
PHYSICAL REVIEW D VOLUME 47, NUMBER 1 1 JANUARY 1993

Response of nucleons to external probes in hedgehog models. II. General formalism
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Linear response theory for SU(2) hedgehog soliton models is developed in analogy with a standard
method in many-body physics. In this framework, we discuss the response of baryons to external
probes, and develop expressions for polarizabilities. We discuss isospin effects (neutron-proton split-
ting) in polarizabiiities. Methods for cases with zero modes are presented, including numerical
techniques. Our approach is based on the 1/N;expansion scheme. We work in a model with quark
and meson degrees of freedom, but the basic method is valid in any hedgehog model, such as the
Skyrmion or the Nambu —Jona-Lasinio model in the solitonic treatment. The equations of motion
for coupled random phase approximation quark-meson fluctuations are classified according to the
hedgehog symmetries, and are written down explicitly in the grand-spin basis.

PACS number(s): 12.38.Lg, 12.40.Aa, 14.20.Dh

I. INTRODUCTION

In recent years various hedgehog models (chiral quark
meson (CQM) models [1—6], Skyrme models [7—10], hy-
brid bag models [11],chiral models with confinement [5,
12—14], or the Nambu —Jona-Lasinio (NJL) model [15] in
the solitonic treatment [16—22]) were extensively applied
to describe the physics of low-energy baryons. Semiclas-
sical methods for treatment of these models, such as var-
ious projection methods [23—26], or random phase ap-
proximation (RPA) method [27] were developed. Masses,
various charges, vr —N phase shifts [28], were calculated,
with quite reasonable agreement with experiment, de-
pending on the specific model, number of included fields,
etc. In this article we develop the linear response formal-
ism for hedgehog models. We work in the framework of
a CQM model, since it has both quark and meson de-
grees of freedom, and in this respect has the essential
features of both the purely mesonic Skyrme model and
the NJL model, which involves quark degrees of freedom
only. Our methods and final expressions can be modified
straightforwardly to be applicable in these models.

Hedgehog models can be used to describe the response
of nucleons to external probes, and to calculate the cor-
responding polarizabilities. A natural approach is the
linear response method of many-body physics [29]. The
underlying picture is as follows: A current interacts with
the nucleon, creates an intermediate state which is an
RPA phonon excitation on top of the soliton. This state
interacts with another current and deexcites back into a
nucleon state. The RPA phonon states are constructed
from one-particle —one-hole excitations of the quarks, as
well as from quantum meson excitations. Quark and me-
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son Buctuations are coupled, and the resulting equations
of motion for the fluctuations are solved. An example of
physically important two-current observables which can
be calculated in this way are the electromagnetic polar-
izabilities of the nucleon [30]. This topic is extensively
studied in the preceding paper [31], henceforth referred
to as (I). The present article is devoted to development
of the necessary formalism, and contains many techni-
cal but necessary details of linear response in hedgehog
models, while (I) concentrates on physical aspects.

This article is organized as follows. In Sec. II we very
briefly review a CQM model [32], its soliton solutions
(Sec. II A), as well as hedgehog symmetries (Sec. IIB).
One of the discrete symmetries, the grand-reversal sym-
rnetry [33, 23], will be particularly useful in classifying
various perturbations. Section III is the core of the arti-
cle, and describes the equations-of-motion approach [34]
to linear response in hedgehog models. We start from de-
riving small-fluctuation equations of motion (Sec. III A)
for coupled quark-meson systems driven by an external
perturbation. These equations are classified according
to hedgehog symmetries. In the static limit the grand-
reversal symmetry 'R decouples the equations into odd-7Z
equations, involving quarks only, and even-R equations,
involving both quarks and mesons. We discuss in de-
tail the problem of zero modes (Sec. III 8). These zero
modes arise from breaking of the symmetries of the La-
grangian by the soliton solution. In our applications, we
will have to deal with rotational zero modes (cranking)
and translational zero modes [isoscalar electric perturba-
tion in (I)].We describe a numerical method to deal with
the excitation of zero modes whose amplitude diverges
as the frequency of the perturbation goes to zero (Sec.
III C). We discuss the stability of solitons (Sec. III D).
In Sec. IIIE we present cranking in the linear response
formalism. Quantization via cranking is reviewed in Sec.
III F. In Sec. III G we describe the calculation of polar-
izabilities in states of good spin and isospin, and obtain
our basic formulas. Section IV illustrates the method
by presenting the standard calculation of the N-4 mass
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splitting, as well as the evaluation of the neutron-proton
hadronic mass difference. The issues of N, counting are
discussed in Sec. V. We show how to apply the linear re-
sponse in a way consistent with 1/N;expansion scheme.
Finally, Sec. VI contains remarks relevant to other mod-
els (Skyrme model, NJL).

The appendixes contain some details of the grand-spin
algebra, derivation of the explicit forms of the equations
of motion for fluctuations in the grand-spin basis (Ap-
pendix A), and a glossary of useful formulas with col-
lective matrix elements (Appendix B). We also give a
simple proof of equality of the soliton mass and the iner-
tial mass parameter (Appendix C), and discuss the issue
of Pauli blocking of the Dirac sea in chiral quark models
(Appendix D).
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where s is the quark eigenvalue. For a discussion of this
solution, plots of the radial functions o~, 7rg, Gh, , and Fh, ,
and other details, the reader is referred to Refs. [1,23].

B. Hedgehog symmetries

where P = (o, 7r) denotes the meson fields, M
(P, ipsr) describes the quark-meson coupling, and the
Dirac Hamiltonian is h[P] = —in V —gMQ. Equations
(2.4) have a stationary solution of the form

II. HEDGEHOG MODELS

In this article most of the derivations will be done in
the framework of the chiral quark-meson (CQM) model
of Ref. [1]. For the details, description of solutions, and
the resulting phenomenology obtained with the cranking
projection method, the reader is referred to Ref. [23].
The reason of choosing this particular model over other
models, e.g. , the Skyrmion or the NJL model, is that it
contains both quark and meson degrees of freedom, and
formally has all essential features of a generic hedgehog
model with two fIavors. At the same time, it is free of
the nonlinear complications of the Skyrme model, or the
Dirac-sea complications of the NJL model.

q(r, t) ~ o,rzq'(r, t), —

cr(r, t) ~ o'(r, t), vr(r, t—) ~ ~'(r, t). —
(2.6)

The solution (2.5) has the hedgehog form, which breaks
the spin Z and isospin I symmetries of the Lagrangian
(2.1), leaving as a good symmetry the grand spin K = I+
J. There are also two discrete symmetries which are very
useful in classifying solutions and perturbations. One is
parity 'P; the other is the "grand-reversal" symmetry 7Z,

discussed in Refs. [33, 27]. Formally, 'R is defined as
the time reversal, followed by an isorotation by angle vr

about the two-axis in isospin. Explicitly, it transforms
the quark spinors and mean meson fields as follows [23]:

A. Soliton solutions

The Lagrangian of the model is the Gell-Mann —Levy
Lagrangian [35],with Q denoting the quark operator, and
o and vr denoting the meson fields:

2 = @ [i)+ g (o. +ipsr m)] Q

+2i(B"o)+ 2i(B."m) —U (o., 7r) . (2 1)

The Mexican hat potential

A
U(o, 7r) = —(o. +7r —v ) +m E cr,4

(2 2)
2 2mg m7t

2F
m g 3m'2 2

V
mg m~

leads to the spontaneous breaking of the chiral symmetry
in the usual way [35, 1]. Our convention for the pion
decay constant is I' = 93 MeV. At the (time-dependent)
mean-field level, only valence quarks, denoted by q, are
retained in the expansion of the quark fields, and the
meson fields are treated as classical, c-number fields [23]
(see also Appendix D). The time-dependent equations of
motion have the form

We denote the action of 'R on an object by the super-
script 'R. The soliton solution has K+ = 0++.

III. LINEAR RESPONSE IN HEDGEHOG
MODELS

In this section the basic formalism of linear response
in hedgehog models is developed. We use the equation-
of-motion approach [34), which is based on solving equa-
tions of motion for small oscillation on top of the ground-
state solutions. This method is equivalent to the particle-
hole formalism [29], in which one introduces a quan-
tum RPA state, quasiboson RPA phonon operators, etc.
Methods such as cranking, projection, or quantization
of zero modes, can be described in this framework, and
have a definite quantum-mechanical interpretation. For
simplicity of notation, we present our formalism in the
equations-of-motion method.

A. Equations of motion for small fluctuations

Let us consider a small oscillation problem in our sys-
tem. We introduce shifts in the valence quark spinor and
in the meson fields:

(h[P] —iO, )q = 0,

6U[P] —gN, qMq,

(2.3)

(2.4)

6q(r, t) = Ã(r)e '"'+ Y~(r)e'"' e "',
(3 1)
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where X and Y describe the shift in the valence quark
spinor, and bPp and 6@ are the shifts in the o and n
fields, respectively. Note that in Eqs. (3.1) the 'R trans-
formation has taken the place of the usual [29] complex
conjugation. This is because in hedgehog systems the
grand reversal replaces the usual time-reversal symme-
try. According to definition (2.6), the meson shifts bg
are even under grand reversal, but the quark shifts have
in general both even and odd components. We linearize
Eqs. (2.4) about the solitonic solution (2.5), and obtain
the quark-meson RPA equations. When external pertur-
bations are present, these equations are in general driven
by a quark source j~ and a meson source jy.,

in the source ji, which arises in some cases (cranking).
We are interested in the limit of vanishing frequency

of the external perturbation, u ~ 0. If zero modes are
excited by an even-R perturbation (Sec. III B), then the
full equations (3.3) have to be solved. Otherwise, one can
set u = 0 and deal with simplified cases. At this point the
grand-reversal classificatio becomes very useful. Acting
with 'R on Eq. (3.4) electively replaces X ~ Y, jx ~
j~, Z ~ Z, jz ~ jz, P—~ P, and j~—~ j~. Let
us introduce odd and even grand-reversal combinations:
bq+ = X 6 Y, j+ = jx 6 j~, and rewrite Eq. (3.4) by
adding and subtracting the first two equations. We get,
for the case of an odd-'R perturbation,

—cut + R, tnt

Zp
—iut + jZK&iut

(3.2)

(h —s)6q = j, , P= j~,
and, for the case of an even-'R perturbation,

(h —s)b'q+ —2gMqh, Z = j+,

(3 7)

Again, the meson source is even under 'R, whereas the
quark source has in general even- and odd-R components.
Using the fact that h[Pi, ], M and qi, are even under 'R (in
fact they are K+~ = 0++ objects), we obtain a general
form of the linear response equations for our hedgehog
system:

(h[4'h] —s) X —g ) .M qh Za —~X = jx,
a

(h[ph, ]
—s) Y' —g ) M~qi, Z + ~Y = j~,

(—7' + U")Z —N, gqhtMbq+ = j
(3 8)

The odd-'R equations (3.7) involve a quark field equation,
and a trivial equation for P. The even-'R equations (3.8)
involve coupled quark and meson Huctuations. Equations
(3.4) or (3.7), and (3.8) are further decomposed by grand
spin K and parity 'P (Appendix A).

In models with vector mesons, such as [32], the odd-'R
equations may also involve mesonic shifts. For example,
the space components of the u meson and the time com-
ponenent of the p meson enter into the cranking equa-
tions of motion [36].

B. Zero modes

gNc qgMaX+ Y Maqh —cu Za = jz

Introducing auxiliary meson momentum variables P~ =
Z~, we observe that Eqs. (3.3) can be written in the

symplectic form [29]

'M( —cuA( = j, (3.4)

(1 0 0 0)
00 Oi

(0 0 —iof

(X)
Z

kP)

(Njx)
N, jy
jz

(3.6)

Note the appearance of an odd-'R momentum component

where 'H is the RPA Hamiltonian, and A is the symplectic
RPA metric, satisfying A2 = l. In the grand-spin basis
(Appendix A), '8 is real. Our problem (3.3) can then be
written as

Nc h 8' 0 gNcMqh,
0 N, (h —s) gN, Mqh 0—

gN, q~tM gN, q—htM —7' +—U" 0
0 0 0 1)

(3.5)

First consider the undriven problem (3.4), with j = 0,
which determines the RPA spectrum and eigenmodes. A
complication arises whenever a continuous symmetry of
the Lagrangian is broken by the solitonie solution, e.g. ,

translation, or rotational symmetry. For each broken
symmetry the small Quctuation equations have a pair of
zero modes [29]: (p, the symmetry mode, obtained by
acting with a symmetry generator on the solitonic solu-
tion, and a conjugate zero mode, (i. They satisfy the
equations

R(p =0,
'R(i = —iA(p.

(3.9)
(3.1o)

The remaining "physical" modes (, satisfy the equation

'8(, = ~,A(;. (3.11)

One can easily show that the symplectic norms satisfy
the conditions

(,'A(. =(,'A(, = o,

(3.12)

(ptA(, = (it A(, = 0, i = 2, 3, ...

where M is the appropriate inertia parameter (mass, mo-
ment of inertia) parameter, and A, are the symplectic
norms of the physical modes. The factors of 4 are con-
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ventional, and factors of i are inserted for convenience.
Expanding the solution of Eq. (3.4) in RPA eigenmodes,

(3.13)
p,=0,1,2, . ..

introducing "charges": Qo = 4i(oj, Q~ = 4(„j, P
1, 2, ..., and using Eqs. (3.12), we find that

cdciiH + Qp = 0, icdcpM + Qi —ci JH = 0,
(3.14)

Ci ~2 i= i.

ing the "physical" parts of observables, e.g. , electromag-
netic polarizabilities. The problem can be remedied as
follows. We solve Eqs. (3.4) for a small value of w.
Next, we project out the zero-mode part from (, ob-
taining P"y' = ( —cp(p, and calculate physical parts
of observables. The procedure is repeated with decreas-
ing w, until the results no longer change. In practice,
a very high accuracy of the soliton solution, as well as
the fluctuation solutions, is required for this procedure
to be feasable A. better method is to project the part of
the source j, which couples to the zero mode, and solve
equations

We consider two cases which arise in practical applica-
tions: (1) Qi ——0 and (2) Qi g 0, Qp = 0. ~(phys A(phys phys (3.19)

Case Qr ——0

Using Eq. (3.14) we find

Qo, Q'
JV, (cu, —~)

(3.15)

The second-order energy shift K corresponding to a given
perturbation (a "polarizability" is equal to 2r) is given
by the usual perturbation theory result

~ = 2(ij = ) c„*Q„=r"" +rP"y',
P

zero 1 ~0 phys 1 g ~i
,
- A';(~, —~)

(3.16)

8. Case Qr g 0, Qp ——0

In this case we can take the limit u —+ 0 on the outset,
and from Eq. (3.14) we get

In the limit cu ~ 0, the coeKcients c0, c1 and the zero-
mode part of r diverge, as long as Qp P 0. This has a
physical interpretation: for instance, in the case of trans-
lation the center of mass of the system moves, and the
amplitude of this motion, cp, as well as "velocity" ci,
diverge. In (I) we show how this feature of the linear
response formalism leads to the Thompson limit of the
Compton scattering amplitude.

where j~"y' = j —(Qo/W)A(i, and (i ls obtained by
solving Eq. (3.10) first. Equations (3.19) do not excite
the zero mode, and directly lead to the physical part
of the solution. The advantage of the method with the
projected source over the direct method described previ-
ously follows from the fact that in numerical solutions to
Eqs. (3.19) the admixtures of the zero mode arise only
from numerical noise. Their amplitude is small, such that
we can easily contI'ol numerical pI'eclslon ln the physi-
cal mode. Because of these admixtures, a small nonzero
value of cu should be kept as a regulator in Eqs. (3.19),
and the zero-mode contamination has to be projected out
after the numerical solution is found.

D. Stability of solitons

Since in our problem 'R and A are Hermitian, one finds
that 'Rz(, = w2(, is a Hermitian eigenvalue problem.
Therefore in our case ~, are real, and ~, can either be
purely real, or purely imaginary. The modes appear in
conjugated pairs ((,, (~), with ~, = —co~. If the spectrum
contains an imaginary eigenvalue, we have an instability
(in the Lyapunov sense [37]) of the ground-state (soliton)
solution [38, 39], and of course linear response on top of
an unstable system makes no sense. In Ref. [27] we have
shown that the soliton of Ref, [1] is stable with respect
to breathing modes, i.e. , the K+ = 0+ excitations. With
the explicit forms of the equations in Appendix A, stabil-
ity could be checked numerically for any K+ vibrational
mode. It is generally believed that the hedgehog soli-
tons are indeed stable, although it has not been proved
analytically or numerically.

1 i
(3.17)

E. Cranking as linear response
The amplitude of the symmetry mode c0 remains under-
mined. The second-order energy shiR is

iQi i - Q,2 2

2

(3.18)

C. Numerical methods in presence of diverging zero
modes

Numerically, the excitation of amplitude-growing zero
modes (Sec. III B 1) creates special difficulties in extract-

Cranking [23] may be viewed as a linear response. In
a frame isorotating with a small angular velocity A, we
discover equations of the form (3.10), with a = 0 and

j = —i%A(p(A). In this case (p(A) is the symmetry mode
obtained by acting on the soliton fields with the generator
of isorotation about the axis A:

((i/2) 7. Aqg )
(3.20)—Axmh,

)
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Next, we have to find the conjugated mode, by solving
the second of Eqs. (3.10). We notice, that this is an odd-
A case (3.7). We immediately get I = 2A x mh. For
the quark shift, bq,„, a differential equation of the form
(3.7) is solved [23]. The problem is of the type discussed
in Sec. IIIB2, where M is the moment of inertia, 0,
and the "charges" are Qi = AO, Q„= 0 for p g 1. The
second-order energy shift is z = 2A O. Explicitly, one
finds ( = gj, g = ('R —~h) (3.24)

demonstrated in Sec. III E that the quarks develop shifts
upon cranking. If some other (external) interaction is
present, then the profiles are additionally shifted. These
shifts are obtained by solving the linear response equa-
tions, as described' in Sec. III. We introduce a resolvent
for the 7f —cuh operator in Eq. (3.4) (RPA propagator)
and solve formally Eq. (3.4), obtaining

O=O +0m q)

0 = d x(A x nb) = (8'/3) drr ~i„

Oq ——2 d xbqt A ~qi„

F. Quantization

(3.21)

In the presence of cranking and some other external per-
turbation, we have

(cr + Kext g(2cr + jext)t (3.25)

where subscripts cr and ext refer to cranking and an ex-
ternal perturbation, respectively. The second-order en-
ergy shift corresponding to a perturbation can be written
a,s

The simplest approach to quantization via cranking is
to recognize that in the frame isorotating with velocity
A, in which we solve the cranking equations of motion
(Sec. III E), we still have the freedom of (iso)rotating the
soliton by an arbitrary (time-independent) angle. This is
an example of the freedom of choice in the cp coefficient in
Sec. III B2, which in this case corresponds to three Euler
angles, or, in the commonly used Cayley-Klein notation
[8], to the matrix B = bo + b. v [23]. In our mean-
field approach, the corresponding fields carry these (time-
independent) B matrices, and in the rotating frame they
assume the form

K = 2(tj = 2jtgj. (3.26)

= 2(coll~ j' "j""~coll) ds gintrf( )~intr(x) (3.27)

The difference between this expression and the generic
expression (3.16) is that in the present case the source
carries collective degrees of freedom, j = j' "j'" '. Thus,
the matrix element of K in a baryon state ~b) is (see the
example in Sec. IVA)

Kb = 2(coll~ j""j""]coll)

x dsx dsx' j'"'"t (x)g(x, x')j'""(x'),

a~o, m —+BmBt, q —+Bq. (3.22)

Matrix B plays the role of coordinate variables conju-
gated to A, which upon quantization becomes a difFer-
ential operator [8, 23]. The quantization is straightfor-
wardly implemented in two steps. (1) One identifies the
collective spin and isospin operators, as done in Ref. [23].
Then

AO = J) I~ = c~gJb) (3.23)

G. External perturbations

The quark and meson field profiles in Eq. (3.22) are
in general not equal to the hedgehog proFiles. We have

where J and I are the spin and isospin operators, satisfy-
ing appropriate commutation relations, and cnb, defined
in Appendix B, is the transformation matrix from the
body-fixed to the laboratory frame [29]. (2) Correspond-
ing collective wave functions are introduced. Expectation
values of operators are calculated by first identifying in
the semiclassical expression for an operator its collective
part (dependent on A, cnb, etc.), and an intrinsic part (de-
pendent on the meson and quark fields cr, 7r, q). Then,
the matrix element factorizes into a collective matrix el-
ement in the wave functions of Appendix B [this is an
integral over the collective coordinates, viz. Euler an-
gles, or (bo, b)], and an intrinsic matrix element, which
is a space integral over the quark and meson fields. For
details, see Ref. [23].

= 2(collie,', "y,'„',"icoll) dsx gintrt(x)jintr(x) +

(3.28)

Expressions (3.27), and (3.28) are just second-order
perturbation results. We may formally continue to higher
order in perturbation theory, which leads to chains of the
form

,,„=2(coll~ j' "V' "...j,' "~coll)

d xi d x j,'"" (xi)g(xi, xz)V;, (x2)

xg(xz, xs) V,„,(x„ i)g(x„ i, x„)
xj,'""(x„), (3.29)

where V,„ is interaction of kth type. The total energy
shift is the sum over all possible orderings of (ii, ..., i„)

where ~coll) represents the collective wave function (Ap-
pendix B) associated with the baryon state ~b).

It is possible to have isospin-dependent effects in linear
response of the nucleon. For example, if the external
interaction has K+ = 1+ (the same quantum numbers
as in cranking) we pick up cross terms between cranking
and the external perturbation (see the example in Sec.
IV B):
r. = 2(coll(j;, "j,'„'t ~coll)

x dsx dsx' j,'",""(x)g(x, x')j,'"", (x') + H.c.
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in (3.29). Because the ground state has R'+ = 0+, the
matrix element in Eq. (3.29) is nonzero only if one can
compose the K+ quantum numbers of j,„V;„... , j,„ to
R = 0+. In (I) we show an application of Eq. (3.29)
wi~n two RPA propagators in the analysis of the neutron-
proton splitting of electromagnetic polarizabilities. In
Sec. V we discuss whether perturbation theory is con-
sistent with N, counting, which is our basic principle in
organizing the perturbation expansion in hedgehog mod-
els.

IV. SIMPLE EXAMPLES

In this section we give some simple application of the
described formalism. A more advanced and physically
important case of electromagnetic polarizabilities is given
in (I).

A. 1V-A mass splitting

As an illustration of the application of Eq. (3.27), con-
sider the N Amass s-plitting. In this case r~ is the energy
shift of the baryon lb) due to the cranking perturbation.
From Eqs. (3.23), (3.21), and (3.27) we obtain immedi-
ately the usual expression for the N-4 mass splitting:

M~ —Mrv = 2r((A]Az]A) —(N]A lN))e = (4.1)

B. Hadronic p - n mass splitting

(M„—M„)" ' = (mg —m„) d' d'~'[(nlj' ~q..l )

(n ~ p)]—
m(g fAQ d3 intrtp intr~ jm ~cr (4 2)

The numerical value, obtained for the solution of Ref.
[23], gives (M„—M )" ' = 0.4 x (mg —m„), which
for typical values of (m~ —m„) gives a number around
2 MeV. The electromagnetic mass difference can also be
studied in hedgehog models [40].

As an example of an isospin-dependent effect, consider
the neutron-proton mass difference due to the difFerence
of the up- and down-quark masses. The perturbation in
the Lagrangian has the form l: = 2(mg —m„)gest It.
has K+ = 1+, exactly as cranking; hence, a mixed
perturbation of the form (3.28) appears. Passing to an
isorotating frame, we And the source corresponding to the
quark mass splitting, which arises in Eqs. (3.7):
3(m~ —m„)N,poc vq~, where c is defined in Appendix
B. Since we have already solved the cranking equation,
we do not have to solve the new equation with source jm.
We simply calculate the overlap of j with the shift in
the fields due to cranking, 6q„, according to Eq. (3.28).
Using the fact that (N]A. ClN) = —(N]I3lN), we obtaill
the following expression for the hadronic splitting of the
neutron and proton masses:

V. 1Vc COUNTING

The basic organizational principle behind hedgehog
models is the 1/N, expansion of @CD [41—43]. In the
N, ~ oo limit, masses of baryons diverge as N„and can
be calculated using mean-field theory [42]. It should be
noted that the assumption of the spin-isospin correlated
wave function, which is essential in hedgehog models,
does not follow from the large-N, limit alon" it is an ad-
ditional assumption of the hedgehog approach. By anal-

ogy with nuclear physics, in systems with many nucle-
ons we may have nuclei with intrinsic deforrnations, but
we may also have spherically symmetric nuclei, and it is
the dynamics which determines whether or not the wave
function is deformed. In hedgehog models the hedgehog
wave function is assumed to be deformed in the spin-
isospin space, and the nucleon and the 4 masses, which
are of the order N„are degenerate in the leading-N,
order.

When cranking is used, these masses split as
In fact, cranking becomes an exact projection method
in the large-N, limit, since it may be viewed as a
Peierls-Yoccoz projection with 6-function overlaps be-
tween rotated wave functions [29]. Thus we obtain
the hedgehog result for the mass splitting, Eq. (4.1).
It would not be consistent, however, to conclude that
the nucleon or 6 masses individually are given by the
hedgehog soliton mass plus the cranking piece. There
are other efFects (center-of-mass correction, centrifugal
stretching, etc.) which enter at the same level as the
cranking term. Also, the eifective Lagrangian may be
supplemented by subleading terms in N„which we
did not have to include to obtain the leading piece in
the hedgehog mass. Therefore, it is useless to write
down Mg = Mh, + J(J+1)/(20) + O(N, ), since the
last term, which we do not calculate, enters at the same
level as the cranking term. We can only trust the lead-
ing piece, M~ = Mh, + O(N, ), and, in order to main-
tain consistency with the N, counting, the mass for-
rnula should not be "improved" by adding the crank-
ing term. The mentioned effects of center-of-mass cor-
rections, centrifugal stretching, etc. , are at the leading
level the same for the nucleon and for the 4, there-
fore for the N —6 mass splitting we get the formula
M~ —Mrv = 3/(20) + O(N, ).

The prescription, which we tried to illustrate above,
is that with semiclassical methods we can only get the
leading-N, term for a given observable. The power of N,
varies, depending on the quantity we are investigating.
The same is true for the calculation of polarizabilities,
described in this paper. We can easily obtain the N, be-
havior of various terms in Eqs. (3.27), (3.28), and (3.29),
but only the leading-N, piece corresponding to a partic-
ular polarizability should be retained. As an illustration,
consider the electric polarizability of the nucleon, dis-
cussed extensively in [30] and in (I). The electric field
polarizes the hedgehog. The electric charge of the quark
has an isoscalar component, of order N, , and isovector
component, of order 1. We immediately see from Eq.
(3.27) that the leading part of the electric polarizabil-
ity of the nucleon is obtained from interactions with two
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isovector sources, and the term with two isoscalar sources
is two powers of N, suppressed. The nondispersive seag-
ull effects also enter at the level of N, (I); hence, the nu-
cleon polarizability goes as N, . Quite analogously to the
problem of the ¹ 4 mass splitting, the neutron-proton
splitting of the electric polarizability is a N, effect (I),
and we can calculate it consistently only to this order.

In principle, one might try to perform a calculation
which consistently takes into account the subleading
pieces. The appropriate scheme would be the Kerman-
Klein method [44], but its application would involve a
complicated fully quantum-mechanical calculation.

VI. OTHER MODELS
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APPENDIX A: EQUATIONS OF
MOTION FOR SMALL FLUCTUATIONS IN THE

GRAND-SPIN BASIS

Techniques described in this paper are applicable to
other model after straightforward modifjcations. In the
Skyrme model, the described RPA method involves fluc-
tuations of the meson fields which do not satisfy the non-
linear constraint for the cr and m field operators. This
linearization may be viewed as an approximation to the
fully nonlinear dynamics. The RPA dynamics, obviously,
involves mesons only, and the higher-derivative terms are
manifest in the equations of motion for the fluctuations.

In the case of the (partly bosonized) NJL model [45],
the mesonic potential has the simple form z p (o + 7r ).
The sea quarks are present explicitly, and the number of
quark equations is infinite. Standard methods of solv-
ing these equations numerically may encounter problems
for the case when the translational zero mode is excited,
since extremely good accuracy is necessary in this case.

VII. CONCLUSION

We have presented the linear response method in
hedgehog soliton models. We have shown that the
method is consistent with the basic philosophy of these
models, namely, the 1/N, expansion, if its application
is restricted to obtaining the leading-N, order of a given
quantity. We have discussed many technical points which
are encountered in practical calculations, especially the
treatment of zero modes, which create special problems.
Appropriate equations of motion have been classified ac-
cording to hedgehog symmetries, and derived explicitly
for the model of Ref. [1]. Our method, after straightfor-
ward modifications, is directly applicable to other hedge-
hog models. A physical application of the approach is
described in the preceding paper (I), where we study the
electromagnetic polarizabilities of the nucleon.

IL, A) = IK, (L, A(I = -', S = -r)), Ks). (A1)

States with parity P = (—) [P = —(—) ] are called
normal [abnormal] parity states. The basis of Dirac
spinors is

gI, A
&

(A2)

Spinors A and Y' are expressed in states (A2). The quark
sources are decomposed into (L, A) components:

L,A

r.,w I
IL A. ).i&'( )&

Tables I —III list the matrix elements which arise in deriv-
ing the quark parts of perturbation equations. It is clear
from Table III that unless K = 0, the kinetic term mixes
the A = 0 and A = 1 components of the L = K states
(normal parity case). Diagonalization is made through
the substitution

(A3)

Ga K+1 Geo
2K+ 1

gal, i
2K+ 1

(A4)

gb K
G,~,o ~ K+1 gz, r

2K+ 1 2K+ 1

and similarly for the F components, and the sources.
The basis for the meson fluctuations is composed by

coupling isospin to L. For a given value of K, the o and

We compose the basis of Dirac spinors with good K
quantum numbers using the coupling scheme in which
the isospin, I = z, and spin S = 2, are first coupled to a
quantum number A, and then orbital angular momentum
L and A are coupled to K. Since there is no confusion
concerning the value of K or K3, we use the notation

TABLE I. Matrix elements of w r .

(K, OI

(K, 1I

(K —1, 1I

(K+ 1, 1I

IK, 0)

K
K+1
K+1

2K+1

I
K, 1)

K+1
2K+1

K
2K+1

I
K —1, 1)

K
K+1
K+1
2K+1

IK+ 1, 1)a
K+1
2K+1

K
2K+1
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(K, Oi

TABLE II. Matrix elements of 0 r

iZ' —l, l)
K

2K+1
K+1
2Ktl

1K+1,1)
K+1
K+1

K
2K+1

(Z —1, ii

(K+ 1, 11

K
2K+1
K+1
K+1

K+1
2K+1

K
2K+1

(A6)

( )iK, (L, l), K ).
L=K—1,K,K+1

tr fluctuations can be expressed through functions

o (r)iK, (L, 0), Ks), tr (r)~K, (L, 1),Ks), (A5)
Obviously, L = K for o., and L = K —1,K, K + 1 for 7t. ,
such that, for a given K and K3,

bo=o(r) iK.
.
, (L, 0), Ks),

Using standard Racah algebra, it is straightforward to
derive the general equations (3.4) for a given K pertur-
bation. In the notation of this appendix, G~&x Y), etc. ,

t

correspond to the X' and Y' spinors from Eq. (3.4)
and G&x+Y) ——Gx + GY, etc. The functions describing

meson fluctuation, o.L, vrL, have the meaning of the Z
functions of Eq. (3.4).

For a normal parity equation we get

( 1 2/K(K+ 1)
(X,Y) = (X,Y) + (g h +~) (X,Y) +K'& 1G{X,Y)

( K+1 +,+g I 2K+ 1
Fh,o +G tr +'

b K+1 b 2/K(K+ 1) 1
G(x,Y) G(x,Y) + (goh s + +)F(x,Y) + g+h 2K 1 G(x,Y) + 2K + 1G(x,Y)

~a~i'(X,Y)—

b&.F(X,Y) =

K K—1 .b
aF, (X,Y)2K+ 1

K+2 ( 1 2/K(K+ 1)
r F(x Y) + (g+h + s + ~~)G(x Y) + g+h (x Y) +2K+ 1 2K+ 1 F(~ Y)

K+1+ g ~ K G&o —Fh, tl. + + gg
&

2K+1
K —1 b (2+K(K+ 1) 1 ~ l

F(x y) + (goh, + 8 6 4))G(x y) + gtlh, F(x y) F(x y)

(A7)

+ g Gho + Fh, tl. +jG

@2' g ( )
I

K—1 p2( 2+ 2 2 2) K—1

(
2 (K —l)Ki
r r2

+2A 2 K—1+
l 2K+ 1 2K+1 2K+1

g.(Fh G(x+Y) + Gt F('—xiy) ) +i.
g2 + g ( ) K ~2( 2 + 2 ~2 2) K

(
2 K(K+ lir" r2

+2A K—1 2 K
Ogxh, x + 6Th'2K+1 o-hvrhvr +'

i2K+1
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K+1 K
2K (+ )+ 2K2K+1 2K+ 1

K+1 ~ K
2K+1 ( + )+ 2K+1 ( + ) (A8)

(K+1)(K+2)~,8„+—„—
I

Vr =A (Oh+eh —V

The abnormal parity equations have the form

K+1
~~ + ~

&h&h&
, ( QK(K+1)

2K+ 1

+hG(X+Y) GhF(X+Y)) +i

K+1
2K+1 "

)

K—11 K —1 K—11 K—1,1 2/K(K+ 1)
(X,Y) T (X,Y) (g h + ) (X,Y) +g h 2K+ 1 (X,Y) + 2K + 1 (X,Y)

K+1
G K K—11

2K+1
K+]., 1 + + ~ K+1,1 K+1,1 ~ 2/K(K + 1) K—1,1 1 K+1,11

2K+1 ( ) 2K+1

Z .x+1,i
~E,(X,'Y) '

~+& ] h 11 2/K(K+ 1)
F(XY') = — (Xy) + (g h+ + ) (Xy) +g h 2K+ 1 (X,Y) 2K+ 1 (X,Y)

&+& K .K 11+ ~ +h, + + ~G, (X',Y) &

K+1,1 2/K(K + 1) K—l, l 1 pK+l, lq
BTF(XY) = +(Xy) + (g&h+~ ) (Xy) g h( 2K + 1 (X,Y) 2K+ 1 (X,Y)

.K+1,1+g 2K+ 1 +~G, (x,y)'

K(K+ 1))0 + —8 — 7I' = A (0'h + 7I'h —V —Ld ) Il
T T

~+ ~ ~K—11 ~ ~K+11 ~ ~+ ~ gK —111 ~ gK+11 K
2K+1~( +')+ 2K 1 ( +') '+ " 2K+1G( +')+ 2K+1G( +') +'-

(A10)

For the u = 0, odd-7Z, ease, meson fluctuations vanish, and appropriate equations have the form of Eqs. (A7) and
(A9), with the meson fluctuations set to zero. The A" and Y equations can be combined to a single equation of the
form (3.7).

In the case of an even-R source which does not excite a zero mode (case QQ = 0 in Sec. III B 1), we ean set u = 0, in
the above equations. We can combine the Ã and Y' equations, and obtain the form (3.8). If the zero mode is excited
(QQ P 0), we have to solve full equations (A7) and (A8), or (A9) and (A10), depending on parity.

For the special case of K = 0, G~ = GQ'Q, G~ = 0, etc. , and only equations for the a components in Eqs. (A7)
remain. Fields with negative (i.e. , K —1) superscripts, and equations for these fields are eliminated.

The boundary conditions in Eqs. (A7)—(A10) are such that the solutions are everywhere finite. At the origin, radial
derivatives of 8-wave fields vanish, and the values of higher-L fields vanish. At r —+ oo, the appropriate boundary
conditions follow from solutions of the equations in the asymptotic region.
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TABLE III. Matrix elements of o. I.

(K, oI

(K, 1I
(K —1, 1I
(K+ 1, 1I

IK, 0)

0
—gK(K+ 1)

0
0

IK, 1)
—gK(K+ 1)

-1
0
0

IK —1, 1)

0
0

K —1
0

IK+ 1, 1)

0
0
0

—K —2

APPENDIX 8: COLLECTIVE MATRIX
ELEMENTS (NIcoIZ) = (B9)

Suppose a space rotation R is described by Euler angles
n, P, andy:

—ia J —iPJ„—ip J,

Then, matrix B from Sec. III F is given by

ip7 3/2 ip~g/2 iav3/2

(B1)

(B2)

The matrix transforming from the body-fixed to labora-
tory frame, c b, is defined as

c,b = 2Tr[r, B7.bBt] = Db (n, p, p), (B3)

c = 2Tr[~sB~Bt], c„=D„'o. (B4)

The collective baryon states with spin J, isospin I = J,
and projections m and Is are

where the first (second) subscript in the Wigner D
matrix is connected to the spin (isospin) space. It follows
that Qb c~b Jb = I~. The s—pin operator and the matrix
c commute: [c~b, Jb] = 0. We also introduce a vector c
defined as

For our analysis of the b, states in hadronic loops in (I)
the following formulas are important:

) (NI(c„)"IN; m', Is)(¹m', IsIc„IN) = si,

I,m1, 131

(B10)

) (NI(c„)'Ib, ; m', Is)(E; m', IsIc„IN) = I.
p, m', I3

The sum of the above formulas gives unity, in accordance
to the sum rule (B6).

APPENDIX C: EQUALITY OF INERTIAL AND
SOLITON MASSES

For the case of translations, the inertia parameter M
is equal to the soliton mass M, i. This result, required by
Lorentz invariance, can be verified explicitly as follows:
Consider a boost in the z direction, with small velocity
v. The fields transform as

Is=I, m, I.) = 2J + 1 JD (B5)
—iet ie(t vz)+ 2va— —1

Qg 7' —V )

(C1)

In formulas below we do not display m or Is in labels
of the states, and use the notation IN) = I2; m, Is), and

IA) =
I &, m, Is). The following useful formulas can be

easily derived (no implicit summation over repeated in-
dices):

which lead to the following shifts linear in the velocity:

vtB, pb, , —
(C2)

6qb =ve "'(iez+ zin, —tB,)qh

(cp)'cp = s+(s —I')Doo ).(cp)'cp =1,

from which follows that

(NI(c„)'c~IN) = si, any p,

2 2

(&I( )" I&)=-'+' —1; mgIs,

P IJ —j. , m = —I3.

One also finds

(NI K4) ca+ (cij) Jy] IN) = sIs any p'.

One also derives

(B6)

(B8)

Using identities [h, z] = in, and (h, a, ) = ——2iB„we
easily derive the equation

[h, —e](—ez+ 2iio.,)qb = B,qh. (C3)

After integrating by parts we get the expression for the
energy shift of a moving soliton:

68 = zv (sTq+ sTp+ N, e), (C4)

where Tq and Ty are kinetic energies in the soliton, car-
ried by the quarks and mesons, respectively.

Next, we use a virial relation. Consider scale change of
the radial coordinate, r —+ sr. The soliton energy scales
as Z(s) = Tq/s+ V~~+ sTy+ssVy, where V~4, and V~ are
the quark-meson and meson-meson interaction energies.
Stationarity of the solution imposes B,ZI, i ——0, which,
together with the relation N~e = Tq + Vqy, leads to the



47 RESPONSE OF NUCLEONS TO EXTERNAL ~. . . II. 323

virial relation

APPENDIX D: BOSONIZATION AND PAULI
BLOCKING OF THE DIRAC SEA

In this section we return to the question whether the
Dirac sea should be "Pauli-blocked" in our model. Effec-
tive chiral models are believed to result from bosonizing
@CD, which, of course, can only be done approximately.
For definiteness, we discuss the issue of Pauli blocking in
the framework of the partly bosonized [45] NJL model,
but the result is more general. In the presence of an
external source J, the action of the model is

SNJi, = i Tr in[i/ ——gU —J] —vac,

gU = g (0 + 1 15T ' 7l'), (Dl)

A cutoff is understood, Tr denotes a functional trace,
and vac means the vacuum subtraction. For simplic-
ity, we assume the nonlinear constraint o. + m = F
The source J may represent interactions with external
probes (e.g. , electromagnetic) or result from cranking
(Sec. III E). For definiteness, let us evaluate the mo-
ment of inertia. In this case J = zA 7, and expanding
the action to second order in A we obtain

ASNgi, = 2A 0 dt, (D2)

where the moment of inertia 0 is given by

i eke 1 10 = N, Sp — ~s rs,
2vr ~ —h ~ —h

(D3)

where Sp denote the trace over space, spin, and isospin,
and h is the Dirac Hamiltonian. The pole structure and
the contour of the cu integration in Eq. (DS) is given in
Fig. 1. Note that the contour goes above the occupied
valence state, as well as above all the negative-energy sea
states. Performing the integration over cu in Eq. (D3),

M l 3 Tq + 3Tf +
Comparing Eq. (C4) and Eq. (C5) completes the proof
that bE' =

z v M,ol. Using similar methods, one can show
the equality of inertial and soliton masses in other models
46], including nonlocal theories, such as the NJL model
[47].

we obtain the usual spectral expression for

iEocc
jEunocc

E' 8'
2

iEocc

jEunocc

iEocc

jgall

iEval iEsea

jEall jEall

igval

jpall
i&sea

jEpos en

(D5)

where the prime means the exclusion of i = j term, any
denotes all states, and pos en denotes the positive energy
states. According to Eq. (D5), the moment of inertia can
be decomposed into the valence and sea parts:

= eval + esca&

1~ ~ - l(il~slj&l'
val —

2 cg E —E'
iEval

jgall

~ - 1&ilies lj)I'6„=—x, ~~
2 8' —E;2 2

i&sea

jEpos en

(D6)

Note that the "full" expression (D4) obeys the Pauli ex-
clusion principle; hence, using Eq. (D5) we have broken
the original expression into two parts, each of which vio-
lates the Pauli principle. In fact, an analogous decompo-
sition is used in the treatment of the relativistic fermion
propagator in fermion matter [48]. Below we explain why
this is useful. First, the expression for O,i corresponds
to our quark part of the moment of inertia calculated in
Sec. III E. Second, the sea part of the moment of inertia
can be simply approximated only if it is written as in Eq.
(D6). Indeed, we can write down

Osea = —~c
4

ckd 1
Sp 7.3 73,2~ ~ —h cu —h

(D7)

where the contour of integration is given in Fig. 2. This

where occ denotes all occupied states, i.e., the valence as
well as the sea states, and unocc denotes the unoccupied
positive energy states (see Fig. 1 for the meaning of
labels). The expression under the sum is antisymmetric
with respect to exchanging i and j; therefore, the sum
as in Eq. (D4) over i and j belonging to the same set
of indices vanishes. Using this trick we can replace the
ranges of summation indices as follows:

). +

sea

occup1ed

C
v' / vvvv

valence unoccupied

pos. energy

is C'

C

FIG. 1. Contour of integration, C, for the total (sea- and
valence-quark) contribution: C cannot be Wick rotated with-
out picking up the valence-quark contribution. Notation for
various labels used in the text is visualized.

FIG. 2. Contour of integration for the sea-quark contri-
bution: t can be Wick rotated to the contour O'. Upon
bosonization, the sea-quark effects can be described by
mesonic degrees of freedom.
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contour can be Wick rotated without picking up any pole
contributions, and we obtain an expression in Euclidean
space. We can then perform standard gradient expansion
methods [49—51, 17] to rewrite O«~ as an integral over the
classical pion Beld. The Brst term, with no derivatives,
is just our expression for the pion part of the moment
of inertia, Eq. (3.21). Furthermore, this term does not

depend on the N JL cutoff, since the normalization factor
is the same as in the pion wave function normalization
[15]. Further terms in the gradient expansion do depend
on the cut-off. If we tried to perform the Wick rota-
tion on the original expression (D3), we would pick up
a pole contribution from the occupied valence level, and
our final expression (D6) would also follow.
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