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The rotational laws of motion for arbitrarily shaped, weakly self-gravitating bodies, members of
gravitationally interacting N-body systems, are obtained at the first post-Newtonian approximation
of general relativity. The derivation uses our previously introduced framework, characterized by
the combined use of N local (body-attached) reference systems with one global reference system,
and by the introduction of new sets of relativistic multipole moments, and relativistic tidal mo-
ments. We show how to associate with each body (considered in its corresponding local frame) a
first-post-Newtonian-accurate spin vector, whose local-time evolution is entirely determined by the
coupling between the multipole moments of that body and the tidal moments it experiences. The
leading relativistic effects in the spin motion are discussed: gravitational Larmor theorem (de Sitter-
Fokker —Eddington precession) and post-Newtonian contributions to the torque associated with the
quadrupole moment and the quadrupole tidal tensor.

PACS number(s): 95.10.Ce, 04.20.Me

I. INTRODUCTION

In two previous papers [1, 2] (hereafter referred to as
papers I and II, respectively) we presented a new formal-
ism for treating the general-relativistic celestial mechan-
ics of systems of N, arbitrarily composed and shaped,
weakly self-gravitating, rotating, deformable bodies. In
paper I we laid the foundations of our formalism which
uses, in a complementary manner, N + 1 coordinate
charts (or "reference systems") to treat the general-
relativistic N body prob-lem: one "global" chart [space-
time coordinates (xi') = (ct, x')] is used for describing
the overall dynamics of the N bodies ("ephemerides"),
while N "local" charts [spacetime coordinates (XA) =
(cd, X&), where A = 1, . . . , K labels the bodies] are
used for describing the intrinsic dynamics, and the local
gravitational environment of each body. We showed in
paper I (Sec. II there) how to write in closed form the
transformation mapping the local coordinates Xz onto
the global ones x":

where 'DA denotes some structures ("'world line data")
which determine the precise choice of the 2th local refer-
ence system. After the systematic use of local reference
systems [with a specific algebraic way of freezing down
the spatial coordinate freedom, see Eqs. (2.27)—(2.29) in
paper I], the two other basic tools of our formalism are
(i) the use of new field variables [global, ro&(x"), and

local, W+(X&~), gravitational potentials], and new mat-
ter variables [cr&(x~), Z+(X&~)] which lead to linear field

equations and simple (aKne) "transformation laws" for
the gravitational potentials under Eq. (1.1) (see Sec. IV
of paper I), and (ii) the introduction of new relativis-
tic "multipole moments" of each body [of the "mass"

Ml (T~) and "spin" type Sl (T&), where I = ai, . . . , ai
is a multispatial index of order l = 0, 1, 2, . . . in the corre-
sponding Ath local frame; see Eq. (6.11) in paper I], and
relativistic "tidal moments" experienced by each body
[of the "gravitoelectric" GAI(T~) and "gravitomagnetic"
type Hi (TA); see Eq. (6.13) in paper I completed by
Eq. (2.25a) in paper II for a first-post-Newtonian- (1PN)
accurate tidal monopole moment].

In paper II we completed the results of paper I in two
directions. First, we derived, at the first-post-Newtonian
(1PN) approximation, the translationa/ laws of motion
(including the 1PN law for the evolution of the masses)
for an N-body system. This result was first obtained in
the form of an integrodifferential system

dM~
=Fo [W ],de

d2M =F [W ]

(1.2a)

where M+ is the 1PN mass monopole of body A, M its
1PN mass dipole, and where the "force terms" F are
some explicit spatial integrals over the volume of body
A [Eq. (4.7) in paper II] exhibiting the localized inter-
action between the mass and current densities of body
A, (Z+, Z+), and the "external gravitational potentials"

W (Xz~) [i.e. , the potentials in the local A frame re-
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maining after subtracting the local-frame self-potentials
W+A(XA~)]. Then, by inserting in the force terms on
the right-hand sides of Eqs. (1.2) the relativistic tidal
expansion of the external potentials [see Eqs. (6.23) in
paper I and (4.15) and (4.16) in paper II], we found,
after the occurrence of subtle cancellations, that the re-
sult was expressible as a series of bilinear couplings be-
tween the post-Newtonian multipole moments of body A
(M&A, SiA) and the post-Newtonian tidal moments felt by
A (GP, Hi~):

dMA

dTA
=T," M,"'",G,'",'" + O(4), (1.3a)

Gi, = ) G~ [Mg, Sg, 'DA, DB]+G ~[DA] + O(4),
B'g A

(1.4a)

HL ——) Hr, [Mg. , Sg, DA, DB] + H r', [DA]
BgA

+ O(2), (1.4b)

where the N —1 "B over A" terms GL~, HL~, rep-
resent the contributions of body B (with multipole rno-
ments Mg, Sg; K = br, . . . , bk, k = 0, 1, 2, . . .) to the
tidal moments felt by body A, while the last terms GLA",
HrA" represent the inertial eKects of the nonlinear ("ac-
celerated") transformation (1.1) between the global and
the local frames. The latter inertial contributions were
worked out in Sec. UIE of paper I, while the former B-
over-A contributions have been computed in Sec. V D of
paper II (see also Appendix A there). Finally, let us note
that Sec. II of paper II contains a summary of the main
results of paper I, and that a pedagogical overview of our
formalism can be found in [3].

The purpose of the present paper is to complete the
results of papers I and II by deriving some 1PN-accurate
rotationa/ laws of motion for an N-body system (thereby
completing the proof of theorem 7 in paper I). More pre-
cisely, we are going to show that there exists a 1PN-
accurate definition of the spin dipole (or spin vector), say
S (TA), of body A (member of a gravitationally in-A(1PN)

teracting N body system) with-the following properties.
(i) In the Newtonian approximation S (TA) reduces to

the standard Newtonian spin of an extended body (taken
with respect to the origin of the local A, frame), i.e. ,

SA(1PN} (T ) XA eabcXAZA (TA ) XA) + O(2)

(1.5)

d2MAMa FA M(p) A g(q) A ~(p') A ~(q') A O (4)a L & L & L' & L' +
ck& A

(1.3b)

where M("} = dPM/dTP.
Then, using the results of the "transformation theory"

of paper I, we worked out the explicit expressions of the
tidal moments experienced by body A. Our results (see
Sec. V of paper II) have the form

(ii) When body A is an isolated system (with negligi-
ble gravitational interactions with the external universe)

S reduces to the well-known 1PN-accurate con-A(1PN)

served total spin of an isolated system (first given as a
well-defined compact-support integral by Fock [4]).

(iii) S (TA) is entirely defined in the local frameA(1PN)

of body A as a compact-support spatial integral extend-
ing only over the volume of body A.

(iv) Similar to the translational local laws of motion

(1.3), the time evolution of S (TA) can be entirelyA(1PN)

expressed in terms of bilinear couplings between the
(time derivatives of the) multipole moments of A and
the (time derivatives of the) tidal moments experienced
by A:

d~A(1PN)a

dTA
M(p)A S(q)A G(p'}A H(q')A + O(4)

(1.6)

The reader should note that in all the developments
of our formalism up to now we could consistently work
with definitions of the spin moments (the spin dipole SaA,

the spin quadrupole SAb, etc. ) that had only Newtonian
accuracy. Namely,

Sr(T~) = ST. Fi ( d X X ' (e„p,X~K~) ) + O(2),

(1 7)

where STFL denotes the symmetric-trace-free projection
with respect to the multispatial index L = a1, . . . , a~, and
where X+ 1 = Xa'Xa'. X'a'-'. [Note that, because of
the properties of the STF projection, the term XL X
in Eq. (1.7) can equivalently be replaced by X X or
even by X ib where X =X:—STFz(X ).] The
basic reason for this is that the spin moments enter the
spacetirne metric only at the post-Newtonian level (i.e. ,

they always appear multiplied by a factor c 2). As a
consequence the right-hand sides of Eqs. (1.3) and (1.6)
can all be computed with post-Newtonian accuracy [i.e. ,

modulo O(4) = O(c )] from a knowledge of the spin
moments at Newtonian accuracy only. The only excep-
tion to this rule arises for the left hand side of E-q. (1.6)
in which we need a 1PN-accurate definition of the spin
dipole. To find such an improved definition is precisely
the purpose of the present paper.

Before tackling the technical details of our 1PN-
accurate theory of spin evolution a few historical and
methodological remarks seem in order (see [1, 2] for a
more complete discussion and further references). The
problem of the general relativistic gravitational interac-
tion of N spinning bodies has a long and checkered his-
tory full of confusion and errors. The confusion stemmed
partly from the lack of a comprehensive treatment com-
patible both with the formal results for "test particles"
(notably by Mathisson [5] and Papapetrou [6]) and the
explicit post-Newtonian results for extended objects (no-
tably by Fock [4]). In particular, the straightforward
post-Newtonian approach of Fock [4], which used only
one global chart to treat the motion of 1V bodies, led
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him to derive a Lagrangian for the motion of spinning
bodies which predicted a complicated coupling between
the translational and the rotational motions of the bod-
ies. (A coupling whose consequences were further an-
alyzed by Brumberg [7].) However, most of this cou-
pling concerned only spurious "coordinate effects. " On
the other hand, more formal methods (6-function tech-
niques [8] or quantum-spin calculations [9]) succeeded in
deriving the correct general-relativistic spin-orbit cou-
pling, at the price, however, of serious ambiguities in
the physical meaning of the result. These ambiguities
were two sided. On the one hand, the meanings of the
spin vector and of the central world line of each spin-
ning body, as seen in the global frame used to repre-
sent the motion of the N-body system, were unclear. On.
the other hand, a further heuristic step was needed to
deduce from the spin-orbit interaction term in the La-
grangian an evolution equation for the spin vector of
each body. These ambiguities were clarified, in the case
of the motion of strongly self-gravitating spinning bod-
ies, by methods based on the matching between expan-
sions for the gravitational field in local frames attached
to each body and a usual-type weak-field expansion for
the field in the global frame [10, ll]. (Note in particu-
lar that the acceleration-dependent Lagrangian describ-
ing the spin-orbit interaction when using the Minkowski-
covariant spin condition to fix the central world line was
not derived until 1982 [12].) The present work shares
with the matched-expansions approaches the use of sev-
eral coordinate frames, but has the further advantage
of being fully explicit (the structure of the gravitational
field in all frames is known in complete detail, and so are
its transformation properties from one frame to another).
As a consequence, we feel that the results presented be-
low (taken in conjunction with our previous results [1,2])
are the first ones to bring to light all aspects of the mo-
tion of weakly self-gravitating spinning bodies, especially
the interdependence between the rotational and transla-
tional motions. In particular, the fact that our formalism
is flexible enough to allow for an arbitrary O(v2/c~) slow
spatial rotation of the local coordinate grids will enable
us to describe from different, complementary, points of
view the mixing of torqued and "geodetic" ("de Sitter" )
contributions in the rotational evolution of a spinning
body (or spinning system of bodies).

The organization of the present paper is as follows.
Section II starts from a preliminary definition of a 1PN-
accurate spin vector for body A, and computes its deriva-
tive with respect to the local time T~. The result is not
satisfactory because it contains new moments, beyond
the basic ones of our formalism: M&, Sl, G&, Hl . In
Sec. III we show how the introduction of certain radial
operators allow one to define "improved" 1PN spin vec-
tors whose local-time evolution is entirely determined by
the "good" moments, M, S, G, H. Section IV discusses
the physical content of the 1PN rotational laws of motion
derived in Sec. III. In particular, we discuss the "grav-
itational Larmor theorem" (de Sitter —Fokker —Eddington
precession), the link with the notion of Fermi-Walker
transport, and we give the fully explicit expression of
the leading v2/c2 terms in the torqued precession.

II. PRELIMINARY FORM OF THE 1PN
ROTATIONAL EQUATIONS OF MOTION

As mentioned in requirement (ii) of Sec. I, the looked-
for definition of the spin vector of a body A, a mem-
ber of a gravitationally interacting N bod-y system,

say 9 (T~), should reduce to the usual 1PN-A(1PX)

accurate (conserved) total spin of an isolated system, say
l, when body A becomes infinitely separated

from the other bodies B g A of the considered N-body
system. Several expressions exist for S,isolated (1PN) [13,4,
14, 15]. In particular Landau and Lifshitz [13] proposed
an expression of the type

~isolated (1PN) &3 ~ pk q

i —6i&p u XX 7 yC (2.1)

where w"" = g(T"" + terr) denotes an effectiv total
stress-energy tensor, including the effect of the stress en-
ergy of the gravitational field itself. Note that Eq. (2.1)
expresses the total spin as an integral over the whole
space because of the contribution of the momentum of
the gravitational field. Fock [4] succeeded in deriving,

at the 1PN level, another expression for S,,
"

containing only compact-support integrals: namely,

+isolated (1PNi s jdxx 0 ~1+—c' )

pkl &k &l
Q"(x)—:G dsy o'(y) (2.2b)

with n"„= (x" —y")/~x —y~. In Ref. [15] it was shown
how to construct several other compact-support expres-
sions for S, . It will be important to remem-isolated (1PN)

ber in the following that all the expressions for the total
spin contain, in one form or another, explicit nonlocal
contributions due to the gravitational field (these non-
localities get worse for the higher-order spin moments,
see Ref. [15]). These field contributions introduce an ir-
reducible element of nonlocalizability in the total spin
which is the first indication that it is highly nontrivial
to find a "good" definition of the "individual spin" to
be attributed to one body, a member of a gravitationally
interacting system. (By contrast, the work of Ref. [16]
had succeeded in expressing the 1PN-accurate mass mul-
tipole moments of a gravitationally interacting system in
an ultralocal form, free of any field contributions, thereby
allowing us to introduce [1] a natural definition of the lo-
cal [Blanchet-Damour (BD)] mass moments of one body,
a member of an N body system. )-

The above expressions for the total spin were expressed
in a global coordinate system, covering the entire grav-
itationally interacting system. Let us consider now the

4U ——Q 1C2 2 )
(2.2a)

where U is the Newtonian potential generated by the
mass density o = (T + T")/c, U" the Newtonian
potential generated by o" = TD"/c, and
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case of a system made of N, spatially disjoint, bodies. We
wish to define the spin vector of one body A, a member of
such an N-body system (note that our formalism allows
for "the body A" to be itself made of several, gravitation-
ally interacting, components; e.g. , "body A" could be the
Earth-Moon system). In keeping with the approach laid
down in our previous papers, we look for a definition ex-
pressed in the local reference system XA associated with
body A, say

(2.3)

~.+"(TA) = e.b. d XX 2'i 1+—W
ic' )

Z( +, 1 +&——
i

4W+'+ —O, BT Z+
ic l 2

where

W+'(T, X) —= G

(2.4)

Z'(T, X') ~X —X'~-'d'X', (2.5a)

Z+(T, K) =+G Z(T, K')~X. —X'~d X' . (2.5b)

In view of the nonlocalizability of the spin vector, we
cannot guess beforehand what is the "good" definition of
S (i.e. , the one which will satisfy the requirementsA(1PN)

listed in Sec. I). We shall therefore start by working
with a preliminary definition that we complement later
by additional terms. Inspiring ourselves from the defi-
nition (2.2), let us deFine a quantity 8+A ("self-part" of
the spin) in the local A system by

In keeping with the notation of our previous papers the
superscript plus refers to the self, or locally generated,
part of a nonlocal quantity. Note, however, that the
scalar potential W appearing in Eq. (2.4) denotes the
complete potential in the local frame, W = WA + R A in
the notation of papers I and II. At this stage, this seems
to be an arbitrary choice. However, its usefulness ap-
pears as soon as we take the time derivative of Eq. (2.4).
Indeed, using the local 1PN evolution equations of the
matter, Eqs. (5.6) of paper I (in which it is the full W
which enters), one finds

dTA

with a 1PN local torque D given by

(2.6a)

A
Dg, Kgb d'X X'

X J (
—

2 (4W+'+ B,BT Z+)—)
(2.6b)

The "force density" X' appearing on the right-hand side
of Eq. (2.6b) is the one introduced in Eqs. (5.5) of paper
I or (4.3) of paper II, namely, X = ZEc + B blab/c~ =
(ZE+ Z x B/c2) . Both the local gravitoelectric field
E, and the local gravitomagnetic one, B = 2e "'Bb„
admit a natural decomposition into self + external parts,
E = E+ + E, B = B+ + B. As the force density is linear
in E and B we can correspondingly decompose it into self
+ external parts, P = P+ + P . Inserting the latter
decomposition in Eq. (2.6b) yields a natural split of the
torque:

DA D+A + DA (2.7a)

= &abc
+A d XX F+' — 4W+' 0 8 Z++ (2.7b)

—A:—&abc dXXE (2.7c)

A straightforward calculation, using the explicit expression for W+ given in Eq. (4.10) of paper II, allows one to prove
the following lemma.

Lemma 1. The self-part of the first post-Newtonian local torque, defined by Eq. (2.7b), vanishes:

D+ = O(4) . (2 8)

We are then left with the problem of evaluating Eq. (2.7c), i.e. , the usual torque exerted by the external force E .
Using the tidal expansions (6.23) of paper I of the external gravitoelectric and gravitomagnetic fields, the external
force density can be written in terms of the two sets of relativistic tidal moments, (GL„HI,), introduced in Eq. (6.13)
of paper I:

1,-1, 4l cl.—l c (i)+—
2 ebcd~ X ~dI —

&
ebcdedef X E Gfl,

C c~ l+1 (2.9)
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with Hl —(d/dT)HL, etc.
I et us now introduce, in addition to

Pl. =—

d XXX Z

d'X X"Z,
(2.10a)

(2.10b)

already introduced in paper II, the auxiliary quantity

sponding to the preliminary definition (2.4) of the in-
dividual, local spin vector of body A. As already an-
nounced in theorem 7 of paper I there is, however, a way
to define an improved local spin vector at the 1PN ap-
proximation such that the corresponding torque is en-
tirely given as a bilinear form in our 1PN moments
(MI. , SI„GI., Hl. ). As we shall see below, there are even
different possible definitions satisfying this requirement.

d'XX2X('-'Z l) . (2.11) III. FINAL FORM OF THE 1PN ROTATIONAL
EQUATIONS OF MOTION

dS+" —(MsGH)
G dT cL a (2.13)

with

—(MSGH)D
. 1 f' 1 l+1

&abc ) l, l MbLGcL + 2 l
SbLHcLc2 l + 2 )

1 .1 t d+—) — (M H)c . + (2.14)

and

dD' = — G, [MSGH; P, N], (2.15)

with
1 -1 1

C = —q) —, HINI,
t

Using some of the formulas involving symmetric and
trace-free (STF) tensors presented in papers I and II,
one can check that the quantities (2.10) and (2.11) are
related as follows:

N~ ——2PI, + Ql. .-(i) — l(2l + 3)—
2l+1 (2.12)

Then, using Eq. (2.12) and Eqs. (4.23)—(4.27) of paper—A
II, the external torque D, can be written as

We are going to prove that each of the four contribu-
tions C, j = 1 —4, to C in Eq. (2.16) can be written
in the form

C~~! = S!'!+ Z~~! [MSGH], (3.1)

where F~~] is a bilinear form in the "good" moments

(Ml. , Sl. , Gl. , HI. ) and their time derivatives, while S
—b]

is a compact-support integral of the form

—A[j]Sa d XX Z (X)O!~! [E,B], (3.2)

i.e. , a (non-STF) moment over the matter distribution of
body A, (Zz) = (Z~, Z&), of some linear functional C!~)

of the external gravitoelectric and gravitomagnetic field
vectors Ec[W] and Bc[W]. The new feature of the linear
functionals 4[E,B] is, as we are going to see, that they
are "radially" nonlocal in E and B, in the sense that the
value of 4 at the spatial point X depends on the values
of E and B at all the points of the segment connecting
the origin X = 0 to the field point X.

To derive the form indicated in Eq. (3.1) we will in-
troduce certain radial integral operators. Let P(T, X) be
some field in the local frame. We then define the operator
R ("radial operator of order a.") acting on P by

2 Gabe
C

2 Gabec

——2&abcc

4(2l + 3)
),.l! (l+2)(2l+5)

N G —N G- l! 2(l + 2)(2l + 5)

1 2 d

l! (l + 2) (2l + 5) dT

(2.16)

R [P](T,X) —= dAA P(T, AX) . (3 3)

We will also use the shorthand notation R p for the
composition R o Rp, i.e. ,

R,n[&](»X) =—R [Ra[&1](»X) (3.4)
where the order among (o., P) turns out not to be impor-
tant because R o Rp = Rp o R .

The integral operators R have the properties~
Note that the quantity Ql, has been eliminated from the
results (2.13)—(2.16). —A

The result (2.13) says that the external torque D—(MSGH)
can be decomposed into two parts: D and Da'—(MSGH) .The first part D is entirely expressed as a bilin-
ear form in the relativistic multipole (M~, SJ.) and tidal
(GL„HI,) moments introduced in our papers, and their
local-time derivatives. By contrast, the remaining part
D' also depends upon the auxiliary quantities Pl, and
NL„although only through a total time derivative.

Equations (2.13)—(2.16) constitute the preliminary
form of the 1PN rotational equations of motion, corre-

(i) R [&P] = R
0 BP

W

(3.5a)

(ii) R [P] = R +i
0 0$ (3.5b)

One could have more generally introduced the class of radial
operators defined by replacing the power A by an arbitrary
function f (A) (general radial average) (and the origin 3C = 0
by any fixed point Kp). In that language, R s corresponds
to f(A) = (A —AS)/(P —n).
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( ) R [R/3(&]]=Rn[R t&]]
1

(R [&] —Rp[4))

(iv) R~ ) X SI,(T) = )
t)0

(3.5c)

(3.5d)

Let us give a simple example of the use of the B opera-
tors in transforming the various terms in Eq. (2.16). Let
us consider

E, = ) ,
X—G,I.(T) + O(2)

L&0

[see Eq. (4.16a) of paper II]. Then from Eq. (3.5e) above
we get

() R-,~ ).X S (T) -).
( +!+,)(p~„,)l)0 E)0

/z[Ec] = ) l],l 2,2l )
X G,r(T) +O(2),

(3.5e) and therefore

b +R$,3/Q [E.] = Eg, pb) G~g(T)- l! l + 2 2l + 5
d XX X ZX +O(2)

-1 2-"");l!(l+2)(2l+5)"" "' (')

We recognize on the last right-hand side a series that appears in the last term of Eq. (2.16). This allows us to write

G in the form (3.1) with a S piece of the form (3.2) with C'!![E]= Rz s/z[E], and F = 0.
Proceeding along the lines we just exemplified, we derive the following reduction formulas for the various terms in

Eq. (2.16):

(3.6a)

c' ' ).l! (l + 2)(2l + 5)
(3.6b)

[3] x - + G(&) ~(&)~cz"")-l! 2(l+2)(2l+5)
l

~[4] 1 m 1 2 d
( )

—[4]

cs ' - l! (l+2)(2l+5) dT'

(3.6c)

(3.6d)

In Eqs. (3.6) we have denoted

I!'![MSGR] = ——,) —', M.,H,
L)1

(3 7)

(and F~:—0 for j = 2, 3, 4), and

—PlS d X XX X Ra[By], (3.8a)

—[2] 2S =+—gb,c

—[] 1S = ——t bc

d XX [X BrZ(R&[E,]
—2Rs/z[E, ])+Z Rz[E,]+X P"QpR, [E,]],

&
I

&A I&r&.] ——&sy~ I&v &.] I

—&7 &
I
&%]&.] ——&sg~]&.])

s ~ b ( — 7

(3.8b)

(3.8c)

—[4] 1 d
c~ ~bcdr d XX X ERj s/z[E, ] . (3.8d)
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We are now in position to complete the proof of theo-
rem 7 of paper I. Let us associate to each body A, a mem-
ber of an N-body system, the following 1PN-accurate
spin vector, defined in the local reference system of A,
(XA):

definition. (See Sec. VI C of paper II for a more detailed
discussion of the connection with previous work. )

IV. DISCUSSION OF THE 1PN ROTATIONAL
EQUATIONS OF MOTION

SA(iPN) S+A ~ S (3.9a) A. Nonuniqueness of the de6nition of the 1PN spin

S. =S. +S. +S +S.—A(sl —A W —A(41 (3.9b)

It is easy to check that S satisfy all the require-
ments we listed in the Introduction.

From Eqs. (2.13)—(2.15) and (3.1) above, we see that

where the "self-part" S+A is defined by Eq. (2.4) above,
while the "external part" is defined by summing the
right-hand sides of Eqs. (3.8a)—(3.8d):

Although we were able to find a definition of a lo-
cal spin vector satisfying requirements (i)—(iv) of Sec. I,
nothing guarantees a priori that such a definition is
unique. In fact it is not unique, but this lack of unique-
ness is of no concern (both theoretically and practically).
To show the nonuniqueness it is enough to remark that
the term Ca, Eq. (3.6a), could also have been trans-

[1j

—l1lformed to a pure S form. Namely,

dS —(Ms|"0)=D
dTA ) F~&~[MSGH].

dTA 3=1

C [1] Sf1]&
a

with F = 0 and
—I1]~

(4.1)

dSA(iPN)

dTA

1 A A 1 t+1 A A= ) EabcMbl, Gcl + — EabcSbI Hcj
t

(3.10)

Replacing the explicit expressions (2.14) and (3.7), we
get our Anal form of the rotational equations of motion
as the following theorem.

Theorem 1. The local-time evolution of the individual,
1PN-accurate spin vector of body A [defined in its local
reference system by Eqs. (3.9)] is given by the following
bilinear form in the 1PN-accurate multipole (Ml, SL )
and tidal (Gg, HIA) moments introduced in paper I:

-[1lIS
2C A

4+—q~abcc A
—Rsg, [c)TZ,]) .

d XX ZBigs[B ]

d XX X Z(gi[c)T&,]

(4.2)

In that reformulation all the E 's vanish and we
would have been led to defining a different spin vector

by S in Eq. (3.9b). Then, S (iPN)' sati fies

dSa (MSGH)—A(1PN)I
—D

where

(M I HI ) +O(4),
C~ dTA

(3.11)

—(Msaa)where D was defined in Eq. (2.14). In other
words, S obeys an evolution equation of the form

A(1PN)I

(3.11) with difFerent values for the o. coefficients: namely,

2l + 1
Ai =

3+1 (for t & 1). (3.12)
(

t+1 (4 4)

(According to our conventions there is no need to de-
fine aii because HI, is defined only for l & 1.) The ra-
tionale for introducing special notation for the coefFicient
of the last term in Eq. (3.11) will be discussed in the next
section.

We shall not attempt to relate in detail our results
(3.11) and (3.12) with previous investigations on the ro-
tational equations of motion in general relativity. This
would be a nontrivial task because of differences in the
definitions of the various objects (spin vector, multipole
moments, tidal moments) entering them, as well as in
the realm of applicability of such equations of motion.
Let us only remark that our result (3.11) is structurally
similar to the laws of precession derived in Refs. [17—19].
However, it should be noted that our definition of tidal
moments difFers from the one proposed in Refs. [17, 20],
and that our approach is fully constructive in that all
quantities and concepts that we use have a clear technical

More generally, it is clear that, by using some suitable
combination of radial operators acting on terms similar
to the ones appearing in Eqs. (3.8a) and (4.2), we could
define still another spin vector, say S,obeying theA(1PN)o

evolution equation (3.11) with

a) ——0./1
(4.5)

Working in the other direction [i.e. , complicating rather
than simplifying Eq. (3.11)], one could also define more
complicated spin vectors, satisfying the criteria (i)—(iv) of
Sec. I and evolving via an equation containing additional
terms with respect to the form (3.11). However, the form
of such additional terms is strongly constrained by the
criteria (i)—(iv) of Sec. I. Basically they should be of
order 1/c2, they should add only a total time derivative
to Eq. (3.11), and they should be bilinear in the "good"
moments jM, S; G, H). Dimensional analysis and parity
considerations show that such additional terms can only



GENERAL-RELATIUISTIC CELESTIAL MECHANICS. III. 3131

be of the form

(4.6)

The physical root of the n Pa-mbiguities in the defini-
tion of an "individual" 1PN spin vector for a body mem-
ber of an N-body system is clearly related to the fact
(recalled above) that, at the 1PN level, the total spin
of an isolated system contains irreducible contributions
coming from the gravitational field binding the system.
These field contributions can be written in various forms
[see Eqs. (2.1) and (2.2) above, and the various other
forms derived in [15]] but nobody succeeded in elimi-
nating them. We see a posteriori that it was a lucky
accident that, by contrast, the 1PN-accurate mass mul-
tipole moments (whose usual presentations also contain
field contributions) could be rewritten entirely in terms
of the matter variables Z~. This simplification very prob-
ably holds only at the 1PN level, and gets lost at higher
post-Newtonian orders.

It should be noted that the nonuniqueness of the def-
inition of the 1PN spin does not mean that there is any
theoretical ambiguity in the framework we have been
developing. The important (and nontrivial) result was
to show the existence of such definitions (as well-defined
compact-support integrals in the local frame of the con-
sidered body). To each precise definition corresponds
a unique, unambiguous evolution equation [e.g. , (3.11)
with (3.12) for the definition (3.9)]. From the practical
point of view, the possibility to define several different
individual spin vectors is also of no concern. Indeed, the
main usefulness of theorem 1 above is to give one a han-
dle on relativistic effects in the long-term evolution of
the spinning motion of bodies members of gravitation-
ally bound systems. As the a terms (and the P terms,
if one wishes to consider them) enter only as total time
derivatives they do not contribute to the secular evolu-
tion of the spin. Therefore, for practical applications it
suffices to work with the definition S~ alluded toA(1PN}II

above satisfying ni' ——0. [Anyway, one can note that
from the numerical point of view the difference between

the two spin vectors bS—:S~ —S~ will beA(lPN) A(1PN}lr

extremely small in solar-system applications. In the case
of the Earth one finds bS~ l/S 10 if one uses a
Coriolis-effacing geocentric frame (see below). ]

B. EfFect of the external gravitomagnetic Beld
on the local spin motion

("gravitational Larmor theorem")

Our final result (3.11) for the local-time evolution of
the spin of one body member of an N-body system ex-
hibits various types of contributions. If we follow the
recommendation of our previous papers of always using
mass-centered local frames (vanishing of the BD mass
dipole, M+ = 0) the first type of terms on the right-
hand side (RHS) of Eq. (3.11), c~b, MbL, G,I /t!, start con-
tributing only for i = 1, i.e. , for the coupling between
the (BD) mass quadrupole of body A and the 1PN-
quadrupolar tidal tensor. This term (as well as the cor-

responding higher-order terms) has a well-known Newto-
nian counterpart (torque responsible for the precession of
equinoxia). However, one should carefully note that our
result e b, MbI. G,L, differs from any purely Newtonian re-
sult in that we have here used some precise relativistic
definitions for the moments M&+ and G+I (more about
this below). By contrast, the second type of terms on
the RHS of Eq. (3.11) have no formal Newtonian counter-
parts. Let us concentrate on the lowest-order term in the
multipole series, i.e. , l = 0, which couples the spin vector
SA to H . In fact, if we were to truncate all the mul-
tipole expansions by keeping only the mass monopoles
(M, A = 1 —N) and the spin dipoles (S+, A = 1 —N)
("monopole-dipole model, " see paper II) only the latter
term would survive:

~ dS( ~(ipNl
~

monopole-dipole

A A
~Q bc Sb Hc2c (4.7)

The transformation law (4.20b) of paper I shows that in a
frame moving with velocity V with respect to a purely grav-
itoelectric external field E there appears an induced gravito-
magnetic field —4V x E. As we shall see below there is an
additional term linked to the global-frame acceleration of the
Earth-Moon system.

(Note that in the monopole-dipole limit all the n and p
ambiguities disappear. ) Let us recall that the quantity
HA represents just the value, at the origin of the local
A frame, of the external gravitomagnetic field B (X&):'
H (T~) = B (T~, O). Writing Eq. (4.7) in vectorial form
dS/dT = S x H/2c, we see that the dominant effect of
the presence of an external gravitomagnetic field in the
local frame of body A is to cause a precession of the spin
vector of A, dS/dT = A x S, with angular velocity

A
+precession (4.8)2c

[One should, however, keep in mind that for spinning
bodies endowed with quadrupole, or higher, mass mo-
ments the result (4.8) is just a small additional contribu-
tion to Newtonian order torques. ]

The result (4.8) is the gravitational analogue of the
"Iarmor theorem, " i.e. , the fact that a system of electric
charges with constant e/m ratio, embedded in a uniform
external magnetic field H, undergoes a global precession
with angular velocity [21]:

e
+Larmor = (4.9)

27AC

The gravitational result (4.8) is simply obtained by tak-
ing e/rn = l.

In the case where the considered spinning body is the
Earth-Moon system and where (in lowest approximation)
the gravitomagnetic Beld is that induced by the motion
of the Earth-Moon system in the gravitoelectric field of
the Sun, the precession (4.8) reduces to the well-known
de Sitter precession [22] (see also Fokker [23] and Edding-
ton [24]).
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R, (T~)=b, (4.10)

Another choice would be to efface all relativistic Coriolis
effects by choosing a slowly rotating local A frame with
respect to which the central, external gravitomagnetic
field vanishes:

H (T~) =0. (4.11)

By definition, in choice (4.11) the gravitational Larmor
precession (4.8) will vanish, while it will generically not
vanish in choice (4.10).

To see explicitly how the use of a nontrivial rotation
matrix R+ (T) can be used to annul H we can use the
results of paper I. There, it was shown that H can be
decomposed according to

~A ~A~ + ~All
G G G (4.12a)

where H ' is linear in the external gravitoelectric and
gravitomagnetic fields recorded in the global frame, e, (z")
and b, (x&), respectively, while H " comes from the iner-
tial effects in the time-dependent transformation between
zi' and A&. More precisely, Eq. (4.20b) of paper I (taken
at 4 = 0, and for the external fields) yields

H ' = R, Ib, —4e,~kv, ek]] +O(2),

while Eq. (6.30c) of paper I reads

dRA

(4.12b)

(4.12c)

In Eqs. (4.12) dz, /dt = v+—:R+ V+ are the (global
or local) components of the three-velocity of the origin of
the local A frame [which needs to be defined only modulo
O(2), dz, /dt = dz, /dT+ O(2)], d z, /dt~ = a+ —= R+ A+
are the components of the acceleration of the local A
frame, and

It is important to keep in mind that the numerical
value of the external, central gravitomagnetic field H
depends on the precise choice made for the rotational
state of the local A frame. As was discussed in Sec. VD
of paper I, there are two natural choices that can be made
to fix the latter rotational state. A technically simple
choice, which simplifies many of the transformation for-
mulas between the various reference frames entering our
approach, is to tie the rotational state of the local A sys-
tern X, to that of the global system x~ by choosing aA~
trivial rotation matrix R, :

are the A-external global-frame gravitoelectric and grav-
itomagnetic fields, generated by the A-external gravita-
tional potentials in the global frame:

u" = uB.
BgA

(4.14)

The orthogonal matrix R, (T) represents a time-
dependent rotation connecting the local coordinates to
the global ones [x, = z, (T) + R, (T)Ã + O(2)]. We can
as usual define the global components of the angular ve-
locity of the local frame with respect to the global one
by

dB,G
~ij = Rja = ~ji = &ijk~kdT (4.15a)

The local components of the rotation vector u(a,
R, 0, or w,j = R, Rji,A i, ) can also be written as

dA,.

~Gb = +
d

+jb ~6G —~G6C~CdT (4.15b)

Then one can rewrite Eqs. (4.12) in vectorial notation
(dropping an overall superscript A),

H = Hp+2c w, (4.16)

where H = H'+ H" is the total, central gravitomagnetic
field in the local frame rotating with the angular velocity
~, Eqs. (4.15), while

Hp ——v x a+ b —4v x e (4.17)

Coriolis efFacing 1
2c2

More explicitly one Bnds

(4.18)

Coriolis efFacing 1 2 1—vxa+ —vxe — b,2c c2 2c

(4.19a)

denotes the value of H in a local frame which does not
rotate with respect to the global one (i.e. , such that
dR, /dT = 0). Note that the vectorial notation implic-
itly assumes that vectors belonging to different frames
are identified modulo the appropriate transformation of
indices using the (instantaneous) value of R, (in that
sense cu = A). Equation (4.16) makes very clear the fact
that there is one and only one rotational state of the lo-
cal frame which can annul H (Coriolis-effacing frame),
namely, that of angular velocity:

—A
2

—A+ g —A
C2—A—4 CgjgBjQ)k )

(4.13a)

(4.13b)
I

which, after using Eqs. (4.13), with the required accuracy,
gives the following evolution equation for R, :

- Coriolis efFacing
jG"dT

1 2 — — 2
~(v, a, —v, a, ) + —~(i,,B,vi —vjO, ur) + ~(B,tu, —O, vi, ) + O(4) . (4.19b)

In Eqs. (4.17)—(4.19) the external, global-frame grav-
itoelectric and gravitomagnetic fields must all be evalu-
ated at the center of the local A frame (X' = 0), i.e. , on
the central world line x" = z"(T).

Equation (4.18) is nicely consistent with Eq. (4.8)
above because it shows that, starting for example from
a local frame tied to the global one (R, = 0), in which
there are Coriolis effects and where all (monopole-dipole)
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gyroscopes precess according to Eq. (4.8) with the uni-
versal velocity Aprecessicn = Hp/2c, one can efface all2

the Coriolis effects by letting the local frame rotate at
the same velocity as the gyroscopes ("dragging of iner-
tial frames" ) .

The various contributions to the RHS of Eq. (4.19a)
have already appeared in studies of the motion of non-
self-gravitating gyroscopes, notably in the work of SchifF
[25]. The first term —v x a/2c is a special relativistic ef-
fect (Thomas precession [26]), the second term (combined
with the efFect of the first one when the global-frame
acceleration a is of gravitational origins) is essentially
the efFect found by de Sitter [22], the third one is con-
ventionally named after Lense and Thirring [27] because
the latter authors were the first to study some (other)
effects linked to nonzero, global-frame gravitomagnetic
fields. One should note however that our derivation of
(4.19) is the first one valid for self-gravitating extended
spinning bodies, members of N-body systems described
at the first post-Newtonian approximation. Previous
works were generically restricted to the consideration of
test spinning bodies, and had to assume that their re-
sults could be applied to self-gravitating bodies. In fact,
working backwards, and remembering that most treat-
ments start from the assumption that test gyroscopes are
"Fermi-Walker transported" in an external gravitational
field we can express our result (4.18) in the form of the
following theorem.

Theorem 2. Condition (4.11) of effacement of relativis-
tic Coriolis effects is equivalent to the condition that the
vectorial basis e (T~) = [8/MCz]gA [Eq. (2.2) of paper
I], associated with the local coordinate grid constructed
around the central world line ZA(X&n ——0), be Fermi-
Walker transported along ZA with respect to the exter-
nal metric d8A ——g„dxl"dx = G pdX~dX~, defined
in Eqs. (7.7) of paper I or (6.9) of paper II. [We as-
sume for simplicity that the weak effacement conditions—A
W~(T, O) = 0 are enforced so that e+ is orthonormal-
ized with respect to the external metric, see Sec. V E of
paper I.]

We recall that the condition of Fermi-Walker (FW)
transport applied to an orthonormalized vectorial basis
(or "tetrad") e defined along a world line L, with ep
being tangent to l'. , is that the three spatial vectors e
be as nearly as possible parallel transported along 8, i.e. ,

T,e = A ep (FW condition) (4.20)

for some coeKcient A . [The latter coefficient can be
computed from the orthogonality constraints, namely,

= g(e, 'Ve, ep); A vanishes only when 2 is a geodesic
with respect to g.)

On the other hand, the definition of the connection

(FW condition). (4.22)

(And A = I' p' .) As e is a coordinate basis, the con-

nection coefBcients I"
& are simply the Christoffel sym-

bols of G~p(X~), the coefficients of the external metric
in the local frame. Therefore

p ~pG b+cl Gpb ~bGpn
2
1 —- —1

(4.23)

where we have used the normalization condition
G bj &

——6 b, and the definition of the gravitomagnetic
field. The comparison between Eqs. (4.22) and (4.23)
concludes the proof of theorem 2. We leave as an exercise
for the reader to give an alternative proof of theorem 2
by using the result (3.37b) of paper I.

C. Relativistic contributions to the
quasi-Newtonian torque

Let us for simplicity work with the S" definition of the
spin vector, as defined by Eq. (4.5), i.e. ,

SA(1PN) tt SA(lPN) g + MA HAa - C2~~ ~+ 1
I,)1

(4.24)

where some more work would by needed to write the
t series in closed form. S obeys the evolutionA(1PN) '

equation (3.11) with Q.i replaced by zero. The successive
terms in the second t—series on the RHS of (3.11) fall off
(as the terms in the first I series) proportionally to the
tth power of the (generally small) ratio e& between the
radius of body A and the characteristic scale of variation
of the external gravitational field experienced by A. As
the first term in the series (Larmor efFect; see above)
is already very small in most solar-system applications,
we expect the following truncated evolution equation to
represent a useful approximation in practice:

A(1PN) ft
A A ~ A A= &~b. .—.

, Mbl. acl. + 2&~b.Sb &,
l

(4.25)

coeKcients of the external metric with respect to the co-
ordinate basis e = 0/BX~ reads

(4.21)

(Here, we have extended e~ around l:. That extension
was denoted e in paper I.) Therefore the Fermi-Walker
condition (4.20) is equivalent to requiring

In de Sitter's approximate (and heuristic) treatment one
assumes a e. By contrast, note that in our treatment a
is the e~act (Newtonian level) global —frame acceleration of
the extended body A. It difFers from e by all the couplings
between the multipole moments of A and the external tidal
moments (see paper II).

At 6.rst sight, it would seem that the only "relativis-
tic" contribution in Eq. (4.25) is the previously discussed
"Larmor —de Sitter" term (which can be eliminated by
using a suitably rotating local frame). However, one
must remember that the Newtonian-looking torque terms

e b, Mbl. G,I. involve many hidden relativistic contri-
butions. Indeed, the mass multipole moments Ml. ap-
pearing in Eq. (4.25) are the relativistic (BD) moments
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[Eqs. (6.11) of paper I], while the gravitoelectric tidal
moments Gl. are those defined with post-Newtonian ac-
curacy by Eq. (6.13) of paper I. As is clear from the re-
sults of paper I (and as will be discussed in more detail in
a future publication concerning the motion of satellites)
the BD moments are directly measurable from satellite
and other external geodetic data. Therefore one should
in no case try to split Ml. in a "Newtonian" plus a "rela-
tivistic" contribution, but work only with the total Ml. .
However, the situation is difrerent for the relativistic tidal
moments, and notably for the dominant tidal quadrupole
G (, (the l = 0 term, e g, M~G„vanishes when using, as
we recommend, a mass-centered local frame). Indeed,
it was shown in paper II that the tidal moments experi-
enced by body A could be expressed in terms of the (BD)
rnultipole moments of the other bodies B g A. The re-
sulting expressions, Eqs. (5.37) or (A14)—(A16) of paper
II, contain many contributions of order 1/c . For appli-
cations we shall give here the explicit form of the 1PN-
accurate tidal quadrupole moment GAb in the approxi-
mation where the other bodies B g A making up the
N-body system are described by pure mass monopoles
MB in their own local frames (if needed, the results of
paper II allow one to compute the efI'ect of the higher-
order multipole moments Ml ). Taking the results from
papers I and II we have

GA GAIt + ) GB/A

BgA
Here

(4.26)

GAv gA gA
ab =~g (a b) ~

and [see Eq. (A14) of paper II]

(4.27a)

G —STF b dbW ~ + —V d aW2

C

with

b agAdAWB /A

4 „(aW, /"

C

+ O(4),

, aw„/" &

c)x' )
(4.27b)

d =e 'c) =~1 — lb" v'v' IR jc)

(4.28)

Using expressions (A7)—(A10) from paper II for WB/A

and Wa, a tedious but straightforward calculationB/A

leads to

B/A A A / 3GMB } (ij) 1 (ij ) 2 1
n~~ + —

2 n~~ 2VA~ 2&A(ZA} WB(EB} 2(DAB'%B} — 2Ba'lA )8
AB

+&ATAB + &ABTAB + VABVAB + (&AB' vB) VB&AB (nAB' vB)&AB&AB
j) (~ j)

—3(nAB VBA}BggVgg + (nAB VA}VgTlgp (DAB VB VA}llgg )
(' j) (' j) (i j)

(4.29)

in which v}A(ZA) is given with sufBcient accuracy by

V}A(ZA) = ) ~O(2) .
GMc
TAG

In Eq. (4.29) one has denoted, as usual,

I

of body A by neglecting the tidal couplings in its trans-
lational equation of motion (see paper II) we can write
the inertial contribution as

GAIP ~A~A ~A~B + B (i j)
ab 2 (a b) — ia j b / 3

—GATAB
AB

TAB =
GAZA ZBt &AB

= (ZA ZB)/TAB) VAB = VA VB

1 AB = ZA —ZB, RAB = BA —BB
{4.so)

(4.31)

which precisely cancels the corresponding term in (4.29).
As a check on the result (4.29) we have also derived

the PN expression for the tidal quadrupole moment by
using relation (3.40) of paper I:

ZA, vA, aA denoting, respectively, the position, velocity,
and acceleration of the (BD) center of mass of body A.

The total quadrupole tidal tensor experienced by body
A is obtained by summing Eq. (4.29) over all the N —1
other bodies B and by adding the inertial contribution
G z', Eq. (4.27a). If we can approximate the acceleration

l

G b=B( Eb)
3—

K( b) + ——
2 E( Et,) + O(4) (4.32)

where K b are the following tetrad components of the
curvature tensor of the external metric:

~ab = +O, Ppb &O& &O&b g
P p 6

1
~[~,'q + 2( 2~~, 'q +/}'qv},m—v},m——,'', q + 2v ~,'q + ~iq~, ii + 4v}(i,j)i + 'j,ia +

4wA, ijv + 4Q/(i j)gv sv(iw j)gv 2v(iv} j)i)]'A: — k (4.ss)
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where the comma denotes a partial derivative and T(,~) =
2 (T,~ + T~,). An expression equivalent to (4.33) was de-
rived in Ref. [28].

V. CONCLUDING REMARKS

This third paper completes the theoretical foundations
of our new formulation of relativistic celestial mechanics.
In the first-post-Newtonian approximation of Einstein s
theory of gravity our new scheme yields a complete de-
scription of the global dynamics of systems of N, arbi-
trarily composed and shaped, rotating and deformable,
bodies ("the external problem" of celestial mechanics),
the local gravitational structure of each body ("internal
problem" ), and the way they fit together ("relativistic
theory of reference systems"). Our formalism is built
up in a purely constructive way by proving a number of
theorems; each concept introduced is well defined and in
acordance with Einstein's theory at the 1PN level.

We think that this formalism is well suited for dealing
with the various practical aspects of relativistic celestial
mechanics and astrometry in the solar system. It should
also be very useful in discussing the conceptual problems
that arise when trying to define a hierarchy of reference
frames in the solar system that can be realized opera-

tionally. It is in a position to yield new and improved de-
scriptions of relevant measuring techniques, such as satel-
lite laser ranging (SLR), lunar laser ranging (LLR), OPS,
very long baseline interferometry (VLBI) or astrometric
techniques, as well as more accurate equations of motion
for celestial bodies in the solar system like the planets,
Sun, Moon, Earth, or artificial satellites. Finally, it leads
to improved theories of gravimetry and gradiometry.

It is clear that for certain applications one might want
to extend the scheme in a natural manner. The introduc-
tion of a whole hierarchy of frames instead of one global
and several independent local ones, including frames at-
tached to the center of mass of composite subsystems
(like the Earth-Moon one), topocentric frames, etc. , is
quite natural. For other applications one might introduce
"models" for specifying the mass- and spin-multipole mo-
ments of the various bodies as a function of time in their
local rest frames. Special applications of our framework
will be published in further articles.
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