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Numerical study of cosmic no-hair conjecture. II. Analysis of initial data
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We investigate the initial data for localized gravitational waves in space-time with a cosmological con-
stant A. Using a conformal transformation, we find that the Hamiltonian and momentum constraints in
the conformal frame turn out to be the same as those for a vacuum space-time without A. As initial
data, we consider Brill's waves in the conformal frame and discuss the trapped and antitrapped surfaces
in the physical frame. Just as Brill's wave in asymptotically flat space-time, the gravitational "mass" of
our case is positive; however, the waves with a large gravitational mass do not always provide trapped
surfaces in contrast with the case of A=O. The large amount of gravitational waves, hence, does not
seem to be an obstacle to the cosmic no-hair conjecture.

PACS number(s): 98.80.Hw, 04.20.Jb, 04.30.+x

I. INTRODUCTION

The present isotropy and homogeneity of the Universe
are almost confirmed from observations. They are among
the mysteries within the framework of the standard big
bang scenario. The inflationary universe scenario was
proposed to resolve this isotropy-homogeneity problem
[l]. As we discussed in our previous paper (paper I) [2],
however, since most inAationary models have worked
within Friedmann-Robertson-%alker space-time, there
still remains some doubt of a homogenization process due
to inflation: Even if the initial inhomogeneities are very
large before the onset of inflation, is de Sitter —like rapid
cosmic expansion always realized as long as a vacuum en-
ergy exists? Does inAation really homogenize any space-
time? The "cosmic no-hair conjecture" states that all
space-times approach the de Sitter space-time if a posi-
tive cosmological constant exists [3]. If this conjecture is
true as it is, there is no doubt to the above question.
However, in general, the inhomogeneities have energy
and produce the gravitational field by itself. Then, we
can imagine that when the inhomogeneities are very
large, those inhomogeneities are not homogenized by the
cosmic expansion, but rather collapse into black holes or
naked singularities.

As for the origin of inhomogeneities, we can classify
them into the two parts: One is due to an inflaton scalar
field itself and the other is due to known fields. Once
inflation starts, the energy of known fields will drop much
faster than that of the inflaton, and then only inhomo-
geneities due to the inAaton field will survive. But, when
we ask about the onset of inflation and the homogeniza-
tion process, we should take into account both fields as

sources of initial inhomogeneities. The inhomogeneities
of known fields may be further divided into two classes:
One is the inhomogeneity of the space-time itself, i.e., due
to the gravitational waves, and the other is the inhomo-
geneity by ordinary matter. Inhomogeneities of an
inflaton field have been investigated by several authors
both in analytic and in numerical approaches, [4] and [5].
As for a dust Auid in space-time with A, we have some
analytic approaches, showing that some inhomogeneities
collapse into black-hole space-time, [6] and [7]. Because
there has been little research in inhomogeneities due to
gravitational waves, this is our present topic.

In paper I we presented a new formalism to solve the
Einstein equations by using a computer as numerical
cosmology and applying it to the case of linear perturba-
tions, giving an analytic solution and clarifying the
homogenization mechanism in de Sitter background
space-time. In the present paper, our attention is focused
on the initial data of localized gravitational waves in vac-
uum space-tim. es with a positive cosmological constant A.
Here "localized" means that the spacelike asymptotic re-
gion is the Schwarzschild —de Sitter space [8]. In such a
situation, it is convenient to perform a conformal trans-
formation and work in conformal space-time [2]. Be-
cause we consider the initial value problem, through an
appropriate conformal transformation, the Hamiltonian
and momentum constraints in the conformal space-time
reduce to the same form as those of vacuum space-times
without A. The asymptotic Schwarzschild —de Sitter
boundary condition turns out to be the ordinary asymp-
totic flatness condition in the conformal space-time. It is
a big advantage because there have been many works in
the initial value problem with asymptotically Aat space-
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time.
In particular, as a localized axisymmetric gravitational

wave solution of the time-symmetric initial value problem
for vacuum space-times, we have Brill's wave and know
its physical property well [9]. In this paper, hence, we
shall focus on Brill's waves in the conformal space-time,
since it is easy to study the effect of A by comparing it
with the original Brill waves.

Brill discussed the positivity of the mass of those gravi-
tational waves and showed that when the amplitude of
the gravitational wave exceeds some critical value, the
three-dimensional spacelike hypersurface could not be
asymptotically Hat but is closed by the energy of the grav-
itational waves. These are the features common to our
Brill waves in the conformal space-time.

However, in contrast with the original Brill waves,
there is a cosmic expansion effect in our circumstance.
The cosmic expansion effect causes the antitrapped sur-
faces and the cosmological apparent horizon, which will
be mentioned in Sec. IV. We find that a too large gravita-
tional rn.ass prevents the formation of the trapped region
in contrast with the original Brill waves without A.
These are the same features as the spherically symmetric
dust collapse with the Schwarzschild —de Sitter asymptot-
ic region [7]. Thus it is likely that the large number of
gravitational waves is not always an obstacle to the cos-
mic no-hair conjecture.

This paper is organized as follows: In Sec. II, we
derive the basic equations for the initial value problem of
vacuum space-times with A by use of a conformal trans-
formation. In Sec. III, we consider Brill waves in the
conformal space-time and solve these numerically. In or-
der to gain some insight from those data, we investigate
the trapped and antitrapped surfaces in Sec. IV. Some
discussion and remarks are given in Sec. V. In this paper,
we adopt units of c =6=1. Our conventions are the
same as those in paper I.

where a conformal factor Q(x) will be fixed later. The
Einstein equation in this conformal space-time is rewrit-
ten as

G — 3HDQ g +8mT

where

(2.4)

T„,=— [Q (V„V Q —g„V V~Q)
4m

—2Q (V„QV Q —
—,'g„V QV~Q)], (2.5)

—K,Kb + TrK = 16'~+ 6HQ 0
D6(K," 5,"TrK)=—gm J, ,

(2.6)

(2.7)

where ' 'R, K, and TrK are the scalar curvature, the ex-
trinsic curvature and its trace part, respectively. These
quantities are defined on the three-dimensional spacelike
hypersurface embedded in the conformal space-time. Db
is the covariant derivative with respect to the intrinsic
metric y, b of the hypersurface. The "apparent" energy
and momentum densities p& and J„which appeared
from a factorization of a conformal factor 0, are given by

p& = (2Q 'D, D'Q+2Q 'y TrK
8n

2D QD Q —3Q 2/2 } (2.8)

J =—
a [Q-'D. (yQ-')+Q YC.'D, Q], (2.9)

and G„and V„are the Einstein tensor and the covariant
derivative with respect to the conformal metric g„, re-
spectively.

Following the well-known procedure, we decompose
the above conformal Einstein equations into the 3+1
form. The Hamiltonian and momentum constraints in
the conformal space-time are given by

II. INITIAL VALUE PROBLEM OF VACUUM
SPACE- TIMES WITH A COSMOLOGICAL CONSTANT

where

(2.10)

We consider vacuum space-times with a cosmological
constant A, which is governed by the Einstein equations

6 ——3H~

where
1/2

AH —=
0 3

(2.1)

(2.2)

g„=Q g„ (2.3)

When we deal with the above equations, it is convenient
to use the 3+ 1 formalism for the conformally
transformed Einstein equations [2]. In this section, we
shall focus on the Hamiltonian and momentum con-
straints of the conformally transformed Einstein equa-
tions.

Hereafter we work in the conformal space-time with
the four-dimensional metric g„,which is related with the
physical metric g„by

Here L is the Lie derivative along the hypersurface unit
normal vector n" in the conformal space-time, which
satisfies g„n "n = —1.

In order to solve Eqs. (2.6) and (2.7), we have to specify
a conformal factor, i.e., to fix Q and y. Here, we first im-
pose the condition

=H
0 (2.1 1)

In isotropic and homogeneous space-time, the above con-
dition turns out to be the Friedmann equation in terms of
the conformal time rI, Q (dQ/dg)=Ho, resulting in the
de Sitter solution, Q= —1/(Horj). Thus, Q naively cor-
responds to the scale factor of the de Sitter background
in our specification.

In the next section, we consider localized gravitational
waves. Here "localized" means that there is an asymp-
totic Schwarzschild —de Sitter region. We, hence, expect
that the asymptotic Schwarzschild —de Sitter boundary
condition may be reduced to the ordinary asymptotic fiat-
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ness condition in the conformal space-time. Because if
the conformal space-time is fiat, the condition (2.11)
guarantees that the physical space-time is de Sitter.
However, for arbitrary 0, even though the condition
(2.11) is satisfied, the boundary condition is not always
asymptotically Aat in the confor mal space-time. We
have, furthermore, to fix either 0 or y. In order that the
asymptotic Aatness condition is imposed in the conformal
space-time, at least the integral of the right-hand side
(RHS) of Eq. (2.6) on our hypersurface should be finite,
1.e.)

treated numerically by Eppley [ll]. The Brill wave can
be interpreted as a snapshot of axisymmetric gravitation-
al waves as a moment on maximum expansion (or
minimum contraction), while our wave solution corre-
sponds to a snapshot of the waves in the uniformly ex-
panding background because of the condition (2.11), al-
though their procedure and discussion are almost valid in
our case as well.

Following Brill, we write the intrinsic metric of the
conformal three-dimensional spacelike hypersurface in
the form

16~p~+2AQ dv ( oo . (2.12) dl = fgbdX dX

Therefore, considering circumstances with the asymptot-
ic Schwarzschild —de Sitter region, if we would like to im-
pose an asymptotically Aat condition in a conformal
frame, we have to demand the asymptotic behavior of a
conformal factor as

=P (R,z)[e ~' "(dR +dz )+R dy ] (3.2}

where A is a constant, which corresponds to the ampli-
tude of the gravitational waves, and q(R, z) is an arbi-
trary function that satisfies the boundary conditions

Q~ conts +O(r ') for r~+ ~ . (2.13) q =O=B~q at R =0,
(3.3}

"'R —K.'Kb ——0,
DbK,"=0 .

(2.14)

(2.15)

Conversely, the above behavior will be preserved in the
course of the time evolution as long as the conformal
space-time is asymptotically Aat. Here we adopt the sim-
plest choice such that 0 is spatially constant. In that
case, we can always rescale the spatial coordinates to set
A=1. However, here we remain the parameter 0 to be
free in order to obtain a one-parameter family of solu-
tions from one numerical solution. Handling 0, we can
easily see the efFect of the scale of inhomogeneities.

Assuming TrK =0 initially, the constraint equations
coincide with those of vacuum space-times without A,
1.e.)

q~O(1/r ) or faster for r~+ ~,
where r=+R +z . q provides a localization of the
waves. We then adopt the following function q (R,z):

R r 2

q(R, z)= (3.4)exp
rp

where r p is a constant, which corresponds to a width of
the waves in the conformal frame. It should be noticed
that the width of the gravitational waves in the physical
space is determined by r p

=Qr p rather than r p itself.
With (3.2) and (3.4), the Hamiltonian constraint (3.1) is

written as

We can solve the above equations by the procedure to ob-
tain the initial data of the asymptotically Aat space-time.
This approach has a big advantage because we know
many works for Eqs. (2.14) and (2.15).

III. BRILL WAVE IN THE CONFORMAL SPACE-TIME
U(R, z) = —2

rp

R2 R2r2
-4 -6+
rp rp

r
exp

a', y+ 'a, q+a,'q+—~
V (R,z)q=O,

R ' 8

where

(3.5)

(3.6)

"'R =0. (3.1)

Hereafter, we assume that the topology of a three-
dimensional spacelike hypersurface is R .

The time-symmetric initial data of localized gravita-
tional waves without A were discussed by Brill [9] and

In the preceding section we reduced the constraint
equations to the same form as those of vacuum space-
time without A by the appropriate choice of 0 and y. In
this section, we construct time symmetric initial data of
localized gravitational waves with axial symmetry in the
conformal space-time. Here, the time symmetry in the
conformal space means that the extrinsic curvature K,b

vanishes. Therefore, the momentum constraint (2.15) is
trivially satisfied and the Hamiltonian constraint becomes
the same form as that of the ordinary time symmetric ini-
tial value problem for a vacuum space-time without A
[10]:

As mentioned in the preceding section, in order to im-
pose the asymptotic Schwarzschild —de Sitter boundary
condition, we demand the ordinary asymptotically Aat
behavior for the conformal factor g as

Mg~l+ for r~+ oo,
2r

(3.7)

a, y), =,=a,q(, ,=o . (3.8)

where M is constant. It is again worthy of notice that
M—=QM corresponds to the gravitational mass in the
asymptotic Schwarzschild —de Sitter space-time. Hence,
we regard it as a gravitational mass of the wave and, as
shown by Brill, it is always positive for nonvanishing A.

From a regularity on the symmetric axis, R =0, and
from a reAection symmetry with respect to the equatorial
plane, z=o, the conformal factor i)'j should satisfy the
boundary condition
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FIG. 1. The relation between M and A is depicted. M mono-
tonically increases with respect to A. For A =10, M becomes
infinite, which corresponds to a "closed" universe.

As pointed out by Nakamura, Oohara, and Kojima
[12], it is an even function of R and of z, since the confor-
mal factor g should be regular everywhere. From the
point of view of numerical accuracy, X—:R and Y—:z
are better independent variables than R and z themselves.
Using X and Y, hence, we perform the numerical calcula-
tion with 250X250 spatial lattices. The widths of the
gravitational waves ro are set to unity in our calculation.
The physical width of the waves is, then, described by
ro=n

We show the relation between M and A in Fig. 1. The
gravitational mass M is a monotonica11y increasing func-
tion with respect to the wave amplitude, fixing the width
ro.

When A exceeds the critical value obtained by Brill,
the three-dimensional spacelike hypersurface is eventual-
ly closed by the self-energy of the gravitational waves. In
our case, the critical wave amplitude is A =10. In this
paper, however, we have assumed the existence of the
asymptotic Schwarzschild —de Sitter region; then we con-
sider only the cases of A ~ 10.

ward the regions enclosed by a surface and outgoing is the
opposite direction. The apparent horizon is defined by
the outermost closed spacelike two-surface with vanish-
ing expansion of the future-directed outgoing null geo-
desic congruence orthogonal to it. Hereafter, we call it a
black-hole apparent horizon.

When gravitational waves are localized enough and
have a large amplitude, the trapped surfaces are formed
in the asymptotically Qat space. Also in our case, an ap-
propriately large amount of gravitational waves form a
trapped surface. As will be mentioned later, however,
when the cosmic expansion effect exists, the gravitational
waves with a too large gravitational mass prevent the for-
mation of a trapped region.

The cosmic expansion effect causes another kind of
surface. We call it an antitrapped surface. The anti-
trapped surface is a closed spacelike two-surface such
that both expansions of the future-directed ingoing and
outgoing null geodesic congruence orthogonal to the sur-
face are positive. So the area of a wave front of light,
which is emitted inward and orthogonal to the anti-
trapped surface, does not decrease but rather does in-
crease at that moment. We shall also define the cosmo-
logical apparent horizon by the inner boundary of the an-
titrapped surfaces, i.e., the outermost closed spacelike
two-surface with vanishing expansion of the future-
directed ingoing null geodesic congruence orthogonal to
the surface.

It should be noticed that such surfaces are observer
dependent, as can be seen in the example of the de Sitter
universe. However, since we are interested in the cosmic
expansion effect on the localized gravitational waves, the
observer is the gravitational waves themselves, which are
localized near the origin. Thus we focus on the anti-
trapped surfaces and the cosmological apparent horizon
surrounding the origin.

Suppose we have some closed spacelike two-surface S's
in the three-dimensional spacelike hypersurface. Then
the expansions 0;„and 8,„, of the ingoing and outgoing
null orthogonal to S are given by

(4.1)

(4.2)

IV. THE TRAPPED AND ANTITRAPPKD SURFACES with

Once we set the initial data, we can search for horizons
for the localized gravitational waves. This study may
give us some physical insight into the formation mecha-
nism of horizons. In the following discussions, we shall
adopt the definitions of a trapped surface and an ap-
parent horizon of Hawking [13]. Hawking defined the
trapped surface as the closed spacelike two-surface such
that the family of future-directed outgoing null geodesics
orthogonal to the surface is converging at each point on
it. Hence the expansion of outgoing null geodesic
congruence orthogonal to a trapped surface is negative.
Since we do not discuss the formation of singularities, we
need not consider the expansion of the ingoing null geo-
desic congruence. Here ingoing means the direction to-

0,.„=—D,s'+K, bs s —TrK,

out +D +Kabs s —TrK

(4.3)

(4.4)

8 s'=f (x)8;„and 8,'g', =f (x)8,„, , (4.5)

where f (x) is some positive-definite function, which is

where s' is the outward spacelike unit-normal vector of S
in the conformal space-time, which satisfies y,bs s =1.
The second equalities in Eqs. (4.1) and (4.2) are due to the
condition (2.11). It should be noticed that 8;„and 8,„,are
not expansions 0,'„' and 8,'„', of the ingoing and outgoing
nu11 geodesic congruences. However, 0;„and 0,„,are re-
lated with 0,'„' and 0,'„', by
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R =r(8)sinO,

z=r(8)cos8,
(4.6)

where r = r(6) is assumed to be single-valued function.
The equations for the equiexpansion surfaces with 0;„

and 0,„,for our initial data discussed in Sec. III are given
by

d I' dl"
3 dp

3 2

(4.7)

A =r [2+R (4g '8 g+ AB q)

+z(4$ 'B,g+ AB,q)] NO, „, ,
—

A I
= —[z /R +z (4Q 'B~ Q+ A B~ q )

—R (4q 'a, q+ Aa, q)], -

A =r '[3+R (4@ '8 Q+ AB q)

+z(4$ 'B,g+ AB,q)],
rz[z/R—+z(4q 'a„q+Aa q)

R(4$ —'d, f+ AB,q)],
with

(4.g)

(4.9)

(4.10)

(4.11)

determined by the geodesic equation. Hence, the trapped
surfaces are found by 0,„,&0, and the black-hole ap-
parent horizon is obtained by setting 0,„,=0. On the
other hand, the antitrapped surfaces are found by 0;„)0
and 0,„,)0 and the cosmological apparent horizon corre-
sponds to 0;„=0.

The last terms on the RHS of Eqs. (4.1) and (4.2) corre-
spond to the cosmic expansion effect. As expected, we
can see that the cosmic expansion effect makes both ex-
pansions of ingoing and outgoing null larger. As a result,
the antitrapped region can be formed, while the cosmic
expansion makes a trapped region hard to be formed.

By rescaling of 0, we can easily see the effect of the
width of the waves or of the gravitational mass M on a
formation of trapped regions. The value of 0 itself deter-
mines the physical scale length; hence, the physical width
of the gravitational wave is ro=Q. The gravitational
mass M of the waves also increases linearly with respect
to Q, M=AM. The effect of Q in the expansions 0;„and
0,„, appears such that the absolute values of 0;„/Q and
9,„,/II in Eqs. (4.1) and (4.2) become smaller as II larger.
Thus, when the cosmic expansion effect exists, the large
M or ro prevents a formation of the trapped region.

In order to obtain black-hole and cosmological hor-
izons, we adopt the prescription proposed by Sasaki et al.
[14]. We assume that the topology of the equiexpansion
surfaces is S . As long as the deviation of the shape of
such a surface from a sphere is not so large, these sur-
faces are expressed as

N=rg ' r +
2 —3/2

dr
(4.12)

and

ro( —8;„+2HO }

for the case of 0;„=const,
0 r, (+8.„,—2H, }

for the case of 0,„,=const .

(4.13)

In Eq. (4.13) we have used fl=ro/ro=ro and 0;„=—0,„,.
We solve the above equation numerically and obtain

equiexpansion surfaces for initial data with 3 =3 and 6.
In Figs. 2 and 3, 0,„, for A =3 and for A =6 are plotted
with respect to r, respectively. The gravitational mass M
is 1.40ro for 2 =3 and 6.61ro for A =6. The dashed
lines in these figures are 0,„,of the Schwarzschild —de Sit-
ter space-time with same M as those of the gravitational
waves. As expected, these values of the gravitational
waves and of the Schwarzschild —de Sitter space-time
agree well with each other in the far-out region.

Since the cosmic expansion effect can be discussed just
by adding Ho to 0,„„we first consider 0,„,itself, which is
the same as in an asymptotically Aat case. For the case of
3 =3, there is no trapped region, which is essentially the
same as the Minkowski space. On the other hand, the
trapped region exists in the case of 3 =6. In the trapped
region, the ingoing expansion 0;„ is positive, since that is
the opposite sign of the outgoing expansion 0,„,. Since
0,„, is not positive, however, it is not the antitrapped re-
gion. So its boundary with 0;„=0is not the cosmological
apparent horizon. We call this outer boundary the
white-hole apparent horizon. Then the black-hole ap-
parent horizon coincides with the white-hole apparent
horizon in the present asymptotically Oat case.

Next, we consider the effect of cosmic expansion,
which changes the positions of the above horizons. We
can obtain 8;„and 8,„, from 0,„,by the use of Eq. (4.13).
In this case, the antitrapped region and cosmological ap-
parent horizon appear for both 3 =3 and 6. The case of
3 = 3 is qualitatively the same as the de Sitter space-time.
Only a cosmological horizon appears. On the other
hand, in the case of 2 =6 the situation is rather compli-
cated. When 0 & ro ~ 4X 10 l~, both the black-hole and
white-hole apparent horizons appear, but these do not
coincide with each other. The black-hole apparent hor-
izon is located inside the white-hole apparent horizon in
this case. Here, we have introduced the cosmological
horizon scale, i~=Ho, which is a typical scale in a
space-time with cosmological constant. If ro is larger
than 4X10 l~, the trapped region vanishes and then
the black-hole apparent horizon also vanishes. However,
as long as ro ~ 2.9X 10 l~, there still exists a white-hole
apparent horizon. When ro is equal to about
2.9X10 l~, the white-hole apparent horizon coincides
with the cosmological apparent horizon. In the case of
I"o )2.9 X 10 l~, the white-hole apparent horizon also
disappears, and only a cosmological apparent horizon ex-
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FIG. 2. O,„t of the equiexpansion surfaces of the gravitational
waves with A =3 is depicted by squares with respect to r on the
R =0 axis (a), R =z (b), and z =0 (c). The dashed line is 0 of the
Schwarzschild —de Sitter space-time with the same mass of the
gravitational wave with A =3.

FICz. 3. 0,„,of the equiexpansion surfaces of the gravitational
waves with A =6 is depicted by squares with respect to r on the
R =0 axis (a), R =z (b), and z =0 (c). The dashed line is 0 of the
Schwarzschild —de Sitter space-time with the same mass of the
gravitational wave with A =6.
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ists, which appears from the inside region. Hence, the
area of cosmological horizon shrinks to a smaller one
when ro becomes larger than 2.9X 10 lH.

We should note that, in the Schwarzschild —de Sitter
space-time, the critical value of Ho for horizons to exist is
given by Ho = 1/&9A and, in our notation, by

ro/1~=1/+27M, which is equal to about 2.9X10
for A =6 (M =6.61). In the case of the
Schwarzschild —de Sitter space-time, if ro/l~ is larger
than this critical value, the white-hole and cosmological
apparent horizons do not exist. However, in our case, the
cosmological apparent horizon exists, although the
white-hole apparent horizon disappears beyond the criti-
cal value. When ro/l~ passes through this critical value,
the position of cosmological apparent horizon shifts
discontinuously into the inside region.

Since we can freely choose the scale of ro, i.e., the
width of the gravitational waves, the above discussion
can be understood in two ways. For fixed ro, we contend
that the above behavior is due to the cosmological con-
stant. The large cosmological constant prevents a forma-
tion of the black-hole apparent horizon and makes the re-
gion enclosed by the cosmological horizon smaller. On
the other hand, for a fixed cosmological constant, ro
causes the same eff'ect as the cosmological constant. In
other words, the gravitational waves, if localized enough,
easily form the trapped region even though the gravita-
tional mass is small, and this tendency corresponds to the
fact that, as already mentioned, large 0 ( =ro) forms a
trapped region and a black-hole apparent horizon with
difficulty. This reason is simple because if ro is smaller
than the cosmological horizon scale l~ the background
expansion e6'ect can be ignored, resulting in the same
conclusion as in the asymptotically Hat case.

The gravitational mass M increases linearly with
respect to ro. It seems that the waves with large gravita-
tional mass always cause a trapped region to form easily.
However, when ro increases, the physical scale also in-
creases. The width of localized waves also becomes large.
So, just by the rescaling of ro, we cannot say anything
definite about a formation of a trapped surface. In order
to clarify what happens, then, we should investigate the
e8'ect of the gravitational mass M on the formation of the
trapped region by fixing ro. For various values of A, or
equivalently for those of M, with fixed ro, hence, we find
the critical value (ro/IH)„;„where the trapped region
disappears. From such a study, we can conclude that if
the critical value (ro/lH )„;,is large, the trapped region is
easily formed even if the cosmic expansion is fast.

In Fig. 4, we show (ro/lH)„;, as a function of A. The
squares are (ro/lH)„;, of the gravitational waves, while
the circles are those of the Schwarzschild —de Sitter
space-time with the same gravitational mass M. In the
case of the Schwarzschild —de Sitter space-time,
(1'0/l~)„;, monotonically decreases with respect to the
gravitational mass. This means that the large gravita-
tional mass prevents the formation of the trapped region.
On the other hand, in the case of the gravitational waves,
for 3 (7, i.e., M (10.8ro, (ro!1H)„;, increases with
respect to the gravitational mass. However, for
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FICx. 4. The critical values (ro/lH) 't when 'the bl k-hole
apparent horizon of the localized gravitational waves. disap-
pears, are depicted with respect to A by squares. Those of the
Schwarzschild —de Sitter space-time are also depicted by circles.
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FICx. 5. The cosmological apparent horizons with ro =0.11~
are depicted in the cylindrical coordinate (R,z). The dashed
line is the cosmological horizon with A =0, which corresponds
to the de Sitter space-time. The solid line is that with
A =4.3 (M=2. 93rD).

A ~7 (M ~ 10.8ro), (ro/IH)„;, decreases with respect to
the gravitational mass M similar to the case of the
Schwarzschild-de Sitter space-time. Hence, although
the trapped region is more easily formed for the larger
gravitational mass if M & 10.8ro, too large a gravitational
mass of the waves also prevents the formation of the
trapped region in our case.

In Fig. 5, the cosmological horizons are depicted. The
dashed line is the case of A =0, i.e., the de Sitter space-
time, and the solid line is the case of A =4.3 with the
gravitational mass M =2.93ro. It is difficult to find the
cosmological apparent horizons for the gravitational
waves with A )4.3, since the shape of the cosmological
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we show that the gravitational waves with large gravita-
tional mass do not seem to be an obstacle to the cosmic
no-hair conjecture either.

V. CONCLUSION
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FIG. 6. A& is depicted as a function of M=m/ro. The
dashed line is A & for the Schwarzschild —de Sitter space-time,
while A c of the gravitational waves are depicted by squares. In
the case with small gravitational mass, Ac agree with that of
the Schwarzschild —de Sitter space-time for the gravitational
waves.

horizons are highly deformed, and r=r(8) may not be
~ingle valued.

Here we investigate the relation between the cosmolog-
ical apparent horizon and the gravitational mass M for
fixed ro. Let A& be the area of the cosmological ap-
parent horizon normalized by 4~lH, i.e., the area of the
cosmological horizon of the de Sitter space-time. Hence,
if there is no gravitational wave, Az is unity. In Fig. 6,
we depict the relation between A c and M with

ro =0. 1 lH. The dashed line is the A c of the
Schwarzschild —de Sitter space-time in which the cosmo-
logical apparent horizon vanishes for M (M„;,
=—1/+27HO =1.92ro. The squares are those of our ini-
tial data. As expected, when the gravitational mass is
small, A& of these two cases agree well with each other.
At M=M„;„Ac varies discontinuously for the same
reason, in the case of the gravitational waves, that the po-
sition of cosmological apparent horizon changes discon-
tinuously at the critical value for M of the
Schwarzschild —de Sitter space-time.

These features almost agree with a spherically sym-
metric dust collapse with the asymptotic
Schwarzschild —de Sitter region. The simplest example is
the Oppenheimer-Snyder space-time with A, which de-
scribes the motion of a homogeneous dust sphere. This
example shows that the dust sphere with large gravita-
tional mass exceeding the critical value M„;,=1/&9A
cannot recollapse but does expand and approaches the de
Sitter space-time asymptotically, if the asymptotic back-
ground de Sitter space is initially expanding [7]. Hence,

We present the formalism to solve the initial value
problem for vacuum space-times with a cosmological
constant A by the use of a conformal transformation and
obtain time-symmetric initial data of localized gravita-
tional waves with axial symmetry. These initial data are
just Brill waves in a conformal frame and are regarded to
be snapshots of gravitational waves in a uniformly ex-
panding background space-time. The three-dimensional
metric of these gravitational waves is the same form as
the original Brill waves; hence, as Brill showed, the gravi-
tational mass is always positive in our case too.

In contrast with an asymptotic Bat case without A, a
cosmic expansion exists in the present case. The effect of
the cosmic expansion causes the antitrapped region and
the cosmological apparent horizon, which is the inner
boundary of the antitrapped region. In order to see the
relation between a cosmological horizon and a gravita-
tional mass of the waves, we calculate the surface area of
the cosmological apparent horizon A. c.

We show that A & is a monotonically decreasing func-
tion with respect to the gravitational mass of the gravita-
tional waves below the critical mass, M„;,= 1/v'9A, and
then beyond the critical value the area Ac eventually
shrinks discontinuously to a smaller value but does not
vanish, in contrast with the Schwarzschild —de Sitter
case.

In the asymptotic Aat cases, the large gravitational
waves, localized enough, form the trapped region and
then the black-hole apparent horizon. On the other
hand, in our case with the cosmic expansion effect, the
gravitational waves with gravitational mass too large
prevent formation of the trapped region.

These features are essentially the same as the spherical-
ly symmetric dust collapse with the asymptotic
Schwarzschild —de Sitter region [7]. Hence the gravita-
tional waves with large mass are not always an obstacle
to the cosmic no-hair conjecture.
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