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@CD structure of quarkonium spin spectra
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We show that our @CD calculation of the Pi charmonium state can be incorporated into a
global description of the fine and hyperfine structure of the charmonium and bottomonium systems.
We propose a simple renormalization prescription in which all ambiguities are absorbed into a single
strong coupling constant a, . We find that the O(o.,) perturbative @CD potential leads to a consistent
description of all splittings. The results are used to predict the unmeasured bottomonium P-wave
hyperfine splittings.

PACS number(s): 14.40.cx; 12.38.Bx; 12.40.@q

In an earlier paper [1] we demonstrated that the hy-
perfine splittings of P-wave states in heavy quarkonia
can be reliably calculated via perturbative @CD and are
consistent with experimental indications [2]. The angular
dependence of the wave functions and of the potential is
such that the calculation is independent at the one-loop
level of renormalization scheme and scale, leaving the
splitting a function of only the quark mass and o, This
independence, and therefore predictive power, does not
occur in the calculation of either S-wave hyperfine split-
tings or the P wave spin--orbit and tensor splittings. A

single choice of the renormalization scale may be made
for each quark mass, and despite the uncertainties in the
calculation of these splittings, our previous perturbative
@CD calculation can be generalized to all spin splittings
with results consistent with experiment.

This divers from previous calculations of the same
quantities in the greatly simplified approach to renor-
malization scheme and correspondingly to a, . Other au-
thors have fixed p, and n, using the Grunberg [3 pre-
scription and the experimental data for each state 4], or
by minimizing the eKect of higher-order terms generated
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FIG. 1. Hyperfine splitting, b,MP ~
= M(J/@) —M(il, ), in the charmonium 1S system, for three values of o, The large

circles give the tree-level results for the same values of n, . They have been placed at p = m, to demonstrate that the one-loop
corrections are small for this choice of p. The dotted horizontal lines indicate the experimental 1 cr limits.
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FIG. 2. Similar to Fig. 1, for the charmonium 2S states. Notice that the three values of n, have changed for m, = 1.8
GeV.

by renormalization-group improvement of the potential
[5]. One disadvantage of the first approach is that this
scheme allows each state to have a diferent value of p,
and hence of a, . It is also unclear how the Grunberg
prescription is to be implemented in such a case as the
hyperfine P-wave splittings, which are zero at the tree
level. The fine-structure splittings cause additional dif-
ficulties, as they then require a very large n, yet only
small higher-order corrections.

Section I introduces the wave functions and the pertur-
bative @CD calculation, Sec. II presents results for the
hyperfine splittings in charmonium, and Sec. III discusses
the spin-orbit and tensor calculations. We conclude with
predictions for the P-wave hyperfine splittings in bot-
tomonium.

I. CALCULATION SCHEME
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For a given charm-quark mass we fit to the spin-
averaged charm and bottom spectra to obtain the corre-
sponding potential parameters and bottom-quark mass.
We perform our calculation with two choices of m, :
1.2GeV and 1.8GeV. Because the fitting process fixes
rnid, the lower (higher) charm-quark mass implies a lower
(higher) bottom-quark mass. It is possible to use the
spin-averaged spectra to fit the charm-quark mass; we
prefer to retain two values in order to understand the ef-
fect of m~ on our results. This point has been overlooked
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FIG. 3. La~akM&yp in charmonium 1P. The result is inde-
pendent of p. n, = 0.3 gives splittings of —1.0 and —0.78
MeV for m, = 1.2 and 1.8 GeV, respectively.



QCD STRUCTURE OF QUARKONIUM SPIN SPECTRA 3015

in earlier treatments of the subject [4—7]. We treat the
spin splittings as a perturbation to the static potential
and ignore couplings to decay channels. To first order,
then, we have

an operator b,H is

(AH) = d'r@'(r) EH(r)C (r), (2)

M(n P2)

M(n Pi)

M(n Po)
M(n'P, )

M(n Si)

1
Mc.o.g. + EMso AMteoe)

1
Mc.o.g. ™sO+ ™tens~2
M, o g

—24Mso —AMte„„
PMc.o.g. &M p

AMh„+M(n So)

where M, o g is the mass of the center of gravity of the
triplet states.

The wave functions are calculated via the Rayleigh-
Ritz-Galerkin method with the Cornell potential [8] and
the Indiana potential [9]. The dependence on the choice
of potential is small except for the bb S-wave states, so we
present results using the Cornell potential. The Rayleigh-
Ritz-Galerkin method allows analytic Fourier transfor-
mation of the wave functions, and we may choose freely
between coordinate and momentum space. The difficul-
ties of numerically Fourier transforming the wave func-
tions are avoided.

In coordinate space, the familiar expectation value of
I

where r is the relative coordinate of the quark and anti-
quark. Fourier transforming this expression to momen-
tum space gives the expression [10]

1
( H)= d'p'&'p@'(r ') &H(lp' —I I) @(p) .

II. HYPERFINE SPLITTINGS

The hyperfine potential EH~„pis, in the modified min-
imal subtraction (MS) scheme [4],

The angular integrations involved are done analytically
in every case.

Perturbative @CD predicts the Fourier transform of
the QQ potential, which has been known to O(a2) for
some time [4, 5, ll]. We find that the perturbative @CD
expectation values are more straightforwardly evaluated
in momentum space; however, the long range spin-orbit
splitting is more easily calculated in coordinate space.

32m' n, ( 2 ) (Q ') 21 fQ ) 23 10
AHhzp ——si sz a, 1+ '

l

—ll+ nf l
lnl —

l
+ —lnl

l
+ —— nf —31n—2

9m 4~ ( 3 p (p p 2 (mp 3 9

Here the momentum transfer Q =
z (p' —p).

The tree-level part of this potential is constant in Q,
which corresponds to a 6 function in coordinate space and
hence will not contribute to the splittings of the P wave-
states. Furthermore, in the Gupta-Radford renormaliza-
tion scheme [5] one would change only the constant part
of the O(nz) term. This also will not affect the P wave-
states. Although we primarily work in the MS scheme we
will comment on the effect of scheme dependence where
it occurs.

At this point we can motivate our choice of the renor-
malization scale p, . We would like to have a scale which
is related to one of the physical scales of the system we
are studying, and at the same time that scale should give
small corrections, as the hyperfine splittings are expected

I

to be well-described by perturbative /CD. We see that
for p mq both these criteria may be satisfied, as the
coefficients of the logarithmic terms in Eq. (4) will then
very nearly cancel.

The quantities which depend only on the hyperfine
splitting are

aM„'„,= M(n'S, ) —M(n 'S,),
AMh Mc.o.g M (n Pi )

A. S waves

Performance of the angular integrations for S-wave
wave functions yields

s 1 16vra;,

(2~) 9m

dp'dpi'(p')

4 (p)
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~

———ny —Bln2
~
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~
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+~.
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(6)



3016 F. HALZEN, C. OLSON, M. G. OLSSON, AND M. L. STONG 47

TABLE I. Hyperfine sp1ittings. TABLE II. Spin-orbit splittings.

State

cc 1P
cc 1S
cc 2S

mq

1.2
1.2
1.2

Experiment

—0.93 + 0.23
118.1 + 1.9
92.0 + 5.0

0.28 + 0.02
0.29 + 0,01
0.30 + 0.02

State

cc 1P
bb 1P
bb 2P

1.2
4.6
4.6

Experiment

34.92 + 0.18
14.23 + 0.46

9.4 + 0.2

0.35 + 0.01
0.26 + 0.01
0.22 + 0.01

cc 1P
cc 1S
cc 2S

1.8
1.8
1.8

—0.93 + 0.23
118.1 + 1.9
92.0 + 5.0

0.33 + 0.02
0.34 + 0.01
0.38 + 0.02

cc 1P
bb 1P
bb 2P

1.8
5.2
5.2

34.92 + 0.18
14.23 + 0.46

9.4 + 0.2

0.36 + 0.01
0.26 + 0.01
0.23 + 0.01

where @(p) denotes the radial part of the momentum-
space wave function. Figures 1 and 2 show the cc1S and
2S hyperfine splittings as a function of renormalization
scale p for two values of m, and various values of a, .
These differ slightly from our earlier results [1] due to
inaccuracies in our previous determination of the wave
functions.

As discussed above, the renormalization scale is chosen
to be m„which results in small corrections to the tree-
level. Table I lists the values of n, consistent with experi-
ment for this choice [12, 13]. Note that for m, = 1.8 GeV,
the 1S and 2S states require different values of n, . This
lack of consistency would seem to favor lighter quark
masses but could be eliminated by adjusting p. In the
Gupta-Radford scheme [5] we obtain essentially identical
results by taking p, = 2m, . Use of the Indiana potential

in calculating the wave functions leads to small increases
in the required n, values. This is due to the less singular
behavior of the Indiana potential at small r. Although
the efFect is small for cc, it becomes significant for the bb

8-wave states since those states have larger contributions
from high momentum (small r), where the two potentials
difFer.

B. P waves

The position-space wave functions for the P waves van-
ish at the origin, leading to two significant simplifications.
First, the behavior of the potential at the origin has little
effect. Second, after performing the angular integrations
the explicit p dependence which remained in the S wave
splittings does not remain in the P wave:

1 87m,
Mhvr =

(2 )s 9
dp'dp4(p')Mb)

i

—-+ -nf
I

pp'(p'+ p") + —(»' —p")»

This independence of renormalization scale makes the
prediction of the P wave splitti-ngs much less ambiguous
than would otherwise be possible. The P-wave hyperfine
splitting depends implicitly on the renormalization scale
only through n, Figure 3 sh. ows AM&+ for both light
and heavy charm-quark masses. For n, = 0.3, we find
that AMh~ = —1.0 and —0.78MeV for m, = 1.2 and
1.8GeV, respectively. Included in Table I are the values
of n, which match the recent experimental determination
of this splitting [2]. From the table it is clear that once
we have chosen n, to be approximately the same value
as required by the 1S state, the value AM&~ is almost

constant in m, . That is, for m, = 1.2, n, = 0.29 and
AMh+ = —0.96 MeV, while for rn, = 1.8, n, = 0.34 and

AM& ———1.00MeV. We note that this value is rather
smaller than previous predictions [4—6].

III. SPIN-ORBIT AND TENSOR SPLITTINGS

The fine structure involves the perturbative @CD re-
sult plus an additional spin-orbit term due to confine-
ment. We take the perturbative terms again to be the
O(n2) @CD result calculated in the MS scheme [4],

&Aso = —xs p' x p 2vra, o,, 125
Q2 m2 47r 9

+ 10 ( 2 & (Q'l (Q'0
nf +

/

—ll+ ny /
ln/ —

2 /

+41—n/
S J &mi (8)

si s2Q —3si.Qsz Q 16vrn, n, 65 10 ( 2 l Q' & (Q' &
(9)
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TABLE III. Tensor splittings. TABLE IV. Predicted bb hyper6ne splittings.

State

cc IP
bb 1P
bb 2P

1.2
4.6
4.6

Experiment

40.34 + 0.56
11.92 + 0.92

9.0 + 0.4

0.35 + 0.01
0.27 + 0.02
0.25 + 0.01

State

bb 1P
bb 2P

~M„,(MeV)
—0.25 + 0.10
—0.21 + 0.10

cc 1P
bb 1P
bb 2P

1.8
5.2
5.2

40.34 + 0.56
11.92 + 0.92

9.0 + 0,4

0.42 + 0.01
0.28 + 0.02
0.26 + 0.01

are insensitive to the short-range behavior of the poten-
tial, we once again use the Cornell potential. The addi-
tional contribution to the spin-orbit interaction is then
[14]

We see immediately that p = m~ will not lead to
the same cancellations as occurred in the hyperfine case.
This is fortuitous as the tree-level calculation, for a,
0.3, gives values much smaller that the experimental
splittings; we need large corrections. For the confinement
contribution we assume that the confining potential is a
pure ?orentz scalar. Working with P waves only, which

~~conf (10)
2m r

where a is the string tension used in calculating the wave
functions. We evaluate this part of the spin-orbit split-
ting in coordinate space which greatly simplifies the cal-
culation. Carrying out the angular integrations with P
wave wave functions and evaluating the spin-operator ex-
pectation values we obtain

&Mso = 1 7tAg

(2vr) m
d»'d» 4(» ')@(» )

44n, (
Svr+ ' —2n,

~
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FIG. 5. Similar to Fig. 4, for bottomonium 1P states.
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FIG. 6. Similar to Fig. 4, for bottomonium 2P states [12].

tion of the yb found in recent CESR experiments [13]
is still not explained. We point out that the tree-level
predictions for spin-orbit and tensor splittings are con-
siderably below the experimental measurements. In each
case the one-loop correction is a signi6cant improvement
over the tree level and, in fact, provides a reasonable
representation of the data.

IV'. CONCLUSIONS

While the corrections to the spin-orbit and tensor split-
tings are large, the corrections to the hyperfine splittings
are small and therefore allow reliable predictions of the
unmeasured bb P-wave singlet states. Similar predictions
of the S-wave states would be imprecise because of the

0 0
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—0.4

—0.6

—0.8
0.1 0.15 0.2 0.25 0.3 0.35

0 S
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FIG. 7. Similar to Fig. 3, for bb1P and 2P.
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strong dependence on the form of the potential near the
origin, but p, = mb will give small corrections regard-
less of the potential. Our predictions are AM& (1P) =
—0.25 +0.10MeV and AM&+ (2P) = —0.21 6 0.10MeV.
They are again smaller than previous predictions made
with similar calculation schemes, as was the charm 1P
value [4, 6]. Predictions made with difFerent approaches
vary more widely [7]. Table IV lists these predicted split-
tings. The central values are obtained by the one-loop
running from the hyperfine value of n, (m, ) to n, (mb)
and it is clear from Fig. 7 that the primary uncertainty

is the variation in a, . We find that @CD provides, at
O(o.,), a consistent description of all heavy QQ spin split-
tings.
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