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We describe briefly the standard problems associated with the detection of a periodic signal of
astrophysical origin. We present a method for data compression when the bandwidth of the expected
signal is much smaller than the detector bandwidth. The reduced data set can be corrected for the
Doppler shift due to Earth's orbital and rotational motion even when the expected signal is close to
the Nyquist frequency of the original data rate. Standard matched filtering techniques and Fourier
transform processing can also be implemented on the compressed data stream. We applied this
procedure to 100 hours of data taken with the Garching gravitational wave prototype detector. The
results of this test reveal that the amplitude statistics of our prototype in the frequency domain
follow closely the expected Rayleigh distribution over all 100 h. This analysis puts a constraint of
9 x 10 on possible gravitational wave strains produced by periodic sources in SN 1987A.

PACS number(s): 04.80+z, 95.75.Pq, 95.85.Sz, 97.60.Gb

I. INTRODUCTION

In March 1989, we undertook a 100 h coincidence run
with the Garching and Glasgow prototype laser interfer-
ometric gravity wave detectors in order to verify their
reliability over long time periods. In this paper, we
present the data analysis methods and results from a pul-
sar search on this continuous 100 h using data from the
Garching prototype only.

The goal of this investigation was to search for a pulsar
within a restricted bandwidth of a few Hz near 2 and
4 kHz in the direction of the 1987A supernova. These
parameters were chosen to agree with the observations of
a submillisecond pulsar in SN 1987A reported by Kristian
et aL [1].

An eKcient scheme was developed using a digital com-
plex heterodyne technique (CHT) for data compression.
The original data were reduced by a factor of 1250 which
greatly eased the computational burden of a Fourier
transform over 100 h of data. The CHT has an added
advantage that the Doppler shift correction and matched
filtering can subsequently be performed on the reduced
data set.

The results of the data analysis revealed that the fre-
quency domain statistics follow the Rayleigh probability
distribution that is expected to result from random white
noise. The statistics from the entire 100 h of data allowed
us to set a detection limit for signals in our restricted
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bandwidth, and originating from SN 1987A: strains of
9 x 10 2i for either polarization, with 9570 confidence
against false alarms.

II. THE 100 HOUR DATA RUN

The high sensitivity of the prototype laser-interfero-
metric gravitational wave detectors has now led several
groups to propose building full scale astrophysical obser-
vatories [2—4]. These plans require that the prototypes
evolve from laboratory setups used to test new optical
measurement techniques into stable astrophysical instru-
ments. This led to the decision by the Glasgow and
Garching gravitational wave groups to run their proto-
type detectors in coincidence for 100 h between March 2—
6, 1989. The purpose of the data run was to demonstrate
the ability of the interferometric prototypes to operate in
a stable condition over time periods of many hours. Data
were collected for later analysis of the interferometer per-
formance, to look for possible signal correlations between
the two prototype detectors, and to search the data for
possible signals of astrophysical origin.

The data-taking run clearly showed that there are no
fundamental obstacles for continuous operation of the
planned full scale detectors. The duty cycle of both pro-
totype interferometers was quite high. For example, the
Garching prototype maintained a servo lock duty cycle of
about 99Fo and required very little manual intervention.
The overall duty cycle of the Garching prototype was,
however, reduced to about 90% due mostly to the lack
of a dual tape drive in the data acquisition hardware.
Similar duty cycles were obtained with the Glasgow
prototype [5].
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III. THE GARCHING DATA ANALYSIS
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FIG. 1. Measured noise spectrum of the Garching GW
interferometer. The spectrum is given as linear spectral den-
sity h(f) of the apparent strain h(t), in units of Hz '~ . The
noise spectrum is flat (and near the shot noise limit) in the fre-
quency range from 1 to 3kHz, and again above 3.7kHz; the
apparent drop is due to the 4kHz antialiasing filter which,
however, attenuates signals and noise in identical fashion.
The double peak near 3.5 kHz is due to mechanical resonances
in the setup.

There were three distinct parts of the Garching data
analysis. First a careful study has been made [6] of the
time domain amplitude statistics and possible correla-
tions with the various "housekeeping data" which moni-
tored servo conditions and seismic noise. Second, we de-
veloped an efficient data compression algorithm ideally
adapted to searching a narrow bandwidth for periodic
signals. We applied the technique to the 100 h of data to
examine both the statistical characteristics of the noise
and to set strain limits on gravitational radiation from a
restricted class of periodic signals in SN 1987A. Finally,
the data from both prototype detectors are currently be-
ing examined for possible correlations [7].

The results of the first analysis have yielded a great
deal of prototype-specific information, some of which was
new. For example, we learned that the system loses lock
for short periods (less than 1 min) during automatic ar-
gon refills in the laser system. Many harmonics of the 50
Hz line frequency were also observed which indicate that
better electrical isolation would be helpful. In addition,
we found that the laser cooling system introduced peri-
odic short-lived spikes. Such observations have been one
immediate benefit of the 100 h data run.

Shown in Fig. 1 is a sample Fourier noise spectrum
of the Garching prototype during the test run. The
curve was made by averaging 10000 contiguous individ-
ual power spectra of length 50 ms each near the beginning
of the data taking run. The very high spectral contribu-
tions below 1 kHz, due largely to seismic noise [8], have
been partly removed by an analog high-pass Filter (with a
corner frequency of about 300 Hz) to avoid amplifier sat-
uration caused by low-frequency drifts. The noise floor
above 1kHz becomes constant (white) and approaches
the theoretical shot noise limit for the setup [8, 9]. The
high-frequency portion of the spectrum was attenuated

by two (four-pole) electronic low-pass filters with a cor-
ner frequency of about 4kHz. These filters provided suf-
ficient antialiasing to ensure a good signal-to-noise ratio
(SIM) up to 4 kHz when the interferometer was sampled
at 10kHz.

The noise amplitude varied slowly as a function of time
by as much as a factor of 2 or 3 over a span of several
hours. The general trend was for the noise to become
larger as time progressed, due to a slow misalignment of
the beam. Toward the middle of the 100 h run the inter-
ferometer was manually readjusted, which helped bring
the system back to the original noise level. At the time
of the data run, the origin of the slow misalignment was
unknown. Recently, however, a component responsible
for beam steering was identified as having poor mechan-
ical stability. Changing this component has reduced the
beam steering drift quite markedly. Finding this prob-
lem was another example of how the prototype benefited
from the data taking run. In the planned full scale de-
tectors, however, the problem with beam steering will
be eliminated by automatic servo controlled alignment
systems.

IV. A PULSAR SEARCH IN SN 1987A

A. General motivation

This paper describes the results of that part of the
Garching data analysis designed to search for periodic
signals of astrophysical origin. The original motivation
for this analysis was provided by the reported optical
sighting of a submillisecond pulsar in the remnants of
supernova 1987A by Kristian et at. [1]. They observed an
optical pulsar of frequency 1968.629Hz with significant
power in higher harmonics. They also reported that the
pulsar observations were improved by a transformation to
barycentric coordinates to remove effects of the Doppler
shift. In the same paper, they speculated that obscuring
matter could explain the fact that it was not observed
13 days later. Efforts made to duplicate the observation
ultimately failed [10],and it is now believed to have been
caused by instrument error [11].

Although the reported frequency and its second har-
monic (2 and 4 kHz) are well within the measure-
ment bandwidth of the present gravitational-wave (GW)
prototypes, any reasonable estimates of the expected
strength from such a pulsar are still several orders of
magnitude smaller than the sensitivity of these detectors.
If, for a rough estimate, one assumes that the rotational
energy of the reported pulsar (estimated by Kristian et
at. [1] as about 6 x 1045 J) would be converted into GW
radiation over only five years, the expected strain ampli-
tude at the earth would be as low as 5 x 10 25. This
limit is still about three orders of magnitude too small
to be seen using 100 h of data with the Garching pro-
totype (assuming a constant noise background of about
10 is Hz i~2 reported by Shoemaker et at. [8]).

Despite the poor chances of detecting gravitational ra-
diation from pulsars in SN 1987A, we decided that it
would nonetheless be useful to search for possible signals
using the 100 h data from the Garching detector to see
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what practical limit could be obtained. In addition to
any physical significance of such a limit, we could also
gain valuable experience and develop analysis techniques
which may prove useful when the full scale observatories
are operational. The pulsar search also provided a prac-
tical framework in which the frequency domain statistics
of the noise from the prototype detectors over long ob-
servation times could be studied and compared with the
expected statistical distribution.

B. Overview and goals

The pulsar search was made in a bandwidth of about
4 Hz around both the fundamental frequency 1968.629 Hz
reported [1], and its second harmonic. The relatively
large bandwidth was chosen to allow for a possible fre-
quency drift between the time of the optical sighting and
the time of our 100 h run. This bandwidth also allows
one to make a very simple Doppler shift correction over
the entire 100 h as will be explained later. We restricted
the pulsar search to the direction of supernova 1987A
when applying the Doppler shift corrections.

An important part of this analysis was to incorporate a
data compression (decimation) algorithm which reduced
the volume of the data by a factor given by the ratio
of the original bandwidth to that required for signal de-
tection. In this case, the original data were sampled at
10kHz corresponding to a Nyquist bandwidth of 5 kHz.
The data were compressed by 1250 resulting in a 4Hz
bandwidth for the pulsar search. The fast Fourier trans-
formation (FFT) over the entire 100 h was quite easily
managed with normal memory requirements on a Cray-
XMP in less than 30s of CPU time. In fact, the large
majority of the total CPU time (about 45 min) was used
for the data compression algorithm itself. Therefore some
effort was spent trying to optimize the technique and the
program code.

It was also important to develop a technique which
would allow Bexible signal processing on the reduced
(compressed) data set. In particular, it was necessary
to be able to correct the signal for amplitude and phase
modulation caused by Earth's motion relative to the
source.

The data compression scheme which we developed (and
will describe in the next section) satisfies both goals of
being efIicient in terms of CPU time and memory and be-
ing fIexible in terms of subsequent signal processing. The
compression requires roughly one complex multiplication
and addition per data point. The technique is applied in
the time domain and thus does not require large mem-
ory stores often needed for convolution techniques in the
frequency domain. Furthermore, we will show that sig-
nals in the compressed data stream can be simply (and
with low computer cost) amplitude or phase modulated.
Thus, one can apply a great variety of different analyses
to the same set of compressed data. This may be use-
ful, for example, if one wants to look for pulsars over the
entire sky where a different Doppler shift correction is
required for every source direction.

In order to emphasize the importance of data reduc-
tion for broadband laser interferometry, let us consider

the 100 h data set from the Garching prototype. The
main interferometer was sampled at 10 kHz. The various
housekeeping data channels raised the overall data rate
to 20kHz. Over 100 h about 10 samples were written
onto tape. The Glasgow prototype, for an identical time
resolution, had an even higher overall sampling rate of
60 kHz.

Therefore it is important to keep the number of oper-
ations made on the full data set small to avoid excessive
computational time. Even more problematic is the large
amount of memory that is required to perform the eK-
cient FFT routines. This limitation would rule out the
possibility of making an FFT over the 100 h without the
data reduction mentioned above. It is, of course, possi-
ble to perform large FFT's in small pieces [12] but only
at the expense of severe input-output limitations. Cer-
tainly, large memories exist and faster computers will be
developed, but this does not diminish the utility of devel-
oping e%cient algorithms or data compression techniques
for GW detection.

The pulsar analysis presented below can be split into
four distinct categories: data compression, Doppler shift
corrections, polarization dependent demodulation, and,
Anally, statistical peak detection. The latter three topics
have been discussed by Livas in connection with a data
analysis of the MIT prototype [13,14]. However, the data
compression and especially our method of Doppler shiR
correction has not yet been discussed for GW detection.

V. DATA COMPRESSION

A. General discussion

The sampling theorem states that any continuous real
function with a bandwidth limit B can be completely
specified by discrete values sampled with a frequency
fs & 2B. Defining the Ãyquist frequency fN as half
the sampling frequency, the sampling theorem is valid
if fN )B. One can extend this concept to digital data
streams where the original sampling rate is higher than is
needed to record some signal of interest. The originally
sampled data stream can be digitally filtered to preserve
desired signal frequencies and then resampled at a rate
compatible with the necessary signal bandwidth. The
data compression can be optimal in the limit where the
digital filters are square in the frequency domain.

It is natural to combine data compression with any
data analysis that has a bandwidth much smaller than
that contained in the original data stream. Data reduc-
tion is especially important in cases like this pulsar search
where the bandwidth ratio is quite large (1250).

There are several techniques which can be used to com-
press the data as well as several different types and real-
izations for the required digital filters. In the next subsec-
tions, a brief introduction to the concepts and the filter
requirements for three different data compression tech-
niques will be given. These will be called single quadra-
ture heterodyning, aliasing, and complex heterodyning
techniques. The advantages of the latter will be ex-
plained, and we will show that this scheme is efFicient
and also makes possible a very simple way to perform
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the necessary Doppler shift corrections on the reduced
data set.

A discussion of the digital filtering requirements, tech-
niques for filter realization, and the computational de-
mands for the different types of digital filters can be
found in Appendix A.

B. Compression techniques

Single quadrature heterodyne technique (SQHT)'
One simple approach to data compression is to apply a

bandpass filter centered on the desired signal frequency
(not necessarily near dc). This can be followed by a
multiplication (heterodyne) with a sinusoidal signal, at
a frequency f equal to the lower edge of the filter. The
difference frequencies will be shifted near dc and the sum
frequencies can be removed by a low-pass filter before re-
sampling at a lower rate. The first (bandpass) filter is
required to keep noise from below f to be heterodyned
to the same place as the corresponding signal frequen-
cies above the heterodyne. The final low pass is needed
to avoid aliasing from the sum frequencies. (Notice that
the initial bandpass could be replaced by a high-pass fil-
ter with the corner frequency at the lower edge of the
signal bandwidth. )

8. Aliaaing technique (AT)

A better approach might be to apply a bandpass filter
centered on the desired signal frequencies (as described
above) and simply resample without heterodyning or low-
pass filtering [15]. This technique "aliases" the lower edge
of the passband to dc if the low-frequency cutof is cho-
sen to be a multiple of the resampling frequency. The
advantage of the AT is that one avoids the heterodyne
and the final low-pass filter needed in the SQHT.

8. Complex heterodyne technique (CHT)

The most fIexible data compression scheme is the CHT.
The CHT requires a heterodyne (multiplication) of the
original data with both a sine and a cosine function, with
frequency f chosen to lie at the center of the signal
bandwidth. These two heterodyned series are then low-

pass filtered (for reasons of antialiasing) before resam-
pling.

We will refer to the real functions resulting from the
heterodyning of the original data X'i as the cosine and
sine quadratures

Cq ——Xq cos w

Sq ——Xq sin w t,

where t is an integer index denoting the original sampling
times. It is usually more convenient to consider these two
real quadratures as a single complex time series, the an-
alytic signal, where the cosine and sine quadrature are
taken to be the real and imaginary components, respec-
tively, i.e. , Ai ——Xi exp(iu~t). We will use these same

names for the heterodyned functions directly after mul-
tiplication with the original data, after low-pass filter-
ing, and also after the resampling. This should cause
no confusion since the functions contain the same signal
information after each step.

The analytic signal produced by the CHT is simply a
frequency shifted version of the original data according
to standard Fourier transform theory. Any signal 2:,(t) =
x,0 exp( —iw, t) will be shifted to x,ii exp[ i—(cu, —u )t].
The mirror frequencies equidistant on either side of the
heterodyne, which would be mapped to the same place in
the SQHT, are instead separated into positive and nega-
tive frequencies using the CHT. This can be understood
in the frequency domain since the cosine quadrature con-
tains the sum of two terms coming from the mirror fre-
quencies of the original data. The sine quadrature, on the
other hand, contains the difFerence of these two contribu-
tions (with the imaginary factor —i). The complex sum
C+i S (the analytic signal) separates these contributions
neatly.

One consequence of the above discussion is that no fil-
ter is needed before the complex heterodyning. Thus,
the CHT requires only one complex multiplication and a
digital low-pass filter before the resampling process. The
simpler filtering requirement can be an important advan-
tage over the other two methods we have discussed. The
main difference is that for the SQHT and the AT very
sharp filters are required because of the high corner fre-
quencies relative to the bandwidth. For example, this
pulsar search would require digital filters with cutoff fre-
quencies near 4kHz which begin to roll ofF after 0.1Hz
if the SQHT or the AT is used. The CHT, on the other
hand, requires a single low-pass filter with a corner fre-
quency of about 2Hz which rolls ofF after about 0.1 Hz.
We will see later that a high quality low-frequency dig-
ital filter can be constructed that uses only about one
addition for each original data sample.

At first glance, it might seem that the data compres-
sion is worse by a factor of 2 for the CHT because of
the need to store both the real and imaginary compo-
nents (cosine and sine quadratures) for the resampled
data stream. This is not the case, however, because the
positive and negative frequency components of the com-
plex data stream are unique. As mentioned above, the
frequencies above and below the heterodyne are sepa-
rated into the negative and positive frequencies. This is
in contrast to the components of the real data streams
produced by the SQHT or AT in which the positive and
negative frequencies are redundant. This means that
the required resampling rate for the CHT is only 2 that
needed for the SQHT or the AT. Thus, any of these tech-
niques can be used to achieve the same data compression
factor. In practice, the compression is limited only by
the quality of the digital filtering and the required band-
width.

One of the most useful advantages of the complex het-
erodyning (CHT) is that the phase of the heterodyne
frequency can easily be varied using a second complex
heterodyne in the time domain by multiplying the com-
plex analytic signal with the phase function e'&. This
phase factor simply adds to the initial heterodyne func-
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tion exp(i cu t) The phase adjustment P can have a time
dependence (and may also have a frequency dependence),
thus allowing the heterodyne to follow a phase (or a fre-
quency) modulated signal. The most important point,
however, is that when the phase modulation is slow com-
pared to the resampling rate, these corrections can be
made on the reduced (resampled) data set.

This technique is useful for correcting pulsar signals
for the phase modulation caused by the Doppler shift.
We will see later that this technique is especially helpful
in the case where the pulsar signal is sparsely sampled
in the original data stream. It is also convenient that
the Doppler correction can be made for sources in many
different parts of the sky using the same compressed data
set.

C. Data compression on the Garching data

The data compression was made for two different fre-
quencies which we will call the 2 and 4kHz heterodyne
channels. More precisely, the center (or heterodyne)
frequencies are given by the fractional values yo2y kHz
(1968.658Hz) and its second harmonic. These frequen-
cies were chosen to be near those reported by Kristian
et al. Ilj, and to be rational so that the functions could
be stored in a look-up table. The original data X~ were
multiplied by a sine and cosine heterodyne function as
shown in Eq. (1) for the 2 and 4kHz channels.

The last step of the CHT required low-pass filtering
of each quadrature for each channel prior to the resam-
pling. This was broken down into three successive stages
of filtering and resampling. Since each stage operated on
a successively smaller input data stream, we were able
to use increasingly sophisticated filters. The result was
that we could have a very simple filter for the first stage
and still end up with a sharp filter for the last stage with
almost no computational increase.

The first filter stage was a simple moving boxcar aver-
age of 50 data points. These low-passed data were resam-
pled such that neighboring averages overlapped by 50'%%uo.

This choice of resampling moved the Nyquist frequency
of the resampled data stream outside the main lobe of
the sine(2:)=sin(x)/x produced by the boxcar low-pass
filter (see Appendix C). The first step compressed each
quadrature (for each channel) by a factor of 25, from
10kHz to 400Hz.

The second stage compressed each quadrature by an-
other factor of 25 producing time series resampled at
16Hz. The filter chosen for this step was a two-pole
Butterworth infinite impulse response (IIR) digital filter
with a cutoff frequency f, of about 2.53Hz. The mea-
sured transfer function agreed very well with the usual
Butterworth form

tures (sine and cosine) the data reduction factor is only
1250. The antialiasing filter for this final step was an IIR
six-pole Butterworth digital low-pass filter with a cut-
off frequency of about 1.4Hz. The cutoff frequencies for
both the second and third stages were chosen so that the
attenuation was about 20.0 dB at the resampled Nyquist
frequency.

The first boxcar filter and resampling stage required
only about one complex addition per original data point
(for each channel). Furthermore, since this first filter was
not recursive it could take full advantage of the Cray vec-
torization. The following two stages, although more com-
plex, required less computation because they operated on
compressed data sets. In fact, the first filter stage domi-
nated the total computational CPU time associated with
the entire pulsar search.

As discussed in Appendix A, the IIR filters can be
realized with about n multiplications and additions on
each input data point when the data reduction factor is
greater than the number of filter poles n. However, since
an IIR filter is recursive, it cannot be vectorized on the
Cray. Therefore for the last two stages, the code was
interleaved so that both quadratures of both channels
were handled in parallel.

Finally, we note that the IIR low-pass filters can suf-
fer significant roundoff error if the data reduction factor
is too high relative to the precision of the arithmetic.
This was noticed in single precision (four byte) arith-
metic when trying to compress the data by the full fac-
tor of 1250 using only one filter and resampling stage on
our mainframe computer. The roundoff problem was no
longer observable after the process was broken into the
three steps described above. Furthermore, since the pul-
sar search was ultimately run on the Cray-XMP with 64
byte fIoating point arithmetic, the roundoff error in the
digital filters was insignificant.

This three step low-pass filter and resampling proce-
dure had the computational efficiency of a simple moving
average but resulted in a filter shape corresponding to a
six-pole Butterworth filter. Each compressed quadrature
was finally sampled at 4 Hz giving an overall data reduc-
tion factor of 1250 compared to the original data stream.
The bandwidth of the pulsar search was restricted to
about 3.6Hz centered on each heterodyne frequency in
order to avoid looking at frequencies containing signifi-
cant aliasing. The final bandwidth could have been in-
creased somewhat by using even better low-pass filtering
in the last stage. However, trying to gain more band-
width by using sharper filters gives diminishing returns
once the unaliased bandwidth is close to the Nyquist fre-
quency of the compressed data.

VI. DOPPLER SHIFT CORRECTION

82 '"=1+(~i~)- (2)

where n is the number of poles.
The final stage compressed the data by another factor

of 4 so that each quadrature was sampled at 4Hz. This
corresponds to a reduction in sampling rate by a factor
of 2500. However, since we have to store two quadra-

Relative motion between the source and the detector
gives rise to the well-known Doppler shift. Earth's ro-
tation and the orbital velocity both combine to modu-
late the frequency (or phase) of possible extraterrestrial
signals. In the case of a periodic signal, the modula-
tion splits the signal into many frequency components
separated by diurnal and annual periods. This seriously
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degrades the SNR in any single frequency bin when the
observation time is long enough to resolve these frequen-
cies.

One can remove the Doppler shift caused by Earth' s
motion by correcting the laboratory measurements by the
time it would take a signal to travel from the detector to
some rest frame —the barycentric frame. The time delay
between the barycentric and lab frames can be calculated
simply as the dot product of the Earth-barycenter vector
with a unit vector in the direction of the source star.
Over 100 h this ean be described adequately by a time
delay bt given by a sum of two sinusoidal terms:

6t = ar cos(Art + pl) + a2 eos(fl2t + 0'2) &

where Ar and 02 are the orbital and rotational angu-
lar frequencies, respectively. The amplitudes and phases
depend on the location of source and detector.

The time difFerence between the Garching detector and
the barycenter for a signal originating from the direc-
tion of SN 1987A was calculated using a standard routine
EARTH [16] which includes perturbations of the barycen-
ter due to the planets. The results of the program were
fitted to Eq. (3) giving the parameters: ar = 31.43 s,
a2 = 5.00ms, pr = 214', and p2 = 313'. The time was
referenced to the starting of our 100 h run at 16:00 lo-
cal time on March 2, 1989. The residuals after fitting
the time delays calculated using EARTH to Eq. (3) were
found to be less than 100ps (the time between 10kHz
samples) .

A signal s(t), which is a pure sinusoid with frequency
u, and amplitude so in the barycentric frame, acquires
a phase modulation in the lab frame due to the time
correction bt of

s(t) = s() sin ~,(t + bt) .

Using Eq. (3) for 6t, and expanding Eq. (4) we can
estimate the observation time one can have before the
Doppler shift becomes important. The constant and lin-
ear terms in a power expansion of the time correction
(as a function of time) can be ignored for this pulsar
search. The constant term causes only a phase shift and
the linear term introduces only a frequency ofFset (small
compared to the bandwidth of the search). The quadratic
term, however, causes the frequency to change with time.
The frequency ean change by one bin (given by the recip-
rocal of the observation time) in 11 min for the orbital
term and 4 min for the rotational term for a signal fre-
quency of about 5 kHz.

The spread in frequency due to the modulation can
also be understood by expanding Eq. (3) in the frequency
domain. The result is that the signal frequency u, is
split into many sidebands with separations given by Ak
where A: = 1,2 for orbital and rotational frequencies, re-
spectively. The amplitude of the nth sideband, with fre-
quency w, + nA)„ is given by J (ah, w, ) and is significant
until n becomes greater than the argument of the Bessel
function. This quantity akim„ the so-called modulation
index, is quite large for both the orbital and rotational
terms for signal frequencies in the kHz range.

A. Interpolation

Compensation for the Doppler shift due to Earth mo-
tion is accomplished by using the barycentric time in-
stead of the laboratory time for the Fourier transform
variable. This transformation provides the correct de-
modulation for signals of any frequency. A practical
problem arises, however, when trying to perform the dis-
crete Fourier transforms (DFT) on a data stream which is
not sampled at equal intervals in the barycentric frame.
In theory this can be solved by interpolating the data
consisting of equally spaced data in the lab frame to
equally spaced samples in the barycentric frame. The
sampling theorem states that a function 2: which is band-
limited to B and sampled with a period T & & can be
interpolated precisely using the relation

OO

x(t) = ) z(nT) sine vr( ——~) (5)

where sine(z) = sin(2:)/x and n is an integer. In practice,
however, Eq. (5) converges very slowly. Moreover, the
interpolation would have to be done on the original data
stream which increases the computational burden.

H. B.ebinning

A~ = slnc cos 7t —+—
S

for n = 0, +1,+2, . . .

A very common procedure for coarse interpolation is
to "rebin" the data into the nearest of the equally spaced
time bins in the barycentric frame. This method, called
"binning, " consists of omitting or repeating a data point
whenever the lab frame slips relative to the barycentric
frame by one sample. The time scale for the slip between
the lab and barycentric frames by one 10 kHz sample is
about 107 samples. This limit comes from the quadratic
tern1 of the Doppler shift due to Earth's rotation.

At first glance, it might appear that omitting one data
point out of every 10 should not seriously affect the data
evaluation. In fact, however, binning fails quite badly
when the signal is only sparsely sampled in the original
data. This is clearly the case for our 4kHz channel in
which the signal would be sampled only 2.5 times during
one period. Omitting a data point, therefore, introduces
a sudden phase change of 144' causing a severe loss of
signal.

In order to appreciate the magnitude of the error
which may be introduced by binning, consider the simple
case of a sinusoidal signal with a constant Doppler shift.
Then the time delay between the lab and reference frame
changes with a constant velocity. The effect of binning
can be seen by omitting one data point in the middle of a
record containing a pure sinusoid. This can be expressed
analytically as the sum of two square time windows one
of which is time shifted by one sample. The resulting
signal is distributed over sidebands with amplitudes A
given by
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where f, is the signal frequency and fs the sample fre-
quency. Thus, for our case of data sampled at 10kHz,
binning would reduce the amplitude of the largest side-
band of a 2 and 4kHz signal to 80% and 70%%uo of the
original value, respectively. The amplitudes drop further
as the observation time is increased so that many slips
occur between the lab and barycentric frames. Notice
that this result is independent of the length of the data
record.

We have shown with this simple example that binning
can introduce serious errors for signal frequencies which
are not small against the sampling frequency. These re-
sults are only marginally improved for these frequencies if
linear interpolation is used instead of binning. As stated
above, it is not practical to consider higher-order interpo-
lations using Eq. (5) since the series converges too slowly.
It has been suggested [14, 17] that the data can be over-
sampled to reduce the binning error. However, this solu-
tion is clearly not in line with the our stated purpose of
reducing the data rate.

C. Frequency tracking

An alternative to interpolation of the input data is
to slowly vary the phase of the heterodyne frequency to
follow the Doppler induced phase shift. The correction
is made by simply multiplying the analytic signal with
exp(ice, bt), where a, is the anticipated signal frequency
near 2 or 4kHz and bt is the time correction between
the lab and barycentric frames. This can also be under-
stood as a slow rotation of the complex plane so that
the Doppler shifted signal remains stationary. One im-
portant advantage of this procedure over interpolation is
that the phase shift can be calculated explicitly so that
the Doppler shift correction can be made exact. Perhaps
of even greater importance is the fact that the correction
can be performed on the reduced data.

The time dependent phase factor is a function of the
source and detector locations (because of 6t) and also de-
pends linearly on the expected signal frequency u, . In
our particular pulsar search (SN 1987A) the frequency w,
was assumed given from astronomical observation. But
in a general survey cu, is not known in advance. It is
possible, however, to use the heterodyne frequency ~
(instead of u, ) to correct for the Doppler shift of all sig-
nals inside a limited bandwidth. This is equivalent to
making a second complex heterodyne (in the time do-
main) on the reduced data, with the function exp(i u bt)
where bt is calculated for a given source location in the
sky. The phase error associated with this procedure is
given by the product of the time correction bt and the
difference u —~, between the heterodyne and signal fre-

quencies. A numerical calculation of the phase error in
the Doppler shift correction using a frequency of about
4kHz and the time function given in Eq. (3) integrated
over 100 h constrains the bandwidth to about 5 Hz. This
sets the scale for the largest reasonable resampling rate
such that the Doppler shift can be made on the reduced
set with a constant frequency over the given observation
time.

VII. POLARIZED GRAVITATIONAL WAVES

o 0~ po 1 0
0 —1 0

I
and hx ——

/
1 0 0

(0 o 0) &0 o 0)
(8)

where the z axis is aligned with the propagation direc-
tion.

The results written in terms of the source location
(propagation direction) and the detector coordinates are

Gravitational radiation emitted from a pulsar spinning
with constant frequency has a polarization which is de-
pendent on the angle between the spin axis of the source
and the observation point [18]. Ignorance of the spin axis
therefore introduces an uncertainty in the polarization
state of the gravity wave. In general, the gravity wave is
a linear combination of two polarizations denoted as h+
and h„. In addition, there is an unknown constant phase
difference between the two states. Purthermore, an arbi-
trary rotation of the observation axis in the direction of
polarization will mix the two possible linear polarization
states [19].

Interferometric GW detectors have different sensitivi-
ties to the two linear polarizations. The sensitivity to a
given polarization changes as the plane of the detector
rotates around the propagation direction of the gravita-
tional wave. Therefore, the measured signal V(t) of an
unknown pulsar can be written as a linear combination
of the two polarizations multiplied by the corresponding
sensitivity of the detector to a certain polarization,

V(t) = A+8+(5) cos(u t + Pp) + Ax S~ (t) cos u 5, (7)

where A+ and A&& are the strengths of the orthogonal po-
larization states, w, is the frequency of the gravity wave,
and Pp is the relative phase between the two components.
The sensitivities S+ and Sx are in general time depen-
dent functions of the relative position between the (fixed)
source and the detector attached to a moving earth.

The sensitivity to the two orthogonal linear polariza-
tions can be derived by rotating the reference frame of the
interferometer into the plane perpendicular to the prop-
agation direction of the signal. In this frame, the spatial
components of the h+ and h„strain matrices [20] are

S+ ——Ssin n sin 8 cos 2g + sin 2n sin 28 cos 2@ cos il —2 sin 2n sin 8 sin 2g sing
+ (1 + cos n) (1 + cos 8) cos 2g cos 2il —2 (1 + cos2n) cos 8 sin 2@ sin 2g, (9)

Sx ——4sinn sin8 sin 2$ cosy+ 2sinn sin28 cos2$ sing+ 4cosn cos8 sin2@ cos2il
+ 2cosn (1+cos 8) cos2@ sin 2g.
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Here n and P denote the declination and right ascension
of the source, respectively. The detector has a colati-
tude and east longitude of 8 and A, respectively, and g
is the angle between one arm of the interferometer and
the local northerly direction. The time dependence has
been combined in the function g(t) = A —P+ AEt, where
AE is the earth rotation and t is the local sidereal time.
One can see from Eqs. (9) and (10) that the sensitivity of
the detector to either polarization has both diurnal (g)
and semidiurnal (2g) terms. In addition there is a time
independent sensitivity to the + polarization.

One can show in general that there is a 90' phase shift
between the two polarizations for both the diurnal and
semid. '&mal terms. Thus, the integral over time of the
product of the two sensitivities is zero —irrespective of
the location of source and detector. This is a manifes-
tation of the orthogonality of the two GW polarization
states. Either polarization can therefore be selected by
multiplication of the detector output with one of the de-
sired sensitivity functions S+ or Sx before signal detec-
tion.

In the case of pulsar detection, a signal can be ex-
pressed as the sum of two amplitude modulated sinu-
soidal signals (one for each polarization) as is shown in
Eq. (7). The amplitude modulation S+ and S&& split each
sinusoidal signal into as many as five sidebands due to the
dc, diurnal, and semidiurnal terms. This naturally leads
to a reduction in SNR if the pulsar search is made for a
single frequency. The power in these sidebands can be
restored to the carrier frequency by multiplying the de-
tector output by one of the sensitivity functions shown in
Eqs. (9) and (10). As stated above, this procedure also
selects one of the two polarizations due to the orthog-
onality. If the signal polarization state is known, this
procedure wiLL give optimal signal detection because it
simply reduces to matched filtering the signal.

If the polarization of the signal is not known, however,
examples can be found where filtering each polarization
can either increase or decrease the chance of signal detec-
tion when scanning the Fourier transform for a significant
peak. Consider, for simplicity, a detector placed on the
north pole receiving GW radiation from a source directly
overhead. The GW signal given by Eq. (7) reduces to

V(t) = A+ cos 2AEt cos (w, t + $0)
+ Ax sin20Et cosset, t.

If only one polarization is present (i.e. , A+ or A&& is zero)
then the signal has two sidebands at w, + 20K. Here it
is helpful to demodulate the signal so that the signal in
both sidebands is added and transformed to the original
carrier at w, . On the other hand, the amplitude modu-
lated signal is already single frequency when both linear
polarizations are present with equal amplitudes and a
phase difference $0 = 90' (circular polarization). Then
it would be best to search for a pulsar without first de-
modulating for a particular polarization.

Typically the signal is more complicated than the ex-
ample given above because the amplitude modulation
produces more than two sidebands for each polarization.
Thus, it is usually better to look for both polarizations.

In this pulsar search we will first search the spectrum
without any polarization corrections and then include
them to isolate the strain amplitudes for both polariza-
tions independently.

VIII. STATISTICAL PEAK DETECTION
IN THE FREQUENCY DOMAIN

The last step in the analysis is to search the frequency
domain for statistically significant peaks. Naturally, a
knowledge of the noise statistics in the frequency domain
is needed to specify the probability distribution for the
power spectrum. One must find a statistical model which
correctly describes the actual measurements. Once this
is known the confidence that a peak will be found above a
given threshold can be calculated. It is important to con-
sider the statistics for the case where a signal is present
as well as that given only by noise.

In the following discussion, we will assume white noise,
Gaussian in the time domain, although some of the re-
sults can be derived for more general distributions. The
main advantage of the Gaussian model is that simple
analytic formulas can be derived for the probability dis-
tribution of the power spectrum. We will see that this
model describes very well the frequency domain statistics
for the 100 h Garching data run.

A. Gaussian noise

Let us assume that every sample V(t) of a noise process
can be treated as an independent random variable given
by a Gaussian probability distribution in the time domain

(V)
—(v —vP) /2cr

v'2vro z

where U0 and u are the mean and variance of the distri-
bution, respectively. In the case of no signal, the mean
V0 is zero. The variance o. is constant if the noise is
stationary over time.

The discrete Fourier transform (DFT) of the noise sig-
nal V(t) yields a noise spectrum V(w) given by

V(w) = ) V(t) e

It is well known that arbitrary linear combinations of
Gaussian random variables also produce Gaussian ran-
dom variables [21]. Thus, the real and imaginary parts at
every frequency are also given by Gaussian random vari-
ables. The spectrum is frequency independent or white
as long as the samples are uncorrelated in the time do-
main. It is also easy to show that the real and imaginary
parts are statistically independent when the noise is sta-
tionary. In this case, the distribution of the frequency
domain amplitudes can be found by integrating the joint
probability distribution of the components over all phase
angles. The result is a white amplitude spectrum with
the well-known Rayleigh distribution. The squared arn-
plitude spectrum or power spectrum with components
P = UU has an even simpler probability distribution
given by an exponential function
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—P P
Po

0&P&oo, (14)

where Po ——2a. is the average noise power. As stated
above, Eq. (14) is independent of frequency.

1. Adding power 8yectra

Groth [22] has pointed out that it is sometimes useful
to add the power from diferent frequency components
either in the same spectrum or in diferent spectra to
accumulate the signal power:

As examples, the sum might consist of (a)
one bin from each of n distinct spectra, all
corresponding to the frequency of an expected
periodic signal; (b) n bins corresponding to n
harmonics of an expected periodic signal; or
(c) n bins located within the peak of a quasi-
periodic signal whose width is greater than or
the order of n bins [22].

In this paper, we will be most interested in the first exam-
ple (a) where several power spectra are added to improve
the SNR.

The probability distribution for the sum of n power
spectra, each with a constant noise power Po and no sig-
nal, follows a y distribution with 2n degrees of freedom,

using the Poisson distribution with a mean y, = N'po.
This uncertainty 'Pi is sometimes called the error of the
first kind and is given by

Pi ——Prob(P) P~) = pe

One can use this equation to set the threshold for the
pulsar search by equating 'Pi to the desired probability
for "false alarms. "

B. Gaussian noise plus signal

The error of the second kind, 'Pz, on the other hand,
refers to the probability that a real signal with power
P, & P~ is not detected in the presence of noise. To
calculate this error one needs the probability distribution
p„(P; P, ) for the sum of n power spectra consisting of
noise and signal P, .

For a single spectrum, 'P2 can be calculated using the
Rayleigh distribution displaced from the origin by the
signal strength. The result for the sum of n spectra is
more difficult to derive and we simply quote the result
obtained by Groth [22] where each individual power spec-
trum has been normalized to unity (i.e. , Po =1)

(n 1)/2—
p„(p; p, ) =

1

— e i~+ 'i I„,(2Jpp), ,
i,P,

—P/Pp
p (P) = („1), (15)

(P) = nPo and (P ) —(P) = nPo2.

Thus, the average noise power grows with the number n
of spectra whereas the width of the distribution increases
only with ~n. Since the signal power will also increase
linearly with the number of spectra, the overall sensitiv-
ity increases as ~n. In linear measure, the SNR increases
as the fourth root of the number of added power spec-
tra. This also means that the sensitivity increases as the
fourth root of the total observation time used to accu-
mulate the spectra.

2. Ealae aLavvn threahoLd

The probability 'Po of finding a power greater than
some threshold P~ at any given frequency is found by
integrating the probability distribution p„(P):

Po = Prob(P)P~) = p„(P) dP.

The probability of detecting a false signal originating
from the noise in any of N frequency bins can be found

This equation is easily proven inductively by convolv-
ing Eqs. (14) and (15) to find p~+i(P). The assumed
stationarity of the noise guarantees that each frequency
component is independent with the same mean value Po
which can be estimated by averaging the power spectrum
over all frequencies.

The mean and variance of the distribution in Eq. (15)
are

The average power in the frequency bin containing the
signal increases by ns2 over the mean power in the
bins with no signal, and the distribution spreads as
gn(l + 2s2). For small signals, this variance agrees with
that found in Eq. (16) for the distribution of frequency
components containing no signal.

The error of the second kind, 'Pq, can be obtained by in-

tegrating the probability distribution of signal plus noise
from zero to the threshold Pg.

Pz = Prob(P(Py) = p„(P; P, ) dP. (21)

The error is a function of the signal strength and becomes
negligible when the signal power is large compared with
the average noise power. Shown in Fig. 2 is the probabil-
ity that a real signal is below a threshold (and therefore
missed) as a function of the difFerence between the sig-
nal and threshold amplitudes. Two curves are drawn, for
thresholds of 1 a and 5o. (where a threshold amplitude
2:o corresponds to a normalized power P =x /2). The
curves are valid for a single spectrum (n = 1), and similar
curves could be given for averages of n spectra. In the
case n=1, the probability of an error of the second kind
is down to 1% for signals about 1.5 o above the threshold.

where I„ is the modified Bessel function of order n.
It is important to realize that P, in Eq. (19) is the total

accumulated signal power. For the special case where the
signal power sz in each normalized spectrum is identical,
the total signal power is given by P, = ns . The mean
and variance of Eq. (19) then become

(P) = n(1+s ) and (P —(P) ) = n(1+2s ). (20)
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FIG. 2. Probability P2 of missing a signal due to noise
(error of the second kind) for a single spectrum. This error
depends strongly on the amount by which the signal ampli-
tude s = ~P, exceeds the threshold gPT, but is almost inde-
pendent of the value of the threshold itself (gPT = lo., 5cr).

9, 36, and finally 100 h. The shorter integration periods
have the advantage that the corrections due to Doppler
shift or changing antenna sensitivity are less important.
In addition, the problems of inter-tape gaps and chang-
ing sensitivity could be avoided using time scales less
than or equal to an hour. Shorter FFT's are also better
when searching for unknown signals whose strength or
frequency is time dependent. Of course for truly peri-
odic signals, the sensitivity is the best when the FFT is
made over the entire 100 h.

In general, the noise was found to decrease as the
square root of the integration time for single FFT's and
no unexpected diKculties were encountered with the in-
troduction of gaps, Doppler shift correction, or demod-
ulation for the two orthogonal polarizations. Therefore,
we will present only the results of the 9 min and 100 h
integration periods.

X. S MINUTE INTEGRATION TIMES

IX. THE NARROW-BAND PULSAR SEARCH
ON THE GARCHING DATA

The CHT data compression was applied to the 100 h
of data taken with the Garching interferometer. First,
the original 10kHz sampled data were complex hetero-
dyned (sine and cosine) using two independent frequen-
cies of 1968.658 and 3937.316Hz. The channels were
low-pass filtered as described above and resampled at
4Hz. Each channel, after data compression, consisted
of about 1.5 million complex time samples over the 100
h. A schematic diagram of the data analysis is given in
Fig. 3.

In the course of the analysis, several difFerent time
scales were used for the integration time of the FFT.
We made the evaluation first with many 9 min time
slices. The length of the FFT was then increased to 1,

original data,
10kHz samples

sin w~t

The 100 h data stream after data compression con-
sisted of a complex time series sampled at 4Hz. First
we artificially subdivided the data into many time slices
made up of 2048 points which corresponds to a real time
of 8.53 min. The number of resampled data points was
chosen to be an integer power of 2 which facilitated use of
the standard complex FFT subroutine cRFFT2 available
on the Cray.

This time period was short enough that the efFect of
Doppler shift and changing sensitivity to linearly polar-
ized gravitational waves could be neglected. The time
slices were chosen so that no gaps were included. Fur-
thermore, the noise level of the interferometer remained
roughly constant over this time scale.

A. Whitening the spectrum

The 9 min spectra produced from the compressed data
clearly show the attenuation from the digital low-pass fil-
ters. In Fig. 4(a) we show the average amplitudes of 100

FFT analysis

2kHz statistical
heterodyne filter, resamPte, DoPPler comPlex pQlsar

4 kHz 4 Hz 1:2500 correction FFT scarc

—20-:
CQa

—4Q-

m

cos2~ t

FFT analysis

CU

Q

CL

~ —20

FIG. 3. Block diagram of the data analysis. The original
data, sampled at 10kHz, are processed in two separate chan-
nels, for the two heterodyne frequencies near 2 and 4kHz,
The data, resampled at 4Hz, then undergo a channel depen-
dent Doppler shift phase correction by 4(t) before their com-
plex Fourier transforms are analyzed for possible signals. The
triangular symbols signify multiplication with the (time de-
pendent) values indicated.

—40
0 I

frequency offset Df ( Hz)

FIG. 4. (a) Amplitude spectrum of the compressed data,
in the 2kHz channel, averaged over 100 spectra. Amplitudes
(in arbitrary units) are shown in logarithmic scale (dB), versus
frequency offset from heterodyne frequency, Af, in Hz. (b)
Same spectrum, after whitening. See text.
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power spectra for the 2kHz channel. The spectrum is
centered on the heterodyne frequency and has a band-
width of 4Hz. These spectra can be "whitened" by mul-
tiplying with the inverse of the calculated filter atten-
uation of the last two Butterworth filters. (The initial
boxcar filter did not contribute significantly to the at-
tenuation in this bandwidth. ) The whitened spectrum
Fig. 4(b) is frequency independent except in the extreme
edges where some extra noise due to aliasing can be seen.
The magnitude of this noise excess agrees with the esti-
mated aliasing from the digital filter transfer functions.

As a check on this hypothesis we compared the spectra
made with two sets of heterodyne frequencies (offset by
about 1Hz). In the overlap regions near the center of
the bands we found a correlation of 1.0 which decreased
toward the extreme edges of the bands. The poorer cor-
relation near the edges was due to different noise com-
ponents which were aliased by the offset heterodyne fre-
quencies. The results again were completely consistent
with the calculated aliasing produced by the digital fil-
ters. The remarkable agreement between the whitened
spectrum and the original data is a clear reflection of the
excellent filter response that can be obtained with IIR
digital filters.

The statistical evaluation of the resampled power spec-
trum is simplest if the aliased components near the edges
of the bandwidth are not used. As a conservative ap-
proach we discarded 570 of the components on each side.
The remaining 3.6 Hz centered on the 2 and 4kHz chan-
nels were then searched for possible signals as will be
described below.

B. Statistics for individual spectra

A histogram was made for the normalized power spec-
trum of each independent 9 min time slice. The bins were
chosen equally spaced in power from zero to a maximum
value PM. The last bin contained all frequencies with
power greater than or equal to PM. As discussed above,
white noise, Gaussian in the time domain, should lead
to a power spectrum with independent components dis-
tributed as a negative exponential. Thus, a graph of the
natural logarithm of the bin content against the power for
each bin should lead to a straight line with a slope of —1.
The last bin, however, gives a measure of the cumulative
probability to find a power larger than PM. The statis-
tics can be improved by accumulating the power spectra
of many individual time slices in one histogram. In this
case, the assumption is made that all frequency compo-
nents in any time slice are statistically independent.

Shown in Fig. 5 are the statistics using 450 independent
spectra taken from different 9 min time slices. The bot-
tom and top curves show the statistics for the 2 and 4 kHz
channels, respectively. All components were binned with-
out regard to frequency or the time slice from which they
were derived. The highest bin was chosen such that
(without accumulation) on average one frequency com-
ponent in any given time slice would fall into the last
bin. The calculated distribution is graphed as a solid
line, where the last point represents the theoretical cu-
mulative probability for P & PM. The measured statistics

1 2 3 I 5 6 7
normalized power P (in o)

FIG. 5. Power histogram from 450 spectra (of 9 min each):
natural logarithm of bin content, ln N(P), against normalized
power P. The bin contents N(P) follow closely the theoretical
distribution, as borne out by the straight line with slope of
—1 and the accumulated content for P & PM in the top bin.

are observed to coincide closely with the expected prob-
ability distribution. Even the number contained in the
last bin agrees very well with the assumption of random
noise components. Note, that if there were a real sig-
nal large enough to fall in the last bin in each spectrum,
the content of the last bin would have been significantly
higher than statistically allowed.

It is interesting to display as a function of frequency
those components of the power spectrum that fall into
the highest bin of the histogram. An unusual (nonwhite)
distribution of these high amplitude events could indi-
cate the presence of a signal containing several frequency
components even if no individual signal component were
statistically significant. For example, a pulsar in a binary
system (as was indeed suggested by Kristian et al. [Ij)
would have a frequency modulation due to the Doppler
shift that could give a cluster of frequency components
centered on the pulsar frequency.

Figure 6 graphs the power of all components falling
into the last bin against the associated frequency of the
component. The plots for both the 2 and 4kHz chan-
nels are displayed. All power spectra were normalized so
that the mean value was unity before accumulating the
amplitude statistics. The mean of all the power spec-
tra corresponds to an average linear strain amplitude of
2.5 x 10 for an observation time of 8.5 min.

There is no apparent clustering near any particular fre-
quency. Furthermore, there is no power greater than 14
times the mean value. In linear amplitude, this trans-
lates into a strain limit of about 9.4 x 10 . The sta-
tistical significance of any single peak with amplitude P
can be calculated from the Poisson distribution Eq. (18)
for finding one event out of the available components (in
this case 204800) each with an individual probability of
e . For example, the probability of finding a frequency
with power greater than 15 is about ]7.

We again caution, however, that to change the sim-
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FIG. 6. Scatter plot for events in the top bin (P & 7.5o):
power P versus frequency offset Df, for the 4 and 2kHz chan-
nels. No clustering at a particular frequency (indication of a
signal) is observed.

FIG, 7. Power histogram from a total of 450 of the
Doppler-corrected 9 min spectra. Natural logarithm of bin
content, lnN(P), against normalized "excess" power, (P-
Pp) /(~nPp) .

pie statement that no signals were found above a given
threshold into a hard limit on signal strength one must
state the associated error of the second kind for any given
threshold. This error is about 50'%%up for signals near the
levels quoted above and falls off quickly for larger signal
strengths.

The above spectra were made without including the
Doppler correction, mainly because its effect on 9 min
time slices is still tolerable. We note, however, that we
also repeated the search after including the Doppler shift
for SN 1987A and obtained similar null results.

C. Combining power spectra

The SNR of the above search was limited by the noise in
a given frequency bin of a single 9 min time slice. Knowl-
edge about the relationship of the signal in different time
slices can be used to increase the detectability of the sig-
nal by combining the power spectra in the appropriate
way.

For example, if the frequency relationship of the signal
between various time slices is known, power spectra may
be added to increase the signal-to-noise ratio. As was
discussed in Sec. VIIIA1, the RK. increases, in linear
measure, only as the fourth root of the observation time.

On the other hand, if the phase relationship of the
signal between different time slices is used, the signal
amplitudes can be accumulated and then the linear SNR
will increase with the square root of the observation time.
A straightforward way of accomplishing this for periodic
signals is to make a single large FFT over the entire 100
h, as will be discussed in Sec. XI.

However, before changing the integration time of the
FFT, it is still interesting to compute the statistics result-
ing from the addition of many 9 min spectra. This leads
to increased sensitivity for signals with a bandwidth less
than about 2mHz (&,.„).Furthermore, we can test the
statistical model which assumes that frequency compo-

nents from neighboring time slices are uncorrelated. In
this case, we would expect that the average of n power
spectra should be distributed as a y~ with 2n degrees of
freedom [Eq. (15)]. This model can be checked directly.

In order to combine spectra in a meaningful way, we
included the Doppler correction for a source located in
SN 1987A. This was accomplished using the second com-
plex heterodyne on the reduced (resampled) data set de-
scribed above. Shown in Fig. 7 are the statistics ob-
tained by summing 50 independent power spectra. Nine
independent sets of 50 summed spectra were binned to
increase the number of statistically independent frequen-
cies.

The agreement between the observed statistics and the
calculated y distribution is again quite good. This pro-
vides another demonstration that the statistical laws dis-
cussed above are appropriate. The limit on strain im-
proved only marginally over that obtained using single 9
min slices. This is due mainly to the observed increase
in noisiness as the experiment went along, but also to
the slow improvement in sensitivity with only the fourth
root of the observation time. We can, however, gain much
more in sensitivity by making an FFT over the total 100
h of data.

XI. 100 HOURS INTEGRATION TIME

The procedure for handling the 100 h time series was
more complicated than the 9 min analysis for several rea-
sons. The 100 h stream contained gaps and had a noise
level which varied over time. Furthermore, one can no
longer neglect the Doppler shift correction and the cor-
rection due to the changing sensitivity of the antenna
to linearly polarized gravitational waves for long integra-
tions. A minor technical change was also made in the
FFT algorithm so that the length was not constrained
to an integer power of 2, which otherwise would have
limited the integration to only 73 h. This was made by
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breaking the 100 h into a few contiguous pieces (each
with length corresponding to a power of 2) and combin-
ing the smaller FFT's. This straightforward procedure
has been described in detail by Hocking [12].

A. Gaps and changing noise levels

The 100 h data stream analyzed here contained gaps
due to the data acquisition hardware. During these peri-
ods no data were taken. The most common gap occurred
when the magnetic tape was rewound and changed. This
took typically 5 min every hour. There were also two
unforseen failures in the data taking hardware. A locked
tape hub caused a 98 min interruption and a blown fuse
in the computer gave a down time of 48 min. There were
no other gaps longer than 10 min. The total data loss
from these sources amounted to about 9%.

In addition to times when the data acquisition was
halted, there were also periods where the apparatus was
either out of lock or had noise levels which were too great
to be included in the data analysis. The out-of-lock pe-
riods occurred very seldom and could to a large extent
be traced to argon refills of the laser. These gaps were
clearly marked in the "housekeeping data" and rarely
lasted longer than a minute in a 1 h tape.

Other gaps were artificially introduced in the post pro-
cessing whenever the noise level rose by more than 9dB
above that obtained with good beam alignment. This
threshold served to remove short spikes which were not
large enough to throw the system out of lock, but were
clearly times of instability. There were also larger sec-
tions which were removed with this threshold when the
system performance was stable but extremely poor due
to misalignment of the interferometer. The total amount
of data removed by this procedure (16%) together with
the gaps introduced by the data taking hardware (9%)
totaled about 25 of the 100 h.

Even after the very poor data were removed, the out-
put noise level still varied slowly over time. Since the elec-
tronic output is a calibrated measure of the path length
difference in the interferometer, the sensitivity for real
GW signals is constant even if the noise level changes
due to varying fringe contrast. In order to obtain opti-
mum %R. for real GW signals it is optimum to weight
the data so that periods of low noise make the highest
contribution to the overall SNR. It can be easily shown
that for data containing a periodic signal and varying
noise, the best SNR is realized if the data are weighted
by the inverse square noise before the Fourier transform
is applied. This factor is commonly used for weighted
least squares [23].

The squared noise level was determined by integrating
the sum of the squares of the cosine and sine heterodyne
quadratures of the resampled data (4Hz) over 2048 re-
sampled data points (about 8.5 min). The inverse of this
average was used as a weighting factor before the final
FFT was applied.

The gaps and the time dependent weighting factor to-
gether form a windom function which has the value of zero
during gaps and is equal to the weight otherwise. This

(N(t) N(t') ) = W2(t) bt t, (22)

where the angle brackets denote an ensemble average.
This equation verifies the intuitive notion that the result-
ing noise is given by the original noise amplitude modu-
lated by W(t)

We have shown [9] that the power spectrum of such
a noise process remains white, with an amplitude given
by the rms time average of the window function. Thus,
even though the windowed noise is not stationary in the
time domain, the noise is still "white" in the frequency
domain. This means that a window function will not
produce features mimicking periodic signals, even if the
the window contains periodic gaps.

Amplitude modulated noise, on the other hand, may
have unequal quadrature components at subharmonic
frequencies (2) found in the Fourier transform of the
squared window function [9]. This means that spurious
signals can be produced in subsequent matched filtering
that is both phase and frequency sensitive. However, pul-
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FIG. 8. Time series W(t) (lower plot, linear) and Fourier
transform W(f) (upper plot, logarithmic), of the "window
function" . The abscissas are linear: time t in hours, frequency
f in cycles per hour. This window function W(t) is used
for weighting the (resampled) input data stream. W(t) is
normalized to have unity time average and a unity dc term
W(0) in the spectrum.

window multiplies the signal in the time domain which
results in a convolution of the signal and window Fourier
transforms.

For sinusoidal signals, the single frequency compo-
nent is split into sidebands with amplitudes given by the
Fourier transform of the window function. As long as the
window function is dominated by the dc term, the effect
of the window is a simple scaling by the dc amplitude.

The effect of a window function on the noise is more
diKcult to describe because the resulting noise must be
described by a nonstationary process. Assuming that the
noise before application of the window is uncorrelated
and normalized with a variance of unity, the correlation
function of the noise N(t) after multiplication with the
window function W(t) can be written:
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sar searches with unknown phase of the signal are phase
insensitive, and in this case one does not have to worry
about spurious signals created by the action of a window
function on random noise. Furthermore, as long as the
Fourier transform of the window function is dominated
by the dc component, any spurious features of this nature
will be quite small.

Figure 8 shows the time dependence and the FFT of
the window function described above, including gaps and
the weighting proportional to the inverse squared noise.
The bottom curve shows the window in the time domain
normalized so that the average over time is unity. This
curve shows that the average noise level in the original
data was almost twice that obtained during short periods
when the interferometer produced the low noise levels.
As discussed above, this is believed to have been caused
by misalignment in the beam steering. The upper curve
shows the FFT of the window. Clearly recognizable are
the harmonics produced by the periodic gaps when the
tape was changed, on average about once every 64 min.
Note also that the component at dc is more than 15 dB
larger than that found in any other frequency bin.

B. Corrections due to earth motion

1. EM demodulation —Doppler shift

The complex data stream produced by heterodyning,
filtering, and resampling was corrected for the Doppler
shift for signals originating in the direction of SN 1987A
with a frequency equal to the heterodyne frequency. This
correction was made on all the data once using the sec-
ond complex heterodyne with the complex demodula-
tion function exp[in~bi(t)j, the time delay 6t(t) given
by Eq. (3). The constant and first derivative terms were
removed since they change only the phase and frequency
offset of the observed signal but do not modulate the
signal.
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I IG. 9. Power histogram of a 100 h FPT of weighted,
Doppler-corrected data. Again, it shows excellent agreement
with theory (slope; contents of last, accumulative, bin).

dependent searches applying the amplitude modulation
given by Eqs. (9) and (10). In all three cases, the power
spectrum was "whitened" before searching for threshold
crossings in the middle 90%%uo of the 4 Hz bandwidth as was
described in the 9 min analysis.

The whitened spectra were featureless and had ampli-
tude statistics which followed very closely those predicted
by the Rayleigh distribution. The mean strain ampli-
tudes were 1.26 x 10 for the case where first no polar-
ization was extracted, and 2.18 x 10 ~ or 2.22 x 10
for plus or cross polarization, respectively.

Shown in Fig. 9 are the amplitude statistics for the
case where no polarization was extracted. The top and
bottom curves correspond to the 4 and 2kHz channels,
respectively. The components falling into the last bin
form the basis of the scatter plots shown in Fig. 10. A
normalized power level of P/Po = 17 on the y axis cor-

8. Amplitude demoduLation —Polarization cor rection

A GW signal of arbitrary polarization can be decom-
posed into a superposition of the two orthogonal polariza-
tions usually denoted h+ and 6„.As described above, a
rotation of the antenna in the plane perpendicular to the
propagation direction gives rise to amplitude modulated
signals in the interferometer. The combined signal from
these two contributions depends critically on the phase
between the two polarizations as well as the location of
the antenna and source. In some cases (e.g. , circularly
polarized gravitational waves and the detector situated
on the north pole) it is best to look at the mixture. In
most cases, however, the best signal detection algorithm
is to search independently for the two signals by ampli-
tude demodulation using the sensitivity function of the
antenna to the desired polarization.

Thus, we elected to make three different searches.
Namely, first we searched for a signal by making only
the Doppler shift correction but no demodulation for
the linear polarization. This was followed by two in-
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FIG. 10. Scatter plot for events in the top bin (P & 7.9cr)
in the 100 h spectrum: power P vs frequency offset A f, for
the 4 and 2kHz channels. Here also, no clustering at specific
frequencies can be observed.
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responds to a 95%%uo confidence level that no false alarms
due to the noise would occur in any one of the 1441 792
bins. Similar graphs were obtained for the + and x po-
larization.

No significant signals above the level of &/po = 17
were found. This threshold corresponds to limits which
are larger by a factor of 4 on the strain amplitude than
the mean values quoted above, or 9 x 10 zi for either
polarization. In order to have a 99%%uo confidence level for
the error of the second kind (that of losing events), one
must relax this limit by another 1.5o, to 1.3 x 10

XII. CONCLUSIONS

We have introduced the complex heterodyne method
which shows promise as a computer efBcient technique for
data reduction in the case where the detector bandwidth
is greater than the expected signal bandwidth.

The efIiciency of data reduction may facilitate a full sky
search over the full bandwidth of the detector for long
observation times, which would otherwise be ruled out
because of the computational cost and memory limita-
tions. The analysis can be accomplished by subdividing
the full bandwidth into many smaller frequency channels
which can be processed sequentially or in parallel.

The technique also allows for FM demodulation which
accomplishes the Doppler shift correction on the reduced
data set. This procedure avoids rather serious binning
errors without requiring oversampling of the original data
stream.

The data compression was applied to a 100 h data
stream taken recently with the Garching prototype. The
data volume was reduced by a factor of 1250 in a search
for periodic signals within a 4Hz bandwidth of two dif-
ferent frequencies near 2 and 4kHz.

The observed amplitude statistics in the frequency do-
main were well described by the Rayleigh distribution
for the case of single power spectra. The statistics also
followed the more general y2 distribution when several
power spectra were added. These results are expected
for a noise source that is Gaussian in the time domain.

Finally, the data were searched using different integra-
tion times, partly to check that the different phases of the
data analysis were operating properly, and partly to look
for signals with unknown frequency modulation. The re-
sult of all these searches revealed no statistically signifi-
cant periodic signal. The most stringent strain limit for
periodic signals coming from SN 1987A was 9 x 10
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APPENDIX A: DIGITAL FILTERING

The quality of the digital filtering generally limits the
resampling rate due to aliasing. The process of resam-

M —1

g agz-"
~( )

A, =O

1+ P bi z
A:=1

(A2)

where M & N. The IIR filters use both past inputs and
outputs to generate new output values. The feedback
can result in an unstable filter if the coeKcients are not
selected properly.

In practice, it is quite easy to design stable IIR fil-
ters by using standard analogue filter designs and trans-
forming them into digital filters. This requires a relation
between the variable z in the z transform and s in the
Laplace transform. A design which produces excellent
results uses the bilinear transform defined by

1+s
z =

1 —s (A3)

Typically the IIR filters require far fewer terms in the
z transform than the FIR filters for a given set of filter
specifications. This means that the IIR filters can be
realized in the time domain with few operations and very
small memory requirements. The IIR filters avoid the
need to make a lengthy FFT and inverse FFT for every
output data point.

An IIR filter can be efBciently programmed using many

pling can be viewed in the frequency domain as a con-
volution of the original data (after digital filtering) with
an infinite sequence of delta functions at integer multi-
ples of the sampling frequency [24]. Thus, any frequen-
cies above the Nyquist frequency for the resampled data
stream which are not adequately removed by the digital
filter are aliased to low frequencies. This adds additional
noise to these corrupted frequencies.

The ideal filter shape is, of course, square in the fre-
quency domain with a cutoff at the Nyquist frequency of
the resarnpled data stream. In practice this cannot be
achieved and any deviations lead to aliasing. Naturally,
the computational cost of the digital filter necessarily in-
creases as the quality of the filter increases so that one
must find a compromise between good filtering and com-
putational effort. We will indicate how such filters can
be designed and implemented, in order to get a rough
idea of the computational requirements for the three data
compression schemes (SIGHT, AT, and CHT) discussed
in Sec. VB.

There are two broad classes of digital filters called the
finite impulse response (FIR) filters and the infinite im-
pulse response (IIR) filters. The transfer function of an
FIR filter of length N has a z transform given by [25]

N —1

H(z) = ) agz ". (A1)
A:=0

The constants aI, can also be thought of as simple weight-
ing factors for a moving average in the time domain. The
simplest example of a low-pass filter is the boxcar moving
average where all weighting factors are equal to ~.

The more general class is the IIR filter, with a transfer
function having both zeroes and poles. Its z transform is
given by
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E~ output

fb,1

FIG. 11. Schematic diagram of the canonical realization
for IIR filters. The boxes denoted by z represent a time
delay by one sample. The triangular units are multiplications
with the coefficients az and bg in Eq. (A2). The dashed box
contains the input and update operations that are required for
each new data point, whereas the other operations (aq, E )
are carried out only in those steps where filter output is re-
quired.

difFerent schemes. Fig. 11 shows the canonical realization
for a two-pole IIR filter. In general, this technique uses
n+1 memory cells and requires 2n —1 multiplications and
additions per input data point, where n is the number of
poles in the filter.

For this pulsar search, we used low-pass IIR digital fil-
ters designed using computer code given by Cappellini
[26]. We rewrote these routines to make better use of the
Cray's vectorization. We tested these IIR filters using
random data and also using several artificial signals with
many frequency components (e.g. , a frequency chirped
signal and also one made containing a sum of all sinu-
soidal terms in a Fourier expansion). In every case the
measured transfer behaved quite well and followed the
classic Butterworth attenuation function, Eq. (2).

In this paper, IIR low-pass filters were used for the
purpose of antialiasing before the data were resarnpled
at a lower rate. Thus, the filter output could be calcu-
lated at a lower rate than the input data stream. As
shown in Fig. 11, the canonical realization uses half of
the operations to update the memory and the other half
to calculate the output. This means that for input cycles
which require no filter output, the number of operations
per input data point are reduced by a factor of 2 to n
multiplications and additions for an n-pole IIR digital
filter. These operations are indicated for a two-pole IIR
filter inside the dashed box in Fig. 11.

APPENDIX B: TESTING THE CHT

We tested our procedure for data compression using
the CHT and the effectiveness of removing phase modu-
lation with a second complex heterodyne on the reduced
data set in many ways. The test described in this ap-
pendix used a data set consisting of four artificial peri-
odic signals added to the real interferometer data with
a sampling rate of 10kHz. Three of the "fake signals"
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I IG. 12. Artificial signals added to the digitized inter-
ferometer data. Top curve: Spectrum of the 4kHz chan-
nel of compressed interferometer data, with two monochro-
matic signals added. Middle curve: Spectrum of the 2kHz
channel, with one sinusoidal, one modulated signal. Bottom
curve: The 2kHz channel after demodulation ("Doppler cor-
rection"): the sidebands of the modulated signal are recom-
bined into one peak; the sinusoidal signal becomes spread out.

were sinusoidal terms with equal amplitudes of 20dB
(in arbitrary units) with the frequencies 1969.0, 3936.0,
and 3938.0Hz. Arbitrary phases were also assigned to
each signal. The fourth artificial signal (at the lowest
frequency, 1968.0Hz) was phase modulated with modu-
lation index equal to 3.0 and a modulation frequency of
40 mHz.

The data were then complex heterodyned in two chan-
nels at 1968.658 and 3937.316Hz. These complex data
were low-pass filtered and resampled at 4Hz using the
same programs which were used to compress the data for
the pulsar search.

The spectra for the 4 and 2 kHz channels are shown in
the top two curves in Fig. 12. Each spectrum consists of
2048 compressed complex values corresponding to about
five million original data. The total bandwidth is +2 Hz
centered on the corresponding heterodyne frequency. We
can see that the four signals have been shifted to the
appropriate frequencies by the complex heterodyne and
that the amplitudes are also correct. The frequency mod-
ulated signal was shifted to —0.658Hz relative to the
2 kHz heterodyne and occupied about 0.3 Hz bandwidth
due to the sidebands caused by the modulation.

A second complex heterodyne was made by multi-
plying the 2 kHz complex compressed data stream with
exp[i/(t tri)], whe—re P(t) matched the input phase mod-
ulation applied to the lowest signal frequency. The time
td, was introduced to account for the delay caused by the
digital filter. We found that a constant time delay of
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about 0.6s was necessary to give good demodulation of
the signal. Note, however, that this delay is negligible
compared with the time scales that are important for
the Doppler shift corrections made in the pulsar search.
More important than the size of the constant time delay
of the digital filter, however, was the fact that excellent
demodulation was obtained without having to introduce
a complicated frequency dependent phase shift.

The "demodulated" spectrum is shown in the bottom
curve of Fig. 12. It can be seen that the demodulation
was very effective since all the energy in the sidebands
has been reconverted into a single frequency component
having the same amplitude (20dB) which it was orig-
inally given. Thus, this procedure results in almost no
loss in SIVR for modulated signals even when they are off-
set from the heterodyne by a substantial fraction of the
compressed bandwidth. As a consequence of the demod-
ulation process the originally unmodulated frequency at
1969Hz (0.342 Hz above the heterodyne frequency) now
appears modulated.

APPENDIX C:
THE CHT WITH SIMPLER FILTERS

The CHT can be used with a wide variety of filtering
and resampling schemes. The choice used for this pul-
sar search was made rather arbitrarily as a compromise
between computing effort and effective antialiasing. One
can make more effective use of the bandwidth by making
the low-pass antialiasing filter sharper.

It is also interesting, however, to see how it works using
simpler filter-and-resample schemes. The most straight-
forward way to reduce the quantity of data (and also its
bandwidth) would be to store fixed length averages with-
out any overlap between the neighboring averages. This
is equivalent to a boxcar average with no overlap. In the
frequency domain, this looks like a sine filter with the
first zero occurring at the resampling frequency.

These filters work well near dc since all signal compo-
nents which would be aliased to dc occur at the zeros
of the sine function. As one approaches the Nyquist fre-

quency, however, the SNR is reduced according to the
sine function. This happens because the signal follows
the sine function whereas the noise turns out to remain
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FIG. 13. Loss in RiR as function of frequency offset Af,
compared for two filtering schemes. Top curve: the CHT
as described in this pulsar search (six-pole filter), applied to
original interferometer data to which signals of equal strength
(+10 in arbitrary units) had been added at equidistant fre-
quencies. Both axes in linear scale, Bottom curve: a CHT,
using, however, a simple boxcar average filter, applied to the
same data, showing a more pronounced loss of signal as one
nears the band edges.

constant, since aliasing from noise components above the
Nyquist frequency compensate the drop due to the sine
function. On the other hand, this filter is quite simple to
implement. Furthermore, the resulting background noise
is white so that "whitening" by the inverse of the filter
function is not necessary.

Shown in Fig. 13 is a comparison of the two techniques.
The data were made using real interferometer output
for background noise to which artificial sinusoidal sig-
nals were added. The top graph shows the response of
the three-stage filter-and-resample scheme described for
the pulsar search. The noise has been "whitened" by the
inverse filter function. The bottom graph shows the out-
come using a boxcar low-pass filter and resampling with
no overlap. It is clear that this scheme works well close
to dc but begins to lose in PR. as one nears the edge of
the resampled bandwidth.
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