM. Then, the four-element on AJH has the limiting
form, as r —+ 0,

~wedge

(4)
ds = N dr +M d8 +cr~~dx dx (7)

[Since the extrinsic curvature has at most jump disconti-
nuities at Mo and 08~, these two-surfaces make no finite
contribution to (4).] We wish to evaluate (4) in the limit
that the proper length of the cylinder's S goes to zero.

Consider first the problem of evaluating the extrinsic
curvature on the boundary of the cylinder. Let a coor-
dinate xo = r foliate nested three-surfaces which extend
inward from the boundary of the cylinder and converge
on an arbitrary coordinate singularity two-locus which
we will denote as the "axis." Without loss of generality,
let the surface r = e correspond to the boundary and the
surface r = 0 correspond to the axis. The four-metric
may be expressed in terms of a 1+3 radial foliation:

In this coordinate frame, it is easy to see that the nec-
essary conditions for the axis, r = 0, to be a regular
two-surface in M include

Mi„o = M(r),
Mi„o =0,

BN

Bourg

at9,=o e .=0

Expand M(r, 8, x+) around the axis r = 0 to obtain

BM
M(r, 8, x~) = r

~

+O(r'). (9)Br „ oj
Substitute this limiting form back into (7), to find that
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a conical singularity exists at r = 0 unless

1 BM
K Br (10)

Eo Z„, np

When expressed in terms of the general coordinate frame
(x"), conditions (9) and (10) become (5) and (6).

Now, note that ~h = M~o and that

no

(b) (c)

FIG. 3. Examples of class II joints. (a) q = arccosh(no .
ni). (b) g = arccosh( —np ni). (c) rl = arcsinh(np ni).

Make use of (8), (5), and (6), to obtain that, in the limit
c —+0,

1

8' smooth

Khi d x= + 1
g ~'~' d'x,

8% gg
(12)

Define B,~~oqh =—lim, o(8 —Bw,dz, ) and substitute (4)
into (2) to obtain

a g'~' d42:+ 1

8' g~smooth

1

16+
1+

ae
Oo' d x+C.

Khi dx

n, no

This is the desired result.
It is possible to extend this smoothing procedure in an

unambiguous fashion to derive the contribution of certain
spacelike joints.

To make this claim precise, let, 08 be any joint (space-
like or timelike) on a boundary 8. Wedge a "cylinder"
against the boundary and across the joint as was done
above. Now let "class I" joints be those for which it is
possible to choose the cylinder such that the normal on
8, ~ nowhere goes null (see Fig. 2). "Class II" joints
are those for which this is not possible (see Fig. 3). A
smoothing procedure directly analogous to that outlined
above may be extended unambiguously to any class I
spacelike joint.

For instance, consider a spacelike joint embedded in a
timelike boundary [with unit normals on either side of
the joint oriented as in Fig. 2(a)]. One may apply the
limiting procedure to obtain that

where il = arccosh(nz . ni) is the local rapidity ("boost
parameter") associated with a given point on the joint.
In the case of a spacelike joint embedded in a spacelike
boundary [with normals oriented as in Fig. 2(b)], one also
obtains Eq. (12), but this time the rapidity is defined by
iI = arccosh( —nc . ni).

For class II joints (see Fig. 3), the smoothing proce-
dure gives rise to an ambiguity at those surfaces where
the normal goes null. To assess the contribution to the
gravitational action of joints in this class, it is valuable to
seek a derivation which proceeds directly from the vari-
ational principle.

III. USING VARIATIONAL METHODS
TO EVALUATE THE CONTRIBUTION

OF A JOINT TO THE ACTION

Recall that if an action functional is to have a well-
defined variational principle subject to a given set of
boundary constraints, its first-order variations must van-
ish identically. This condition prescribes the appropriate
boundary term to be included in an action functional.
In this section, I consider the gravitational action for a
spacetime with class II spacelike joints and examine how
the choice of constraints to be imposed at the joints de-
termines their contribution to the gravitational action.

Let (M, g„) be a spacetime whose connected bound-
ary 8 consists of two finite spacelike surfaces each con-
nected by a spacelike class II joint to a smooth timelike
tube (see Fig. 4). Let Zq, and Zq, be the spacelike sur-
faces, let Qo and Jz be the joints, and let E„, be the
timelike tube. Spacetimes with this boundary structure
arise naturally in the treatment of Hamiltonian dynamics
for spatially bounded systems [6, 7].

Consider the action functional

I = R~gd x — Kvhd x16' ~ 8m

(b)

FIG. 2. (a) Class I spacelike joint in a timelike bound-
ary with both normals spacelike and g—:arccosh(no ni).
(b) Class I spacelike joint in spacelike boundary with both
normals timelike and g = arccosh( —np ni).

+ Kv h d'x+
7l 8ato

K~pd x.

In the above, a surface of constant t has an intrinsic three-
metric h,~ and extrinsic curvature K,z, while a surface of
constant r has an intrinsic three-metric p g and extrinsic



3278 GEOFF HAYWARD

curvature K b. Note that this action includes a boundary
correction term (appropriate for fixed boundary geome-
try) at each of the smooth boundary faces, but that no
correction term is added at either of the joints.

Let n~«& be the future pointing normal to a surface

of constant t, and let n~&„~ be the outward pointing unit
normal to a surface of constant r. With the convention
that a negative radial shift from Zq to Zq+p~ corresponds
to a positive radial velocity, the local boost parameter

I

at a given point along the intersection two-surface of Zq
and Z„ is defined by

q = arcsinh(nlrb~ ni„&).

In order to evaluate the first-order variations of the
action (13), it is useful to employ foliations of the four-
metric with respect to t and r. For more detail on these
foliations, see Ref. [6]. Taking first-order variations of
the action (13), we obtain

1
bI =

16' G„hagi'" d x+ p'~ bh, , d x— p" 6h, , d x

1
p "bp~bd x— 1

~o 6q d'x + ~abq d'x, .
Z1 8x

where p'~ and p b are, respectively, the momentum fields
conjugate to h,~ and p b, and a~~ denotes the intrinsic
two-metric of surfaces Z„P Zz.

If the action is to be extremized, each variational term
in (15) must vanish independently. The vanishing of the
variations inside M yields Einstein s equations G„=0.
If we fix the intrinsic three-metric along the smooth por-
tions of the boundary, the variational terms at these sur-
faces will also vanish. By virtue of continuity, fixing the
three-metric on the smooth portions of the boundary im-
plies fixing the intrinsic two-metrics of the joints. Note,
however, that in order for the variational terms to van-
ish at the joints, we would also require that g be held
fixed there. From the point of view of a classical vari-
ational problem, this is an unsavory situation. One ex-
pects that, in general, there will be no solution to Ein-
stein s equations satisfying constraints on both the in-
trinsic two-metric and the boost parameter at a given
joint.

On the other hand, consider the action

1J = I+
8+ gird x—2 1

8' q~~ d'x. (16)

(The relative sign difference between the two terms arises
because of the convention that the timelike normal is
taken to be future pointing in both cases. ) The variations
of J at the joints are

1
rlb~crd x—2 1

8' rl 6~cr d'x.

IV. JUNCTURE CONDITIONS
AND JOINTS INSIDE A SPACETIME

Since we assume that the three-metrics on the smooth
portions of the boundary are held fixed, the two-metrics
at the joints are also fixed by virtue of continuity. Thus,
the variational terms (17) automatically vanish and the
action J has a well-defined variational principle subject
to fixing the geometry of its boundary.

By appealing to the variational principle, we have
found that it is appropriate to include the same joint cor-
rection term for a class II spacelike joint as we derived
by the limiting procedure of Sec. II for a class I spacelike
joint. In fact, it is straightforward to extend the varia-
tional treatment outlined above to apply to all spacelike
and timelike joints. It is worth reiterating, however, that
for a spacelike joint, the definition of the boost parameter
in terms of the unit normals on either side of the joint
depends on the orientations of these normals (see Figs. 2
and 3).

FIG. 4. A spacetime (M, g„„), which extends from an
initial spacelike hypersurface Z&o to a final spacelike hyper-
surface Z&, and out to a timelike hypersurface Z„, . These
boundary surfaces are connected by class II spacelike joints
go and Z1.

To this point, we have focused entirely on joints which
occur on the boundaries of spacetimes. In this section,
we consider joints which occur within spacetimes.

Suppose, for instance, we have an infinitely thin shell
of matter which has a sharp one-dimensional "corner" or
"edge." Let E„be the timelike three-surface correspond-
ing to the world history of the shell, and let Q„be the
timelike joint corresponding to the world history of the
edge. We suppose that the energy per unit surface area
is finite everywhere except at the edge where we suppose
a finite energy per unit length. Now let us derive the
juncture conditions at the shell and, in particular, at the
joint.
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Let g~„be the four-metric and assume that it is smooth
everywhere except possibly at E„.Let p b be the intrinsic
three-metric of Z„, and let Kab be its extrinsic curvature.
We take gab to be continuous from Z„ to Z„+, but allow

for a possible jump discontinuity in K b between these
neighboring surfaces. We also allow for a jump disconti-
nuity in the edge angle 0 —= arccos(no ni) from Q„ to

1

8'
—+ 3 1K ~pd x=

Sar

where l'. is the Lagrangian scalar density associated
with the mailer distribution. Further, with S, =—Z„—Q,
we have

It is easy to derive (see, for instance, Ref. [8]) that the
total action for this spacetime is

0[+ ~crd x. (19)

1

16+ R~gd x—4 1

8'smooth

l. dx,

K ~pd x Taking first-order variations of the action, we obtain
the usual variational terms which yield Einstein s equa-
tions in the regions where g„ is smooth, plus a varia-
tional term at Z„:

~b 'v Sab P d3 1

2 16m
(- 0[+ ~"B 8~x—"B)~~~B~~d'x,

is the surface stress energy

~b + V ~gabP — 2

plus the joint juncture condition

0[+ AB 8 Z AB

Equation (22) implies

(21)

(22)

where Sab 2
~V~W b

tensor for S„and where TA+ =— —~ & A~ is the stress

tensor associated with the matter on the edge.
Since all variational terms must vanish independently

if the action is to be extremized, we obtain the usual
Israel juncture conditions on S„,

1

8a il ~o.d'x.

—+
K ~pd x,

8x (26)

If one wishes to fix either 0™for a timelike joint or g for
a spacelike one, no correction to the action is necessary.

Also, when a spacetime contains a singular matter dis-
tribution which gives rise to an isolated conical singular-
ity two-surface, this surface makes a finite contribution
to the gravitational action. We can model this situation
by taking a thin tube of matter and collapsing it onto
a one-dimensional axis. We do this so that the world
history of the axis corresponds to J'.

The tube's contribution to the gravitational action is

Tg = pbbs,
A A (23)

where p, = —
s O~+ is the local energy per unit length

of the edge.
A corollary of Eq. (22) is that if there is no singular

matter source at g„, the joint angle is continuous from
to J„+.

We have until now examined only joints which are em-
bedded in three-dimensional surfaces. Let us now extend
our discussion to include joints which are not embedded
in three-dimensional surfaces. Cosmic strings and event
horizons (or "bolts" [9]) are examples of such joints.

Prom the analysis above, it is clear that when one
wishes to fix the intrinsic two-metric of an isolated time-
like joint, one must correct the gravitational action by a
term

where K b is the extrinsic curvature of Z„as embedded

in the Hat four-geometry inside the tube. In the limit
that the tube collapses on the axis, the contribution to
the gravitational action becomes

1

8' e[+ ~o.d'x =
8m

n~o. d'x, (27)

where 0] = 2ir and u = 27r —0[+ is the local deficit
angle at some point of g. When o. is constant over J',
note that the gravitational action associated with the
conical singularity reduces to the Nambu action.

0 ~o d'x. (24) V. SUMMARY'

If one wishes to fix the intrinsic two-metric of an isolated
spacelike joint, one must correct the gravitational action
by a term [10]

In summary, we have derived the contribution of space-
like and timelike joints to the gravitational action by two
independent techniques. We have discussed the relation-
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ship between constraints imposed at a joint and its contri-
bution to the gravitational action. We have also derived
contributions to the gravitational action and juncture
conditions at joints which occur as a result of singular
matter distributions. We have found that the gravita-
tional action for an isolated timelike joint with constant
deficit angle reduces to the Nambu action.
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