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Cosmological perturbations in Bianchi type-I universes
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The evolution equations for small perturbations in the metric, energy density, and material velocity
are derived for an anisotropic viscous Bianchi type-I universe. The equations obtained are the same
as those found by Perko, Matzner, and Shepley, and by Tomita and Den. However, the splitting
up of these equations is different from the way it is performed by these authors, which results
in the fact that, in close analogy with the flat Friedmann-Robertson-Walker universe, the general
solution of the perturbation equations can be split up into three noncoupled perturbations: namely,
gravitational waves ("tensor perturbations"), vortex motions ("vector perturbations"), and density
enhancements ("scalar perturbations"). Moreover, the results are independent of the equation of
state of the cosmic fluid and its viscosity. The gravitational waves need not necessarily be transversal
in an anisotropically expanding Bianchi type-I universe. It is shown, however, that the longitudinal
components of the gravitational waves have no physical significance.

PACS number(s): 98.80.Bp, 98.80.Hw

I. INTRODUCTION

In this paper we study the evolution equations for small
perturbations on a background consisting of a homoge-
neous anisotropic universe of Bianchi type I, filled with
a viscous fluid.

The paper is organized as follows. In Sec. II we write
down the connection coefFicients and the Ricci tensor for
Bianchi type-I spaces, the arena of our investigation. We
take a viscous fiuid, write down the Einstein equations,
show that a Bianchi type-I universe is nonrotating, and
take the metric diagonal. Furthermore, we define the
Hubble parameters in the three principal directions as
the eigenvalues of the expansion tensor.

In Sec. III we introduce perturbations on the en-
ergy density and the material velocity. The perturba-
tion equations consist of six evolution equations for the
perturbed metric, one evolution equation for the per-
turbed energy density, and three evolution equations for
the three components of the perturbed material velocity.
Furthermore, there are four constraint equations which
must be satisfied by the initial values of the perturbed
quantities in the initial hypersurface.

It is well known that the solutions of the Einstein equa-
tions are not unique. One can always carry out coordi-
nate transformations to obtain a different, but physically
equivalent, solution. Such "gauge transformations" do
not change the values of the physical observables such as
the energy density s or the particle density n, but they
do change the components of the metric tensor. As in-
dicated above, we solve the Einstein equations step by
step. It is a drawback of our iterative procedure that
it is not generally covariant. Physical quantities, at a
given level of the iteration procedure, may depend on

the "gauge. " For instance, although the energy density
z = e«&+a&, ) +a&, ) + is gauge invariant, the first-ore}er
correction c&,&

will turn out to depend on the coordinate
system that is chosen. It is the purpose of Sec. IV to
fix a suitable gauge and to find thus an unambiguous re-
sult for the physical quantities that are solutions of the
erst-order equations.

The solutions to the perturbation equations can be
classified according to their influence on the energy den-
sity and the material velocity. In Sec. V we will prove a
theorem which leads to this classification. The class of
solutions which we call "nonmaterial, " and which are de-
fined by the five properties (108), are discussed in Sec. VI.
The remaining solutions correspond to density perturba-
tions.

In Sec. VII we give a summary of our results.
Throughout the paper we use the summation conven-

tion only with respect to greek indices; i.e. , if a greek
index occurs twice then it is supposed to be a summa-
tion index.

II. BIANCHI TY'PE-I SPACES

The expressions for the connection coeKcients and
the curvature tensor for homogeneous three-dimensional
Bianchi type-I spaces are characterized by the structure
constants

c', k = 0 (i, j, k = 1, 2, 3).

We use a synchronous system of reference [1—3], and sig-
nature (+, —,—,—), implying for the components of the
metric tensor that gpp = 1 and gp,

——g,p
——0. Further-

more, we use the so-called invariant basis [4, 5]. Upon
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ro,, = t9... r'„= r', , = —6', ,

Ik, P (4)

substituting (1) into the expressions for the connection
coefficients and the Ricci tensor [4] we arrive at

I' oo = I"oo = I'o' = I' .o = O,

where z is the energy density and p the pressure, given by
an equation of state p = p(n, s) depending on the particle
density n and the energy density z. A semicolon denotes
covariant differentiation. Furthermore, T is the trace
of the energy-momentum tensor and u~ is the normalized
hydrodynamic four-velocity (u"u„= 1). The symbols il
and g„represent the shear- and the volume-viscosity co-
eKcients, respectively. They are certain known functions
of the density n and the temperature T:

3 3

R', =8 —) ) 8",8', ,
k=1 L=1

R, =O,
R', =8', —616I', +'R', ,

(5)

(6)

(7)

g = q(n, T), q„= g„(n, T). (12)

The actual forms of the transport coefficients can be de-
termined on the basis of relativistic kinetic theory [6, 7].

Nonrotating. We will now show that a Bianchi type-I
universe filled with a viscous Quid is nonrotating, i.e. ,

where the curvature tensor of the three-dimensional ho-
mogeneous spaces is given by

u" (t) = 6'"p.

The conservation laws are

(13)

(8) T~ ..=O. (14)

3

8'~:= ) g'"8p~,
k=1

3

8:=) .8")
k=1

Hence, three-dimensional Bianchi type-I spaces have no
curvature. The quantities 8,&

in (3), (5), and (7) are ab-
breviations for the derivative with respect to the cosmic
time (xp = ct) of the metric:

and

3 3
T'PP + ) ) 8 Tkl 8TPP 0

k=1 /=1
(15)

Writing out the covariant derivative and substituting the
connection coefficients (2)—(4) we arrive at the four equa-
tions

An overdot denotes differentiation with respect to ct.
The components RI" of the Ricci tensor occur in the

left-hand side of the Einstein equations

3
T' —2) 8'gT" —8T' = 0 (i = 1, 2, 3).

k=1
(16)

R" = r(T" —2b"„T™~),

where r:= 8+G/c4 with G Newton's gravitation constant
and c the speed of light. At the right-hand side of these
equations we have the energy-momentum tensor. For a
viscous fluid it reads [3]

T» — ~+ p+c(-, rl —rl„)u .& u„u,.2 A

—p+ c(s'9 '%)u;& gv~

+C'g D)1;v + Bv;P(D)1V~);io(J.'

T' (tP) = 0 for all t (i = 1, 2, 3)

or, equivalently,

(17)

Equation (15) turns out to be a differential equation for
the energy density s, as we shall see later. Equations (16)
are three differential equations for the three unknown
functions T'P(t) (i = 1, 2, 3). The initial conditions at
t = tp can be found from the (i, 0)-constraint equations.
For a Bianchi type-I universe we have, using (6) and (10),
T' (tP)p= 0. From (16) it then follows that

3

(o ~ u) co1 (uuo"uo —euo)uou„; + co1( co(u"o —8u )uou; +, uo, + u*,o + & ) e *uo
k=1

3 3
—(uou, ) „u — )) 8",uo )= 0 u(o u= 1, 2, 3), (18)

k=1 l=1

where a comma denotes partial differentiation. It may
be verified by substitution that u" (t) = 6'"p is a solution
of this equation. Hence, a Bianchi type-I universe filled
with a viscous Huid is essentially nonrotating.

Metric. From now on, we take the metric diagonal,

i.e. , g,~(t) = 0 (i g j) for all t. In this way we end up with
a system of differential equations, the number of which
equals the number of unknown functions. This justifies,
a posteriori, our choice of a diagonal metric.

The metric tensor has three independent components
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g, , (i = 1, 2, 3) on the main diagonal, i.e. , s = 3—H(s+ p) + 9crl„H'+ 6crIAHH', (33)

H, (t):= —*, H:= —,'{Hi + H& + Hs).
Gi

Note that cH, (i = 1, 2, 3) are the Hubble parameters in
the three principal directions.

The derivatives of the metric tensor, (9), can now be
expressed as

8,~ = b,~a H~, 8'~ = —6'~H~, 8 = —3H,

where for H, and H one should read the expressions in
terms of a, following from (20).

Ricci tensor. From (2)—(4), (20), and (21) we ob-
tain the expressions for the connection coeKcients for a
Bianchi type-I metric:

I' pp=I'pp=I' p =I' p=O,p i p p (22)

2rp, , =a,,a, H, , r „=r',, =a', H, , (23)

g~-(t) = diag(1 -ai(t) -a'(t) —a.'(t))
Now define the abbreviations H, (i = 1, 2, 3) and their
mean H by

where A.H is the anisotropy in the Hubble parameters
defined by

1) (Hi, —H)
H2

k=1
(34)

Equations (32) and (33) are four first-order differential
equations, for the three Hubble functions H1, Hq, H3,
and the material energy density e.

The (0, p, ) components of the Einstein equations yield
the constraint equations to be obeyed by the initial val-
ues. Eliminating the time derivatives of the Hubble pa-
rameters with the help of the Einstein equations (32) we
find, for the (0, 0) component,

3

9H —) H& ——2@E;.

k=1

A solution of the Einstein equations (32) satisfying this
equation initially will necessarily continue to do so for all
times, provided the conservation law (33) is satisfied for
all times.

rki, = O. {24) III. PERTURBATIONS IN A BIANCHI TYPE-I
UNIVERSE WITH VISCOUS FLUID

R, =O,
R', = 6', (H, + 3H—H, ).

(26)

(27)

Energy-momentum tensor. Using the four-velocity
(13) we get for the energy-momentum tensor and its trace
for a nonrotating Bianchi type-I universe filled with a
viscous fluid

With the help of (21) we find for the components of the
Ricci tensor, Eqs. (5)—(7), for a Bianchi type-I universe:

3

R p —— 3H —) H—i„
k=1

In Sec. II we considered a homogeneous model of the
universe with an imperfect fluid. It is the purpose of this
section to arrive at formulas which describe the evolution
of gravitational perturbations, vortex perturbations, and
small local-density enhancements and the peculiar veloc-
ities.

We assume that the local inhomogeneities are "small, "
so that the departures from a homogeneous Bianchi type-
I universe are very small. The metric of such a universe
can be written as the sum of a Bianchi type-I metric and
a small perturbation to the homogeneous background

T p=~
T, =O,
T'~ = —6'~ p+ 2cg(H —H, ) —3cil, H .

(28)
(29)
(30)

gpv(t, X') = gioipv(t) + 6g~„(t, X'),
'

(36)

where g«» (t) is the unperturbed background metric
(19) of a Bianchi type-I universe, and

Hence, for the trace, bg„.(t, x'):= —h„.(t, x') (37)

T"„=~ —3p+9cg H. (31)

Einstein equations. Upon substituting the compo-
nents of the Ricci tensor (27) and the components of the
energy-momentum tensor (30) and its trace (31) into the
Einstein equations (10) we find, for the (i,, j) components
of the Einstein equations for a Bianchi type-I universe
filled with a viscous fluid (i = 1, 2, 3),

H, = 3HH, + 2r. s —p—+ 4cil(H —H, ) + 3cil„H .

(32)

Substituting the energy-momentum tensor (28) and (30)
into Eq. (15) we get an equation resulting from the fact
that energy is conserved:

hp = h„p = 0 (p„v = 0, 1, 2, 3). (38)

The contr avariant components of the perturbation
h" (t, x') on g&",

&
can be found as follows. Using bg"

b(gi" g g ) we find

is a small perturbation on the background Bianchi type-I
metric. A universe described by the metric (36) will be
referred to as a "perturbed Bianchi type-I universe. " All
quantities with a subscript (0) refer to the unperturbed
Bianchi type-I model, whereas those with a subscript (1)
are the erst-order perturbations on that quantity, apart
from one exception: instead of —g{»„„wewill write h„.
We use synchronous coordinates [1—3j, in the perturbed
as well as in the unperturbed situation, implying that
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h" =+bg" = g" g h(0) (p) wo'.

Using (19) we find

a,'(t)h~, (t, x") = a,'(t)h', (t, x").

(40)

(41)

Equation (41) expresses the fact that the tensor h'~ has
at most six independent components. Notice that

(g(",) ~h" )(g(,)
—h ) =6~ ~O(h ) (42)

as follows from (36) and (40). Hence, g&g + h" can be
regarded as the inverse of g(, ) „—h up to first order
in h,~. .

From (19) and (36) we find, for the determinant g of

3

g(t, x') = g„)(t) 1 —) h"), (t, x*) ~. (43)

(39)

We consider perturbations in the metric up to first order
in h, ~ only. Hence, raising and lowering of the indices
can be done with the help of the unperturbed metric g~«&

and g(»&, respectively. We thus find, from (39),

06I'~„ MI'~~g
g2A g~v

~(ar.„.)r ',.~ r.„.(sr",.) —(sr „,)r"..
—r-„,(sr '„.). (51)

The perturbations bX" of an arbitrary tensor X" can
be calculated from the perturbations bX„using the ex-
pression

bX"v = h" X~v+ g(",) bX~v

3

sr'. = ) (-,') ",+ a, t ',),
k=1

3

hRo, = —) [h")„., —h", y ~ (H), —H, )(h")...—2h", ,g)],
k=1

(53)

(54)

Substituting the connection coefficients (22)—(24) and
their perturbations (46)—(49) into (51) and raising the
index with the help of (52) we find the expressions for
the perturbations on the Ricci tensor for a Bianchi type-
I metric:

rA i Ap ~~ gPP ~gP&r =-g + (44)

With the help of (39) we can write the change 6r"„of
the connection coefficients in terms of bg~„:

Thus, the perturbation on the determinant of the metric
tensor is, up to first order in h;~, 6g = —g(» Qi, i h"~.

With the help of the definitions given above we will
now derive expressions for the perturbations to the can-
nection coefBcients and the Ricci tensor.

The connection coefBcients I'~& are given in terms of
the metric tensor g„v by

bR', = h,', [H, —H, g 3H(H, —H, )]
3

~-,'g', H, ) i ~„+I ', (H, —H, + —,'H)
k=1

~ ~

~2h'~ + 3R(,), (55)

where 3A~(,
)

is the curvature tensor of the three-
dimensional space sections of constant time t. Notice
hat + ~

= +(0)~ + B(~)~ is of first order in h ~ since

3B&'„.——0 for a Bianchi type-I metric. We have

3

sR'„, = —) —(h, ,~,), + h ~, ), —h )„...~)2 G

br~„. = gp(h'gp~)r „—.
86gpp, 06gpv

+2g ~ + (45)
1——,h'~, k, k
k

(56)

Substituting bg, ~
= —h,~ and using 6gop = Ago = 0 we

get the perturbations on the connection coefFicients for a
Bianchi type-I metric:

For future reference we calculate the curvature scalar
sR(» .——Q& i sR~&, )), of the perturbed metric:

Sr'„=Sr'„=Sr',, = Sr'„= 0,
Sr', , = Sr'„= --,'n', (h', + 2H, h, *,),
bI"O~ = —

2 [6'~ + 2h'~(H, —H~)],

~r'
A:

= ('-)r'tc = ——
l

h' a + h ) ')

(46)

(47)

(48)

(49)

3 3

R(i) = ) .):—2 (""(,A:, (
—&"),(,()

k=1 t=l
(57)

So far we only have considered perturbations in the
metric components. In order to write down the perturbed
Einstein equations

The Ricci tensor B„:=B~„p is given by 6R" = K6 (T~ —2P'„T ), (58)

~ p, t-')I pw ~r.„.r,.—r.„„r .. (50)g2.A g2.v

The perturbations bB& of the Ricci tensor in terms of
the perturbations in the connection coeKcients thus fol-
low'.

we need the perturbations bT" of the energy-momentum
tensor T&„ for a viscous fluid, given by (ll). In the per-
turbations on the energy-momentum tensor, bT&, the
total values of the energy density e, the pressure p and
the hydrodynamic velocity uj" consist of two parts:
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s(t, x') = s(,) (t) + s(, ) (t, x ),
p(t, x') =p(,)(t) + p(, )(t, x'),

u (t, x') =6 ()+ u(, )(t, x'),
(59)

where the quantities with a subscript (0) are position
independent, since they refer to the homogeneous back-
ground Bianchi type-I model, and those with a subscript
(1) are small first-order perturbations. From the nor-
malization condition u&u„= 1 it follows that, up to first
order in the perturbation u~&»,

u i) —u(g)0 —0.

From the fact that an unperturbed Bianchi type-I uni-
verse is nonrotating and Eq. (60) it follows that up to
first order in h,~ and u(»), we have

6T 0 —E(1)
0 (63)

6T, = —a, u', » s(0) + p(p) + 2crl(H —H, ) —3crl„H,
(64)

bT', = —2cg(H, —H, )h', —cqh, ',
3

&(&) + 30 n (~),k ~ k
k=1

the connection coefficients (22)—(24), the expressions for
their perturbations, (46)—(49), and the expressions (59)
for the perturbations on the physical quantities we find,
for the perturbations on the energy-momentum tensor
for a Bianchi type-l universe,

1
u(1) 2 u(1) t

a,
(61) a,',.

(&) 2 2 (&))&') (65)

The phenomenon of viscosity is considered to be a first-
order effect. Hence we will not take into account the per-
turbations on the viscosity coefficients due to the pertur-
bations (59), i.e. ,

3

6T = s(, )
—3p(, ) + 3crl„) (u,"„„——,'h, "A, ),

k=1
(66)

(,)(t, x') = 0, rl ( )(t x') = o. (62)

So, rI(t, x') = q(„(t) and g„(t,x') = q„„)(t).We will omit
the index (0) at the viscosity coefficients.

We now calculate bT„starting from (ll). Using

where we also used Eq. (52).
Upon substituting Eqs. (55), (65), and (66) into

Eq. (58), using Eqs. (32) to eliminate the time deriva-
tives of the Hubble parameters, we obtain the (i, j) com-
ponents of the perturbation equations:

3

,'i ', + h', (H—, H, + —',H +— &) + 'a,'„, + —,'~, H, &
k=1

3
Q

(~) p(~) + (3' +%)) (u(z), k 2~ ) ) + +c7 u(z),j + 2u(g), j ) (67)
k=1

where the curvature R&,), induced by the perturbations
is given by Eq. (56).

For future reference we calculate the evolution equa-
tion for the trace P& i h"A, of the perturbation tensor.
Taking in Eq. (67) i = j and summing over the repeated
index, one finds

3 3-) h,~„+(3H —-,'Kc~„)) h.",+'a„)
k=1 k=1

3
3

G($) P($) + cpv g u(1) k J 68
k=1

where sR(, ) is given by (57).
Finally, we derive the conservation laws for the per-

turbations. Writing out the equations (T„") =0 we.
find

(T„") + I'" „T~ —I' „„T"= 0. (69)

Letting tl operate on these equations we get

(pT„)„+(sr...)T„+r .„(sT„)—(sr...)T."

—r.„.(sT.") = o. (7o)

Upon substituting the connection coefficients (22)—(24),
the components of the energy-momentum tensor (ll),
and the perturbations (46)—(49) and (63)—(65), respec-
tively, we get, for the perturbed conservation laws, using
Eq. (52),

3

c()+3~(c()+t()) +) ((()()c —chic) [c()+C()+4ccl(H—Wg) —6cqH ) =0'
k=1
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and

——fu&» [s«) + p«) + 2«(H —H, ) —3cq„H]) + u&» (3H + 2H, ) [e«) + p&» + 2cg(H —H, ) —3crt„H]
ld

3 3-«) —, (H, —H, ) (h", , —2h", ,) —h", , + —,&„,, +.(-,'& —&„)) —,(u~„„,—,'h",—,)
k 1 i

—cq) ~

—~u,",), ~+ —2u*„, „~) = O. (72)

Equation (71) describes the evolution of local-density en-
hancements (or rarefactions). Equations (72) describe
the evolution of the peculiar velocity of matter.

The (0, v)-perturbation equations constitute the con-
straint equations to be obeyed by the initial values. They
can be found by substituting the perturbations on the
(0, v) components (53) and (54) of the Ricci tensor and
the perturbations on the (0, v) components (63), (64),
and (66) into the perturbation equations (58). The con-
straint equations read

3

) ( ,'tPg+Hph. "g) -= —,'v( ~„)+sp„)
k=1

3

-3«„) (u"„,„——,'h"i, )
k=1

(73)

3

) —,[h", , —h", , + (H, —H, )(h",„—2h"„,)]
k=1

= —2ru~(, ) [s(,) + p(, ) + 2«(H —H, ) —3«„H] . (74)

3ust as in the unperturbed case these equations are sat-
isfied automatically for all times if the initial values do
so and if the conservation laws (71) and (72) are satisfied
for all times.

Equations (67), (71), and (72) are ten coupled lin-
ear homogeneous differential equations for ten unknown
functions: namely, the six independent [see Eq. (41)]
components h' (t, z") of the perturbation of the back-

kground metric, the perturbation s,»(t, x ) of the energy
densify, and the three nonzero components u&»(t, x") of
the perturbation on the four-velocity.

In Sec. VI we will show that we can distinguish three
different types of solutions: namely, gravitational waves,
vortex perturbations, and density perturbations. More-
over, it will be shown that these solutions do not inBu-
ence one another. But first, we must fix the coordinate
system, i.e. , the "gauge. "

IV. GAUGE TRANSFORMATIONS

If we wish to study small perturbations on a back-
ground Bianchi type-I metric we are faced with the prob-

lem that some of these perturbations can be achieved
by an infinitesimal coordinate transformation. Perturba-
tions found in this way are a solution of the perturbation
equations in the new coordinates. However, these solu-
tions describe the same physical situation and cannot be
observed by experiment. In order to be able to distin-
guish between solutions that change measurable quanti-
ties (such as the energy density) and solutions due to a
coordinate transformation, we first study the latter. Con-
sistent with the perturbation analysis, only first-order ef-
fects of the coordinate transformations need to be taken
into account.

I et us consider an unperturbed Bianchi type-I met-
ric described in the usual coordinates x". Now perform
an infinitesimal coordinate transformation to new coor-
dinates x" by

~V —~V + (p(&v) (75)

gpv = g)J.v + (p;v + (v;p, ~ (78)
Note that h,~:= —6g,~ [see (37)]; hence the perturbations
on the metric transform under a gauge transformation
according to

h„—h„—((„, +(,~).
The four-velocity u" transforms as

uP —uP + uP (~ u~(v

The transformation of the energy density z can be found
from its definition

E':= T 8pD~. (81)
In a comoving system of reference (u" = b "0) we get

E'=T p. (82)

Upon substituting Eq. (82) into Eq. (77), we find

where (" is an arbitrary, small four-vector. Then an ar-
bitrary tensor X transforms under (75) as

(76)
where ZgX is the Lie derivative of the tensor X in the
direction of the four-vector (. From the definition of the
Lie-derivative (see Wald [2], Appendix C)

(Z(X) p.——X p, ( —X p( . +X (.p, (77)

we can see that the metric tensor g„ transforms as
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s=s+s, (, (83)

where we have used that T, = 0 in a comoving coordi-
nate system.

So far we have considered general coordinate trans-
formations. Now we additionally require that the syn-
chronous reference system will be transformed again into
a synchronous reference system; i.e. , the metric tensor
g„„must have the form, before and after the transforma-
tion,

g00 & gOi ~ gOG ~ gpi

From (78) it follows that

(o;o = 0, (';o+(o

(84)

(85)

Writing out the covariant derivatives in (85) and us-
ing the unperturbed connection coeKcients for a Bianchi
type-I metric (22)—(24) we arrive at

(' = 0(x"), &' = 0,*(x")
d7,

( )
+y'(x ), (86)

a2 ( —26'~ H;Q (87)

The four-velocity u" transform as

~p 0 q ~g g, 2

2 {1) u{1) 2 & {1)2 u{1)2+ O, 2''

(88)

Finally, combining Eqs. (83) and (86) and using that
s«) ——s«)(t) we find that the perturbations on the en-

ergy density z transform as

where Q and y' are arbitrary functions of the space coor-
dinates. Coordinate transformations (75) satisfying the
property (86) will be called gauge transformations from
now on, as is usual in this context.

We finally write down the transformation rules for the
perturbation on the metric h'z, the hydrodynamic four-
velocity n", and the energy density e,

Ci

a2(~)
+X'

since the solutions would still depend on the unspecified
functions Q(x") and y'(x").

V. NONMATEB. IAL PERTUH. HATIGNS

In Sec. III we derived the linear perturbation equa-
tions for the metric, (67), for the energy density, (71),
and for the spatial components of the four-velocity, (72).
The initial values for this system of equations must
obey the constraint equations (73) and (74). It is well
known [1, 3, 8—10] that in a flat FRW universe (i.e. ,
an isotropic Bianchi type-I universe) we can distinguish
three independent types of solutions: namely, gravita-
tional waves, vortex perturbations, and density pertur-
bations. In Sec. VI we will prove that in an anisotropic
Bianchi type-I universe we can make the same classifica-
tion of independent solutions.

We first consider solutions which have no material con-
sequences, i.e. , e(1) —0 and p(, ) ——0. The classification
of the material as well as the nonmaterial perturbations
is most convenient once one has at one's disposition the
theorem stated in Sec. V B. It shows the consequences for
the perturbation on the metric tensor h and the pertur-
bation on the material velocity u(1) if the perturbation
on the energy density e(, ) and the pressure p(» vanish.

The proof of the theorem uses two lemmas, proved in
Secs.VA and VB.

A. Flat FRW universes

This section on the isotropic Bianchi type-I uni-
verse (or flat FRW universe), is a preparation for the
anisotropic Bianchi type-I universe. We study solutions
which have no material consequences. In particular, we
derive the integrability conditions for the perturbed Ein-
stein equations in the case s{» ——0 and p{» ——0 for an
isotropic Bianchi type-I universe. Finally, we define what
we shall call nonmaterial perturbations, making use of
these integrability conditions.

Lemma 1. Consider a flat FRW universe filled u)ith

a viscous or nonviscous fluid. The conditions on the per
turbations on the fluid velocity u{» and the perturbations
on the m, etric h'~ given by

(1) = G(1) + (0) 'P (89)
3 3

) u"„, „(i,*') = O, ) h", (i, x') = O,

The transformation rule for the pressure p can be derived
from Eq. (89), once the equation of state p = p(n, s)
is known. Equations (87) and (88) constitute a gener-
alization of the formulas given in Peebles [8], Sec. 81,
and Weinberg [3], Chap. 15, whereas Eq. (89) holds true
in the anisotropic as well as the isotropic case. Setting
a1 ——a2 = a3 ——a and H1 ——H2 ——H3 ——H one recov-
ers the results for the flat Friedmann-Robertson-Walker
(FRW) model given by these authors.

The use of a synchronous reference system does not
determine the functions g(x") and g'(x") completely.
There remains some freedom in the choice of a coordi-
nate system. Hence, if we tried now to solve the pertur-
bation equations given in Sec. III, we would not succeed

3 3

) ) h"',
A, ,i(t, x') = 0,

k=1 l=1

(9o)

are necessary and sufhcient conditions for the perturbed
Einstein equations (6'7) to be integrable for perturbations
for u)hich z{,) ——0 and p{,) ——0.

To prove the lemma we make use of the perturbed Ein-
stein equations (67), the conservation laws (71) and (72),
the constraint equations (73) and (74), and the gauge
transformations (87)—(89), with Hi = H2 = Hs ——H
and a1 ——aq = a3 ——a.

In Sec. IV we limited the possible reference systems to
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those that correspond to a synchronous reference system.
This implies that the coordinate transformations (75) can
only be of the form (86). Now, we require additionally
that before and after a gauge transformation the pertur-
bations on the energy density and the pressure vanish.
From the transformation rule of the energy density (89)
it then follows that

Eliminating p,. i pk i a, h", k, from Eq. (96) with the
help of Eq. (97) we obtain, using (93),

s

cdt (s(p) + p(p) 3c'g vH) ) uI&)
i~~

I(I
i( 1) 7

i~

k) 0 (91) +(5H + 2I(;cq) (s(p) + p(p) —3cgv H) ) u', = 0.

The only free functions left over are the three func-
tions y'(xk) occurring in the gauge transformations. The
gauge transformation (87) now reads

(92)

The functions h z and their spatial derivatives, being
components of the metric, can be specified arbitrarily
in the initial hypersurface t = to without affecting the
physics.

Proof We fir. st prove the necessity. Upon substitut-
ing s(, )

——0 and p(» ——0 into Eq. (71) we get, for the
perturbation on the expansion scalar bu~. „,

Using Eq. (95) to eliminate the time derivative of

i uk(,
& k from this equation we find

1 d——(s(p) + p(p) —3crlv H)cdt

3

+{3K+2vn))(~(. )+))(.) —3((I,H))) (.~ ~ =p.
k=1

(99)

3

) (u,"„k—-h"k) = 0.
k=1

(93)
If we eliminate the time derivative of the unperturbed
energy density s(» with the help of Eq. (33) we finally
arrive at

From the constraint equation (73) we find for an isotropic
Bianchi type-I universe filled with a viscous Huid, using
(93),

3 3-) h", +H) h"k =O. (94)
k=1 k=1

Combining Eqs. (93) and (94) we get

1d——(p(.)
—3cq„H) + 2v(:q((:(.) +p(.)

—3' H))

x ) u"„, k
——0. (100)

Since the expression between curly brackets need not van-
ish necessarily, Eq. (100) implies

(k=1 ) k=i
(95)

3

) u() „—o.
k=1

(101)

Differentiating the conservation law (72) with respect to
2." and summing over the repeated index i we find

1d &

cdt (s(p) + p(p) 3cgv H) ) u
g i

3

+5H(s(p) + P(p) —3crlvH) ) u(&)

Hence, with (93), we find

3

) hkk =O.
k=1

Equation (92) implies

3 3 3

) h k=) hk —2)
k=1 k=1 k=1

(102)

+«~ ).).—.h"', k, -2):):—,u(,)... { =0
i=1 k=1 i=1 k=1

(96)

where we have used Eq. (93). Differentiating the con-
straint equation (74) with respect to x' and summing
over the repeated index i we get

3 3

) ) (hk„ hk
a.i=1 k=1

3

2K (G(p) + p(p) 3crjvH) ) u~(g) j ~ (97)

Hence, by a proper choice of the sum of the first-order
derivatives, pk i y" k(x'), we can achieve that, in the
initial hypersurface t = to,

3

) hk, (t., ~') =o. (1o4)

From Eq. (102), which holds for all times t, it then follows
that

3

) h"k = 0 for all t.
k=1

(105)

We have found that it is always possible to choose the
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functions Ak(x') such that (105) holds. We now do ac-
tually choose a coordinate system such that for all t and
x' we have

well as in an anisotropic Bianchi type-I universe,

3A(, )
——0. (1o9)

3

) h"k =0.
k=1

(106)

Upon substituting Eqs. (101), (106), e&, ~
——0, and

p&»
——0 into the Einstein equation (68) for the trace of

the perturbation tensor, we arrive at

3 3

) ) hkl 0
k=1 L=l

(1o7)

With (101), (106), and (107) the initial value condition
(97) is identically satisfied. We thus have proved that
Eqs. (90) are necessary conditions for perturbations for
which z(, )

——0 and p(» ——0. It may be verified by sub-
stitution that the conditions (90) are also sufhcient con-
ditions for perturbations for which c(,)

——0 and p(1) —0.
We thus have proved the lemma.

Note, that in case the fiuid is perfect (q = 0 and
g„= 0) and pressureless (p&»

——0), Eq. (100) does not
imply Eq. (101) since the expression between curly brack-
ets vanishes identically. In that case we simply require
Eq. (101) to hold, for reasons of continuity.

In Lemma 1 we have shown that, for flat FRW uni-
verses, Eqs. (90) are necessary and sufhcient conditions
for perturbations which have e(» ——0 and p(» ——0. Since
the perturbation theories for a flat FRW universe and a
Bianchi type-I universe have the Einstein equation (68)
for the trace of the perturbation tensor h'~ in common,
Eqs. (90) are also necessary conditions for perturbations
which have c(,) ——0 and p(, )

——0 in the anisotropic case.
This is the key difference between our treatment and
other treatments [11—14] of the subject.

The conditions (90) need not be sufj7, cient in an
anisotropic universe, since the latter has a greater num-
ber of degrees of freedom in its expansion. These con-
siderations lead us to the definition of what we shall call
nonmaterial perturbations in Bianchi type-I universes.

DeBnition 1. Non-material perturbations in Bianchi
type Iuniverses -are solutions of the perturbation equa
tions (67) and (71)—(7g) with the properties

p(»

3 3

) ) h"'k( =o.
k=1 L=l

3

k=1

3

) h"k =o,

(108)

The physical interpretation of this definition is as follows.
The first two relations express the fact that there are
no local condensations or rarefactions of matter. Hence,
there can be no local sources or sinks. This is expressed
by the third relation, which says that the divergence of
the velocity vanishes. The fourth relation expresses the
fact that the perturbation on the determinant of the met-
ric tensor vanishes [see Eq. (43)]. The last two equations
of (108) together imply [see Eq. (57)], in an isotropic as

Hence, nonmaterial perturbations have the physical in-
terpretation that they do not locally curve the three-
dimensional hyperspaces of constant time.

The metric perturbation tensor h,~ associated with
nonmaterial perturbations in a fiat FRW universe has
precisely the properties given by Landau and Lifshitz [1].
Lemma 1 shows that these properties follow directly from
the integrability conditions for the perturbed Einstein
equations.

Solutions of the perturbation equations for which
e&»(t, x') g 0 are called material perturbations.

B. Bianchi type-I universes

In this section we study nonmaterial perturbations, de-
fined by Eqs. (108), in an anisotropic Bianchi type-I uni-
verse. We will prove a theorem which will help us to
classify the general solution. They will turn out to be-
long to three different types of solutions. In order to
prove the theorem we need the following lemma.

Lernrna 2. Let H, (t) (i = 1, 8, 9) be Hubble parame
ters satisfying the Einstein equations for a Bianchi type I-
universe, Eq. (98). Let A;(t, x~) (i = 1, 2, 9) be arbi
trary functions of time and space coordinates satisfying
the linear equations

3 3

) x, (t, x&) = o, ) H, (t)x, (t, z&) = o. (110)

Then the system of Eqs. (110) is equivalent to

3 3

) x, (t, *~) =o, ) c,x, (t, ~~) =o,

where the C, = H, (t ) (i = 1, 2, 9) are the Hubble pa
rameters at an arbitrary moment t in the evolution of a
Bianchi type-I universe.

Proof In case the .universe is isotropic (Hq = H2 =
Hs) the proof is trivial.

If a Bianchi type-I universe is initially axially symmet-
ric [i.e. , Hq(to) g Hq(to) = Hs(to)] then it is axially
symmetric for all times [see Eqs. (32)]. In this case the
proof is also trivial.

In case the universe is completely anisotropic (Hr g
H2 g Hs) the solution of Eqs. (110) is

Hg (t) —Hs (t)
H, (t) —H, (t)

(113)

With the help of the Einstein equations (32) it follows

xy = A(t, z') K(t) —1, X2 = —A(t, x')K(t),
(112)

x, = A(t, x*),

where A(t, x') is an arbitrary function of time and space
coordinates and where the function K(t) is given by
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3

) C,h', (t, *")=o, (114)

that dK(t)/dt = 0, implying that K(t) = K(t ); i.e. , only
the values of the Hubble parameters at an arbitrary mo-
ment t, H, (t ) (i = 1, 2, 3), enter into the solution (112).
Hence, C, = H, (t~) (i = 1, 2, 3). We thus have proved
the lemma.

We now come to the main result of this section. The
following theorem lists the conditions on the perturba-
tions on the metric h and the material velocity u&» for
nonmaterial perturbations defined by Eqs. (108) for a
Bianchi type-I universe.

Theorem 1. Consider a Bianchi type Iuni-verse filled
ivith a viscous or nonviscous fluid. The conditions on the
perturbations on the fluid velocity u'(» and the perturba
tions on the metric h'j given by

By a proper choice of the derivatives g" &(x') we can
achieve that in the initial hypersurface t = to,

3

) CA,.h"g(tp, x') = 0. (121)

From Eqs. (119) and (121) it follows that

3

) C(,h"(, = 0 for all t.
k=1

(122)

We have found that it is always possible to choose the
functions y" &(x') such that Eq. (121) holds. We now
choose a coordinate system such that Eq. (114) holds.

To prove the first relation of Eq. (115) we substitute
Eqs. (108) into the conservation law (71). We then find
the solubility condition

3

) C,u~(, i, (t, x") = 0,
3

) C,'u*„, ,(t, x") = O, (115)

3

) HA,. (u"„,„——,'h"
A,
.) = O.

k=1

Using Eq. (118) we get

(123)

3 3

) ) C, h*~, , (t, x") =O,
i=1 j=l

3

) H, u"„, „=O.
k=1

(124)

3 3

) ) C,c,h'~, , (t, x") =O,
i=1 j=l

(116)

uihere the C, are the constants defined by Lemma 8, are
necessary and sufficient conditions for the perturbed Ein-
stein equations (67) to be integrable for nonmaterial per
turbations defined by Eqs. (108).

In the relations (11$) (116) the co—nstants C, may be
replaced by the Hubble parameters H, (t).

To prove the theorem we make use of the perturbed
conservation laws (71) and (72), the constraint equations
(73) and (74), and the gauge transformations (87)—(89).
The gauge transformation (87) now reads

For nonmaterial perturbations u(» is divergenceless [see
Eqs. (108)]. Using Lemma 2 we find the first relation of
Eqs. (115).

To prove the first relation of Eqs. (116) we make
use of the constraint equation (74). Upon substituting
Eqs. (108) and (114), raising the index i in the left-hand
side of this equation, and differentiating with respect to
2." we get

3

) (h"'
A, , + 2', h"' i...)

k=1

= —2ru', i e(0) + p(, i + 2cil(H —H, ) —3crl„H .

(117)

3

) Hi, h"i, = O. (118)

Since P& i h"i, = 0 for nonmaterial perturbations we
have, using Lemma 2,

3

) C„h~„=o.
k=1

(119)

Proof. We first prove the necessity. Upon substituting
Eqs. (108) into the constraint equation (73) we get

(125)

Summing over the index i we find, using Eqs. (108) and
(124),

3 3

) ) HA, h"', y, , = 0.
i=1 k=1

(126)

3 3

) ) Cgh"', A„, = 0.
i=1 k=1

(127)

Applying Lemma 2 to the functions Ai, .= P,. i h"' g,
we arrive at the first relation of Eq. (116):

From Eq. (117) it follows that

3 3 3

) Cah" a = ) .Ci h" k —2) .CA:X",i, .
k=1 k=1 k=1

(120)

The second relation of Eqs. (115) can be found by dif-
ferentiating Eq. (72) with respect to x', summing over
the repeated index i, substituting the definition (108),
and using Eqs. (114) and the first relation of Eqs. (115).
One 6nds



47 COSMOLOGICAL PERTURBATIONS IN BIANCHI TYPE-I UNIVERSES 3161

3

) H, u', ; =0. (130)

Applying Lemma 2 to the functions A', :=H, uI, &, we find,
using Eq. (130),

3

) CHu(, i, ——0. (131)

Finally, applying Lemma 2 to the functions X,:=C,u&,),
and using Eq. (131) yields the second relation of
Eqs. (115).

The last relation of Eqs. (116)can be proved as follows.
Multiplying Eq. (125) by H, and summing over the index
i we find, using Eqs. (115), (124), and the time derivative
of Eq. (127),

3

4) H, u(, i,
3 3

—) ) —2[2(HA,. —H, )h, i, , + h", i, ,] = 0. (128)
i=1 k=1

Raising the index i in the second term yields

3 3 3

4) H, uI„, + ) ) (2Hi, h"'
i, , + h"', i, ,) = 0. (129)

i=1 k=1

Upon substituting (108) and (126) one gets

We thus have proved that Eqs. (114)—(116) are neces-
sary conditions for the nonmaterial perturbations defined

by Eqs. (108). It may be verified by substitution that the
conditions (114)—(116) are also 8u@cient conditions for
nonmaterial perturbations characterized by Eqs. (108).
We thus have completed the proof of Theorem l.

Notice that if the viscosity coeKcients g and g„van-
ish Eq. (123) does not follow from Eq. (71). In that
case, however, Eq. (124) follows directly from the con-
servation law (72) by differentiating the latter with re-
spect to z', summing over the repeated index, and using
Eqs. (108). Moreover, if rl = 0 and rl„= 0 then Eq. (130)
can be proved by difFerentiation of Eq. (72) with respect
to x', multiplying by H, , summing over the repeated in-
dex i and using Eqs. (108), (124), and Lemma 2.

Theorem j. is a central point in our discussion. It has
as a consequence that the general solution of the pertur-
bation equations can be split up in material and non-
material solutions, which are independent (see Table I).
The nonmaterial solutions can again be split up in grav-
itational waves and vortices (see Table II). We come to
these points in detail in the next section, where we will

use the theorem to classify the various solutions of the
perturbation equations.

Restrictions on the gauge transformations. If
we require that, in a synchronous system of reference,
nonmaterial perturbations are transformed again into
nonmaterial perturbations, then the functions g(x~) and
y'(x~), occurring in Eqs. (87)—(89), are restricted to

3 3

) ) H, H, h"', , =0.
i=1 k=1

(132)
3 3

q(~~) =0, ) &,(*~) =0, ) C,&,(~~) =0,

Applying Lemma 2 to the functions X', :=
HI, h"' i... we find, using Eqs. (126) and (132),

3 3

) ) C,Hi, h"', i, , = 0.
i=1 k=1

Applying Lemma 2 to the functions Xi, .= Q, i C,h"'
y, ,

we finally find, using Eqs. (127) and (133), the second
relation of Eqs. (116).

(134)

where the C, (i = 1, 2, 3) are the constants defined
by Lemma 2. The first identity follows from e(» ——0
and Eq. (89), the second equation follows from g = 0,
Eqs. (87), and the fact that h'~ is traceless. Finally,
the third condition follows from the additional condi-
tion (114) in an anisotropic universe. The consequence of
Eqs. (134) is that the decomposition given in Definition 1
and Theorem 1 is gauge invariant, '.

TABLE I. The independent material and nonmaterial perturbations found in an anisotropic
Bianchi type-I universe. The general solution of the perturbation equations is a linear combination
of these two types of solutions. The tensor h and the vector u(&)z have the properties specified in
Definition 1 and Theorem 1.

General
solution

Nonmaterial
perturbations

Material
perturbations

Mathematical
properties

Tr(h) = Tr(h(()

div(u&, &)
= div(u&»~~)

rot(u&1)) = rot(u&&i~)
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TABLE II. Three independent types of perturbations found in a flat FRW universe and in an
anisotropic Bianchi type-I universe. The general solution of the perturbation equations is a linear
combination of these three types of solutions. The tensors h, h~ and the vector u(&)z have the
properties specified in Definition 1 and Theorem 1.

General
solution

Gravitational wave

( "tensor wave")
Vortex perturbation

( "vector wave" )
Density perturbation

("scalar wave")

hg hei

VI. CLASSIFICATION OF THE SOLUTIONS
We will now show that we can split up the general

solution of the perturbation equations (67) and (71)—(74)
uniquely into three distinct classes.

Perturbation equations for the nonmaterial
case. The integrability conditions (114)—(116) of The-
orem 1 for the nonmaterial perturbations of DeGnition 1
can now be used to derive the equations describing non-
material perturbations, defined by Eqs. (108), from the
full set of perturbation equations (67), the conservation
laws (71) and (72), and the constraint equations (73) and
(74).

Applying Definition 1 and Theorem 1 to the perturbed
Einstein equations (67) we find the evolution equations
for nonmaterial perturbations:

—,'h', + h', (H, —H, + -', H + Kcr/) + 'R*„„

= Kcr/ l~t&&q) j + —2Q&z), (135)

where

sR', „,= —) ] —,(h, , / +h, ... )A— —,h'g, /, a I,
k 1 i k

(136)
is the curvature tensor of the three-dimensional hyper-
surfaces of constant time t. Recall that for nonmate-
rial perturbations the curvature scalar sR&» vanishes [see
Eqs. (57) and (108)].

Applying Definition 1 and Theorem 1 to the conserva-
tion laws (71) and (72) we find that Eq. (71) is identically
satisfied, whereas Eq. (72) reduces to

1 d

c dt (t&&&) [e&o) + p&p) + 2«(H Hi) —3cr/&H])

+i&&&) (3H + 2') [e&o) + p&o) + 2 /(Hc)H&) 3cr/~H]

3

+«) . , [2(H. H, )h"„.—+h"„.]-
k=1

'-1«) —2uI, ) „„——0. (137)

Finally, applying Definition 1 and Theorem 1 to the
constraint equations (73) and (74) we find that Eq. (73)
is identically satisfied, and that Eq. (74) reduces to

3
—) —

s [h", /, + 2(Hg —H, )h", y]
k=1 a

—2Kt& e&p) + p&p) + 2cr/(H —Hg) —3cr/~H

(138)

The set of equations (135)—(138) completely replaces
the former set of perturbation equations, constraint equa-
tions, and conservation laws in the case e&» (t, 2.") = 0 and

p&»(t, x') = 0. We will use these equations to classify
the various types of solutions of the perturbation equa-
tions. Note that the solution u&»(t, x') is, by virtue of
(134), gauge independent, as can be seen from Eq. (88).
The solution h(t, z'), however, is determined up to time-
independent functions y'(2:") (i = 1, 2, 3).

Independency of materia1 and nonmaterial per-
turbations. With the help of Definition 1 and Theo-
rem 1 we are able to distinguish two different types of
solutions which are independent of one another: namely,
the material and the nonmaterial perturbations. This
can be done as follows. Let us denote the solutions
of Eqs. (135)—(138), for which e&, )

——0 and p&»
——0,

by (0, u&»~, h), where u&»g and h have the properties
given in Definition 1 and Theorem 1. The general solu-
tion (e&», u&», h), for which e&» P 0, follows from Eqs.
(67), (71), (72), (73), and (74). We now make use of
the linearity of the perturbation equations by subtract-
ing Eqs. (135), (137), and (138) from their courterparts
(67), (72), and (74), respectively. Now, we replace in the
resulting equations u(» —u(»& by u(»~~ and h —h by
h~~. (This defines in fact u&»~~ and h~~. ) We thus end up
with a system of equations which contain only the func-
tions h~I, u(, )~~, and e(,). We thus arrive at Table I. The
solutions with e&» g 0 are called material, those with
c(» ——0 are called nonmaterial. Prom their construction,
it follows that the material and nonmaterial solutions are
independent. Note, that Eqs. (71) and (73) are satisfied
identically for the nonmaterial part of the solution. The
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further consequences of this construction are that, since
div(u&»~) = 0 according to Definition 1, the rotation of
u&»~~ vanishes, i.e. , rot(u&»~~) = 0, and that h[[ contains
the trace of the perturbation tensor h. Hence, the non-
material perturbations (0, u&»~, h) contain the rotational
perturbations, since u(, )~ is the rotational part of the
vector u(, ). In other words, vortices are not coupled to
density perturbations.

In Sec.VIB we will show that the nonmaterial per-
turbations (0, u&»~, h) can be split up further into two
groups of independent solutions: namely, gravitational
waves (0, 0, h, ) and vortices (0, u&»~, h~).

A. Gravitational waves

We define gravitational waves as solutions of wave
equations that have no material consequences, i.e.,
z&»(t, x'), p&»(t, x'), and u&»(t, x') vanish for all times t
and for all points x'. In other words, gravitational waves
are perturbations of the gravitational field in which mat-
ter remains at rest and uniformly distributed throughout
space. We start from Eqs. (135)—(138). Upon substitut-
ing u&, ~

——0 into the dynamical equations (135) and the
conservation law (137) we find, respectively,

3

) h", ~ =o;
k=1

(143)

h' = h' (144)

since Q(x') = 0 for nonmaterial perturbations. Hence,

3 3 3).h"*,~ = ) h".*,~ —).x"„,g-
k=l k=1 k=1

G
(145)

The second term on the right-hand side of Eq. (145) van-
ishes by virtue of Eq. (134), so that

3
G ~

k=1 k=1 k=1

Differentiation of (146) with respect to ct gives

(146)

i.e. , the covariant derivative in Eqs. (141) may be re-
placed by the partial derivative in case of a Bianchi type-I
universe.

For nonmaterial perturbations the gauge transforma-
tion (87) reduces to

—,'h', + h*, (H, —H, + —',H + ~crl) + 'R,'„,. = 0

and

(139)
G

k=1 k=1 k=1 k
3

—) —2[2(Hi, —H, )h", I, + h", g] = 0,
k=1

(140)

h"
,
.„=0. (141)

Using the connection coefficients (22)—(24) for a
Bianchi type-I metric, the left-hand side of Eq. (141) can
be written as

3

h"
,„=h",„+3Hh . —~ u) Hah A:.

k=1
(142)

Since we use a synchronous system of reference, the sec-
ond term on the right-hand side vanishes [cf. Eq. (38)].
Moreover, for gravitational waves the third term on the
right-hand side vanishes also, as follows directly from
Theorem 1. Hence, in a synchronous coordinate system
the transversality condition reads

where sRI» is given by (136). Notice that the conserva-
tion law (137) and the constraint equation (138) are iden-
tical for nonmaterial perturbations for which u&»

——0.
Hence, Eq. (140) is satisfy for all times t, once the ini-
tial conditions h ~ (to, x ) satisfy Eq. (140). We will take
Eq. (139) with initial conditions satisfying Eq. (140)
as the defining property of gravitational waves in an
anisotropic Bianchi type-I universe. Solutions satisfying
Eqs. (139) and (140) will be distinguished by an asterisk:
h, .

Nontransversality. We will now show that the grav-
itational waves defined in this way are in general non-
transversal in a Bianchi type-I universe.

The covariant transversality condition is given by

(147)
where we have used Eq. (20). From the fact that inte-
gration of (147) with respect to ct yields (146) it follows
that we can choose a coordinate system in the initial
hypersurface t = to such that Q& ih", g and its time
derivative vanish simultaneously. In other words, it is
possible to choose the functions y (x~) in the initial hy-
persurface t = to such that the gravitational waves are
transversal initially:

3

) h", i, (to, x') = 0,
k=1 (148)

3

) h", (to, *') = 0 (' = 1, 2, 3).

From the constraint equation (140) it now follows that
the transversality condition in the initial hypersurface
must satisfy the additional condition

) Hi, (to)h", A,
. (to, x~) = 0 (i = 1, 2, 3). (149)

(i = 1, 2, 3). (15O)

Upon substituting Eqs. (148) and (149) into the dynam-
ical equations (139) we find that the second-order time
derivative in the initial hypersurface t = to is given by

3 3

) h"; g(tp, x') = —2) Hy(to)h", A, (to, x')
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In the case of a flat FRW universe where the three Hub-
ble parameters H, are equal, the right-hand side van-
ishes, in view of (148), implying that in a flat FRW
universe gravitational waves are transversal everywhere
and for all times. In general, however, in an anisotropic
Bianchi type-I universe the right-hand side of Eq. (150)
need not vanish necessarily, implying that in general
gravitational waves are nontrcnsversat.

Note that gravitational waves can be made transver-
sal by a gauge transformation everywhere in an arbitrary
hypersurface t = t . Since this gauge transformation
is, in contrast to the isotropic case, time dependent [see
Eqs. (146) and (147)], transversal gravitational waves
evolve into nontransversal gravitational waves. However,
the longitudinal components of the gravitational waves
have no physical meaning, since they can be transformed
away, by the gauge transformation (144), in the entire
space sections of constant time.

B. Vortex perturbations

We now use again the linearity of the perturbation
equations and subtract (139) from (135) and (140) from
(138). Then we replace in the resulting equations h —h,
by h~. (This defines in fact h~. ) We thus end up with
equations for h~ and u(»~. Note-that the equations
(137) are satisfied identically for the gravitational wave
part of the solutions. Hence, what remains of these three
equations are equations for h~ and u(, )~.

The solutions (0, u&, ~~, h~) are the so-called rota
tional perturbations or vortices since div(u&»~) = 0 and
rot(u~»]~) = 0 by virtue of Definition 1, implying that
rot(u(, i) = rot(ui, )~).

In conclusion, the equations for vortex perturbations
(0, u&»~, h~) are obtained by replacing h and u&, ~ by
h~ and u&, ~~ in the dynamical equations (135) and the
conservation law (137). Furthermore, the initial con-
ditions h&(to, x") and u~, &&(to, x") must obey the con-
straint equations (138).

The set of equations for vortices (0, u&»~, hz) is, by
construction, independent of the sets for gravitational
waves (0, 0, h, ) and density perturbations (e&», u&» ~], h]]).
Combining the results of Table I with the results of
Secs. VI A and VI B, we arrive at Table II.

VII. SUMMARY

We considered a universe filled with an imperfect fluid
characterized by the viscosity coefIicients g and g„. We
derived the evolution equations for small perturbations in

the metric, the energy density, and the velocity of matter
in a homogeneous, anisotropic Bianchi type-I universe.

We defined nonmaterial perturbations as solutions of
the perturbation equations, (67) and (71)—(74), which
obey Eqs. (108). As a consequence, we find that the met-
ric perturbations must obey Eqs. (114) and (116), and
the material velocity must obey Eq. (115). Theorem 1
tells us that we may not make 6'~ traceless by simply
subtracting its trace, as can be done in a flat FRW uni-
verse. Instead, we are forced to make a decomposition
appropriate to the anisotropic case. Only if we make
this decomposition we find that, in a linear perturbation
theory, the nonmaterial and material perturbations are
independent. This leads us to consider nontransversal
gravitational waves.

The nonmaterial perturbations can be split up into
gravitational waves which have u(» ——0, and vortex per-
turbations for which u&» P 0. These two types of pertur-
bations are again independent, if one chooses the decom-
position dictated by the integrability conditions. In con-
trast to what one finds in a flat FRW universe, the grav-
itational waves need not be transversal in an anisotropic
Bianchi type-I universe.

We recall that the decomposition given by Definition 1
and Theorem 1 is independent of the properties of the
cosmic fluid, i.e. , the results of the theorem are inde-
pendent of the equation of state and the viscosity of the
fluid.

In a forthcoming paper we will analyze in detail the
consequences of our approach for the evolution of density
fluctuations.
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