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Phase transition in nonlinear viscous cosmology
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A simple example of a phase transition process describing the isotropization of a universe of
Bianchi type is outlined. Such a mechanism is induced by a self-gravitating fluid, and it operates as
described by Landau’s phase transition. The expansion factor (the Hubble constant) plays the part
of the control parameter as the temperature does for ordinary matter.
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I. INTRODUCTION

It is well known that the perfect fluid hypothesis (for
the behavior of cosmological matter) is adequate for de-
scribing some observed properties of our present equilib-
rium era, although some points are still left unexplained.
For example, the presence of horizons in Friedmannian
models makes difficult the understanding of the high de-
gree of isotropy of the cosmological background radiation.
Such reasons stimulate the quest for more general models
which help us to understand periods of evolution of the
Universe when its properties were different from those
today. The early structure of the Universe (composed of
a chaotic mixture of various species of elementary par-
ticles and radiation) could be highly anisotropic, which
might be described (phenomenologically) as a fluid with
viscosity. However, in order to satisfy the actual status
of observations, such a model has to exhibit an efficient
mechanism of elimination of the anisotropy (as an intrin-
sic feature of its dynamics). A possible solution to this
problem was suggested recently [1,2]. It is based on Lan-
dau’s theory of second-order phase transition [3], which
involves only ordinary physics (for example, it is used for
investigating the behavior of a liquid crystal). Herein,
we apply these ideas to a homogeneous and anisotropic
universe of Bianchi type I. We show that, indeed, Ein-
stein’s equations indicate an evolution toward isotropy,
the expansion factor of the fluid characterizing phases of
the Universe with varying symmetries. In Sec. II, we re-
view the basics of the gravitationally self-induced phase
transition. In Sec. III, we show that, by assuming a pla-
nar anisotropy, Einstein’s equations reduce to a nonlin-
ear planar autonomous system. Section IV performs a
qualitative analysis of such a system (which describes its
global behavior).

II. GRAVITATIONALLY SELF-INDUCED PHASE
TRANSITION

The source of geometry is a nonperfect fluid of Stoke-
sian type [4] characterized by the stress-energy tensor
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Ty = pVuVy — phyy + T, 1)

where by, = gy — VuVo, mu is a functional of the
expansion factor § = Vﬁ and the shear tensor o, =
3(Viipht + Viphf)) — 36hu, (it satisfies 0, VAVY = 0
and of = 0). For the sake of simplicity, one limits one-
self to the third-order expansion

m[0,0] = (0 — 16 + Bo?) ol
+6 (aga;f - %a2h{,‘) , )

where ag, a; > 0, 8 and 6 are constants, and 02 = Tr[62].
It turns out that the higher-order terms do not influence
the topology of the phase diagram of the fluid in the
neighborhood of phase transition points (see [3]). Let
us recall that the fundamental states are given by the
extrema of the free energy. For a self-gravitating fluid,
we assume that the increase of free energy is given by

(AF)g = —(m?/K) Ryuyo*” 3)

(see [1,2]). Hence, Einstein’s equations G,, = Ry, —
iRy = —kKT,, yield (AF)g = m?m,0o*”. In the
case of a planar anisotropy, by using the following

parametrization,

0
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we obtain
3 a2 " 1 3 2
(AF)g = 3™ S a1(6* - 0) + 562 + 5[?2 ,

(5)

where 8* = ap/a;1. By understanding the amplitude of
the shear ¥ as an order parameter (where ¥ = 0 charac-
terizes the isotropic phase), the quantity given in Eq. (5)
provides us with the behavior of the free energy in the
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neighborhood of a phase transition point, if it is inter-
preted as an expansion in term of ¥. Now, let us define
the following 6 values,

3 62 1 62
9T—9c+Tg—2a—1ﬂ, (6)

— *

O = 0" — ——,
64a1ﬁ

and follow closely the analysis of a second-order phase
transition given by [2]. The equilibrium states are deter-
mined by the maxima of the function given by Eq. (3).
Thus, according to [1], it turns out that the most likely
state corresponds to

(i) an isotropic phase, when 8 < 8.;

(ii) an isotropic phase with a local minimum corre-
sponding to a small anisotropy, when 6. < 6 < fr;

(iii) an anisotropic phase with a local minimum corre-
sponding to an isotropic phase, when 0r < 6 < 6*;

(iv) an anisotropic phase, when 6 > 6*.
The above mechanism of phase transition can be under-
stood as a direct consequence of the following conditions:

(a) the validity of Einstein’s equations,

(b) the pressure defined by Eq. (2),

(c) the free energy of the fluid defined by Eq. (3).

III. EINSTEIN’S EQUATIONS

Let us investigate the modifications of metrical proper-
ties of the space-time which are generated by the Stoke-

J

daz  ds
ag as

Let us assume a (quite general) equation of state given
by

p=(vy—1)p, (12)
with
O<y<2. (13)

According to Eq.(10), it is interesting to note that a
relation of the form p = p(p) allows us to express the
pressure p in terms of variables zy = ap/ag. After a
little algebra, Egs. (10) and (11) transform into a nonlin-
ear autonomous system [&x = Fi(z1,22,23), k = 1,3].
By assuming a planar anisotropy, e.g., o = 3, the Ein-
stein’s equations can be written in terms of the variables
a1 G2 a3

a’ az as

: (14)

as follows,
dr/dt = P(z,y) = —2az + 2ay + bz? + cy® + dzy
—4fx® +4fy® — 12fxy? + 12 2%y,
(15)
dy/dt = Q(z,y) = ax — ay + gz + hy® + kxy
+2f2% — 2fy® + 6 fzy® — 6fz%y

+2@=—n{e(§—ﬂﬂ+é0)+92<—
az ag 3 aj 3
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sian fluid described above. We set up the system of Ein-
stein’s equations in the Bianchi type-I geometry where
the anisotropic phases and the isotropic ones are easily
characterized. Let us use the following variables,

3 4 3. /a2
6 = =, €= (—1> . (7
=1 % ; @i
The metric is given by
ds? = dt? — a?(t)dz? — a2(t)dy® — a2(t)d2>. (8)

Hence, (according to its definition) the shear tensor reads

6 a
o = <§ - a—'/) ht (v =1,2,3 not summed). 9)
v

The nonzero connection coefficients are given by I‘{;k =
6idk/ak and F?k = §;xarar, which leads to the Ricci
tensor coefficients Rgp = Z?=1 dj/aj, Ry = —[d;a; +
4jaj y =, 4; (di/a;)]6jx (which shows that T}, is diago-
nal), and to a scalar curvature R = 22?21 aj/a; +
Z#k (aj/a;)(ak/ax). Hence, the Einstein’s equations
transform into a system defined by

ai a '
s + —— =kKp, (10)

a1 az

a1 as
al ag

in addition to three equations obtained by a circular per-
mutation of indices of

_5+é2_99_ﬂ)+9(ﬂ+alﬂ+25ﬂ)

3a; 9 3 3 ail 3 a1
(11)
[
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a= —1-na
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IV. QUALITATIVE ANALYSIS

Section II shows that an evolving nonlinear Stoke-
sian fluid is able to self-induce a transition between the
anisotropic and isotropic phases. Section III shows that
the related dynamics is described (in Bianchi-I geome-
try) by the nonlinear planar autonomous system given
by Eq.(15). The purpose of this section is to analyze
such a mechanism by means of qualitative analysis (see
[5, 6]). Namely, we investigate the global behavior of
integral curves in the neighborhood of critical points in
the phase space (including those at infinity). The finite
critical points, which are defined by

P(u,z) =0, Q(u,z) =0 (17)

[see Eq.(15)], correspond to equilibrium states. Note
that the origin, p. = (0, 0), is actually the only one [since
2Q(z,y) + P(z,y) is a second-degree polynomial which
has a negative discriminant], as ensured by the condition
given by Eq. (13). Let Q denote the following matrix

) )
~ ‘oz By
Q= : (18)
%Q 2Q
z Oy
see Eq. (15), which reads
a -2 2
Qc:a( 1 _1)5 (19)

at the origin p.. The nature of this equilibrium state is
determined by means of invariants of Q. (there are the
determinant and the trace). It turns out that the rele-

vant values, which are detﬁc =0 and Trﬁc = —3a # 0,

]

3167
Y T =y
e

7

//
\\0 /. .

- /\ e 42y =0
7

FIG. 1. The phase space: the neighborhood of the critical
point located at the origin of coordinates. The lines represent
integral curves.

indicate that p. is a multiple equilibrium point. Fur-
ther analysis [5] enables us to classify it as a saddle node
[i.e., an equilibrium state whose canonical neighborhood
is the union of one parabolic and two hyperbolic sectors
(see Fig. 1)].

The behavior of the dynamical system at infinity is
investigated on the Poincaré sphere (obtained by com-
pactifying the phase space of the system, completed by
the elements located at infinity). The related transfor-
mation of variables (called Poincaré transformation) are
given by

1
z=-, y= (20)
Hence, by using the variable 7, which is defined by dr =
dt/2?, Eq. (15) transforms as follows:

du/dr = P*(u,2) = 2f + gz — 2fu + az? + (k — b)uz — 6 fu? + 10fu® + auz® + (h — d)u’z — 4fut — 2au?2% — cuz,

(21)

dz/dr = Q*(u,z) = 4fz — b2% — 12fuz + 2a2® — duz® + 12fu?z — 2auz® — cu?2? — 4fudz.

These equations have all the necessary information about
the behavior of the system at infinity. Thus let us proceed
to analyze this system in the same way as we did before.
The critical points are the solutions of the equations

P*(u,2) =0, Q*(u,2) =0. (22)

One obtains pcy = (—3%,0) and p; = (1,0). The in-
variants of Q at the neighborhood of p.; are given by
det Qe = (L) f2 # 0 and Tr Q¢; = 27f # 0. These
values, together with the study of its characteristic equa-
tion and roots (5], classify the point p.; as a simple equi-
librium state called unstable node (see Fig. 2). At the
neighborhood of pcs, it turns out that ﬁc; = 0, which
forces us to use the second-order expansion of Eq. (15). A
great simplification is introduced by assuming a; = 3%.
According to [7], which provides us with a general pro-
cedure for analyzing the configuration of integral curves,

2 .
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FIG. 2. The Poincaré sphere: behavior of integral curves
in the neighborhood of the equilibrium point pcy.




3168

FIG. 3. The Poincaré sphere: behavior of integral curves
in the neighborhood of the equilibrium point pe;.

Dey can be classified as a dicritical point. A detailed study
of this case furnishes the following topological structure
for the point pc; (see Fig. 3). All the necessary data
for describing the system as a whole (including its be-
havior for arbitrary large values of its coordinates) is
available in Fig. 4, on which all the equilibrium states
are represented. This diagram results from the orthogo-
nal projection of the lower half of the Poincaré sphere in
the phase plane and has the form of a disk. The border
represents infinity in such a way that antipodal points
describe the same point. Our next step is to identify in
this diagram the mechanism of phase transition between
the anisotropic and isotropic phases of the fluid. First
we ask whether all the trajectories in this diagram may
represent the evolving Universe. If we restrict the accept-
able solutions to those with a positive energy density p,
which is given by

p =1y +2zy, (23)

then it turns out that a large number of them are ruled
out. The reason is easy to understand since the first of
Einstein’s equations provides us with the energy density
p in terms of the coordinates (z,y), as shown in Fig. 4.
The positivity of p forces us to consider only the trajec-
tories outwards of p < 0 sectors (see Fig. 4). We are also
interested in characterizing the isotropy properties of so-
lutions. A solution is called isotropic when it lies on the
line with equation z = y, while any other location on the
plane describes an anisotropic phase. These considera-
tions help us to exhibit the trajectories that we are look-
ing for, which are those that represent anisotropic phases
of the Universe evolving toward the isotropic phase. The
expansion factor is represented on this diagram by the

M. NOVELLQO, S. L. S. DUQUE, R. TRIAY, AND H. H. FLICHE 47

FIG. 4. The Poincaré sphere: global view.

family of lines defined by equation z+2y = const. Hence,
we understand that the permitted behaviors show in the
past (at infinity) an anisotropic phase with huge expan-
sion (i.e., a large positive value of the expansion parame-
ter). As the evolution proceeds the expansion factor gets
smaller and the trajectories tend to be tangent to the
line z = y, which characterizes the isotropization. The
expansion ends at the origin (6 = 0) which represents the
Minkowski space (see Fig. 4).

V. CONCLUSION

The choice of the Bianchi-I geometry for studying the
evolution of the nonlinear Stokesian fluid provides us
with an explicit confirmation of results obtained by [1],
these are summarized in Sec. II. The Universe is assumed
to be described by an anisotropic viscous fluid. During
its evolution (expansion), it reaches a state where the ex-
pansion factor 8 has a value which suffices for giving rise
to a phase transition toward an isotropic era.
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