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We use the method of QCD sum rules to investigate the neutron-proton mass difference. We include
diagrams consistently up to dimension 9, assuming different up and down current-quark masses

(m„%md), and distinguish between (0~:uu:~0) and (0~:dd:~0), the condensates of the up and down

quarks. Using the typical current-quark masses m„=5. 1 MeV and md =8.9 MeV and the standard con-
densate values for average current-quark masses, we perform numerical analyses of the resultant QCD gf

and unity sum rules. In particular, numerical analyses of the difference equation from the lf sum rules
yield M„—M~=(1.35+0.24) MeV or (1.42%0. 19) MeV, depending on the method of the analysis.
Analogously, the difference equation from the unity sum rules yields M„—M~ =(1.35+0.35) MeV or
(0.95+0.25) MeV. These predictions are consistent among themselves and all are in reasonable agree-
ment with the experimental value of 1.29 MeV.

PACS number(s): 12.70.+q, 11.50.Li, 12.38.Lg, 14.20.Dh

I. INTRODUCTION

Quantum chromodynamics (QCD), and SU(3) non-
Abelian gauge theory, is the presently accepted theory of
strong interactions among quarks and gluons. Although
QCD has defied attempts to obtain solutions to strong in-
teraction problems, it has been conjectured that the
ground state, or the vacuum ~0), possesses nontrivial
structures such as nonzero gluon and quark condensates,
(0~:G„' G'"'. ~0)%0 and (0~:qq:~0)%0. Although it is
highly desirable to use, e.g. , numerical simulations with
lattice QCD to substantiate any nontrivial structure asso-
ciated with the QCD vacuum, it is nevertheless useful to
tackle problems in strong interaction physics with models
which hew as close as possible to QCD. This has led
Shifman, Vainshtein, and Zakharov [1] to propose the
method of QCD sum rules. In short, the method of QCD
sum rules is built upon the working hypothesis that there
is a kinematic region, say of momentum transfer squared
Q in the range of a couple of GeV, in which Green's
functions (or correlation functions) may be evaluated at
the quark-gluon level, using perturbative QCD augment-
ed with nonperturbative gluon and quark condensates to
replace large-distance physics; these results are compared
with those obtained from dispersion relations at the ha-
dronic level. The method yields predictions on the physi-
cal parameters, such as masses, magnetic moments, and
axial-vector couplings, associated with low-lying baryons
and mesons.

Treating both the u and d quarks as massless, Ioffe [2]
and, independently, Chung et al. [3] obtained QCD sum
rules for baryon masses. Later, Belyaev and Ioffe [4] im-
proved the results by keeping terms up to dimension 9 in

the derivation. As isospin symmetry breaking is yet to be
taken into account explicitly, these sum rules cannot be
used directly to investigate the neutron-proton mass
difference, which requires consistent inclusion of the
effects due to mdAm„and (0~:uu:~0)W(0~:dd:~0).
Nevertheless, Hatsuda, Hogaasen, and Prakash [5] have
discussed the neutron-proton mass difference, using the
mass sum rules of X and:", obtained previously by
Reinders, Rubinstein, and Yazaki [6], and making a sim-
ple substitution m, ~md. The purpose of the present pa-
per is to take up again the problem of the neutron-proton
mass difference by keeping diagrams consistently up to
dimension 9 and distinguishing between (0~:uu:~0) and
(0~:dd:~0). The contributions of excited states and the
continuum are taken into account through a standard an-
satz [1,7]. At the hadron level, we use a threshold in the
form of a 0 function to approximate the contributions
from the excited states and the continuum [1,2,7]—in
particular, a threshold energy 8' is chosen such that, for
s ) W, the cut in the spectral function (which enters the
dispersion relation at the hadron level) is identified with
that obtained at the quark level. We include a discussion
of the difference of 8'„and 8' .

The rest of this paper is organized as follows. In Sec.
II, we derive the QCD sum rules, which allow an investi-
gation of the neutron-proton mass difference to be made.
In Sec. III, typical numerical results are described and
discussed. Section IV contains a brief summary.

II. THE METHOD

The method of QCD sum rules consists of the evalua-
tion of a correlation function (or Green's function) both
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at the quark-gluon level and at the hadron level and sub-
sequent identification of the results with each other in a
certain range of momentum transfer squared Q . For
studying proton and neutron masses, we may consider
the correlation function specified by

II(p)=i f d x e'~"(0~T[ii(x)iI(0)]~0), (1)

where for the nucleon current iI(x) we use a standard
(but not unique) form [2,8]

il(x)=e' '[u' (x)Cy„u (x)]y"y d'(x), (2)

with a, b, and c color indices and C= —C the charge
conjugate operator. The current ri(x) is chosen such that

(Oiri(0)i —,
'+ ) =A, +U(p),

(O~ri(0)~ —,
' ) =& y, u(p),

with
~

—,
' —) =

~
J ), and U(p) is the Dirac spinor normal-

ized such that V(p)v(p) =2m.
In order to evaluate the correlation function II(p) at

the quark level, we first need to determine the quark
propagator in the presence of quark and gluon conden-
sates. Keeping track of terms in masses of light quarks
and taking into account quark and gluon condensates, we
obtain the quark propagator as

iS'":(0—
~
T[q'(x)q (0)]~0)

.gab

2m x 32m

ig, (qq) x g,'&qq&(G &x

2 X3 2'X3'
gab m gab(g2G2)

g,"bg, G„",o"'In( —x~) — m x ln( —x )
4w x 32m 2'X 3~'
i5'bm, & qq ) im, (g, qo Gq &5"x'x g,'m, & qq )'x'&"

48 2'x 3' 2'X3' (4)

Here we have adopted &g qo Gq & = &0~:g,qo Gq:~0&, & qq ) —= &Ol:q'q':10&, and x =y x . The various terms in Eq. (4)
are represented pictorially' in Fig. 1—the first term as Fig. 1(a), the second as Fig. 1(b), and so on. Note that terms
proportional to the quark mass m have not been included consistently in the literature. Note also that the fixed-point
gauge [9],x "A„(x)=0, is used to ensure the gauge-invariant nature of the results. (See Appendix B.)

Substituting Eq. (2) into Eq. (1), we obtain

(0~T[i)(x)il(0)]~0) =i2e' 'e' 'Tr[S„"(x)y C[S„"(x)] Cy„]ysy"Sd'(x)y'y5 .

Subsequently, the substitution of Eq. (4) into Eq. (5) results in the nonvanishing contributions which are represented
pictorially as Figs. 2(a) —2(m). The explicit final results on (0~ T(i)(x)i1(0))~0) and II(p) are listed immediately below:
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To determine the correlation function at the hadron level, we use the dispersion relation

I 11(p')
2 2

p —p —ic.

where

ImII(p')=~+5(p —Mx)(o~g~X)(X~rl~o) .

mdadM 2

4

Here the parity of the intermediate state X can either be positive or negative.
The QCD sum rules for the proton mass may be obtained by comparing the coefficients of the terms proportional to P

and 1. To accentuate the contributions from the ground state (the nucleon), we apply a Borel transform to both the re-
sults obtained at the quark-gluon level and at the hadron level. (See Appendix A. ) The resultant QCD sum rules for
the proton mass are given by

a„a„m02 2 2 mdadm0 m„a„mp —(M /M )
2 2 2 2

+ + =p e + excited states + the continuum,
24M' 24 12

and

adM adb 34 n, aad mdM+ +
4 72 81 m. M2 4

where

a, =——(2m )'& qq &,

b = (g,'G'&,

md bM m~a„m„a„ad2 2

32+ 3

2
—( M2/M2)

=p~M&e ~ + excited states + the continuum,

(10)
a~mo =(2m)(g, qcr. Gq ),.

2

P~ ——(2n )
4 ~X

4
Our results diff'er from previous ones primarily in terms proportional to quark masses. In addition, note that, in Eq. (9),
the coefffcient of adb differs somewhat from that reported earlier in Ref. [10];the difFerence results in only a marginally
important numerical difference. Note also that only the QCD sum rule (8) with md=m„=0 (the Belyaev-Ioff'e mass
rule [4]) has been used extensively in the literature.

Exchanging u and d, we may write down immediately the QCD sum rules for the neutron mass:

M M b ad adm0 maM muaumo mdadm0 2
—(M /

2 2 2 2 2 2

8 32 6 24M' 4 24 12
+ + =p„e " + excited states + the continuum,

and

a„M a„b 34 a, ada„m„M m„bM m„ad mdada„+ + — + +
72 81 i M 4 32 3 2

2=p„M„e " + excited states + the continuum . (12)
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According to Eq. (6), we may describe contributions
from the nucleon, excited states, and the continuum ap-
proximately as [1,2,7]

O' CIo, o,C)'
D CI,

ImII(p') =mA, (P'+M )5(p —M )

+~e(p 2 —W2)P'lmll, (p ')

+n.8(p W—)ImII2(p ),
where W is the threshold value of the continuum (and ex-
cited states). Note that W„could differ slightly from W,
giving rise to some uncertainty in the predicted neutron-
proton mass difference. To proceed further, we may ap-
proximate the spectral functions ImII, 2(p') by those ob-
tained at the quark level. Thus, we write, as an approxi-
mation to Eq. (7),

.4 1 bImII (p )= 4p + 4
——mdad4(2~)' (2~)'

,z md 4 ~d '2 md~
Imllz(p )= 4p + ~p2(2m. )4 (2n. ) &(2~)

(14)

FIG. 1. Diagrams for the propagator of Eq. {4}.

To improve further the Q range of the validity of
the derived @CD sum rules, it is useful to incorporate the

Cla
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FIG. 2. Diagrams for the two-point correlation function of Eq. {S}.
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Q dependence of the various terms using the
renormalization-group (RG) equation. In particular,
it is useful to multiply each term in the oper-
ator product expansion by a coefBcient

I [ln(M /A )]/[ln(p /A )]] " ", where p is the re-
normalization point taken to be 0.5 GeV, A is the QCD
scale parameter taken to be 0.1 GeV, y„ is the anomalous
dimension of the current g, and y„ is the anomalous di-
mension of the operator under consideration 0„. (Note
that after the Borel transformation, the dependence on
Q is translated into a dependence on the Borel mass, M.)
Here the anomalous dimensions relevant in our calcula-
tion are listed below [11,12,1]:

i)(x): —,';
qq: 4;

Gn GnPv. 0.
S Pv

m . —4.
q

g, qaoq: = —
—,', .

(15)

Taking into account the aspects related to Eqs.
(13)—(15), we finally obtain the following QCD sum rules
for the proton mass:

L 4/9E—
0

h~6 h&2 Q Q m
L 4/9E2+ '"' L-4/9EO+ "L4/9 — " 'L-2/27

8 2 32 6 24M

mdadM 2

4
d d 0 L 26/27 ~ ~ L —26/27 ~2 MP

ad M ad b 34(a, /m )a„ad, md M

81M

md bM
L E+ + =PM e p™,(17)

32 3 2

where Eo=l —e ", Ei=l —(1+x)e ", and E2=1—(1+x+—,'x )e ", with x=& /M . In Eqs. (16) and (17), we
have dropped those continuum contributions which are not included in E;. The factor L is specified by

ln(M /A )

in(p /A )

Using a simple substitution

Qu

(18)

Qu

md

Qd

mu

md

we obtain the corresponding QCD sum rules for the neutron mass:

6 2 a a m
L —4/9E + M L —4/9E + d L 4/9 L —2/27

8 32 24M'

m a m 2 2m„a„."f m„a„mp d d P 26/27 2 (I /~ )L-4/9EO L — L =P„e ", (20)
4 24 12

a„M a„b 34(a, /m)ada„, m„M m„bM m„ad mdada„

4 72 81M 4 2

(21)

Note that we have taken into account the possible
difference between p and p„as induced by md Am„and
ad%a„(i.e., (0~:uu:~0)A(0~:dd:~0)). The "explicit"
electromagnetic contributions, as illustrated by Figs.
3(a)—3(c), are to be included in our numerical analysis.
Regularization is needed for a quantitative treatment of
the contributions from Fig. 3(a); by inspection, we insert
into Eqs. (16) and (17) and (20) and (21) separately the
corrections —,g—,'M L E2 and —9g—,'M L E2 and,
without the tedious calculation (yet to be formulated),

I

choose to treat y as a parameter (characterizing small
electromagnetic corrections typically of less than one per-
cent of the total}. Contributions from Figs. 3(b), 3(c-l),
and 3(c-2) can easily be calculated; only a net correction
to Eq. (17) is found and Eqs. (16), (20), and (21) are not
affected. Altogether, we Gnd that inclusion of the explicit
electromagnetic effect is essential for attaining the overall
consistency of the numerical results.

Note also that, in writing down Eqs. (20} and (21), we
have assumed 8'„=8' for the sake of illustration. This
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c —2

FIG. 3. Diagrams representing the "explicit" electromagnet-
ic corrections to the proton and neutron mass sum rules.

assumption will be discussed later in the next section, as
we recognize that the slight difference between 8'„and
W& may be the major source for the theoretical error on
the predicted neutron-proton mass difference.

III. NUMERICAL ANALYSIS
AND SAMPLE RESULTS

Different methods may be adopted in the numerical
analysis of the QCD sum rules; they yield predictions

which may not be consistent among themselves. This
feature occurs because not all sum rules are equally good.
To establish the viability of the inethod of QCD sum
rules, it is essential to explore different methods adopted
in the numerical analysis. To this end, we may view Eqs.
(16), (17), (20), and (21) as the "primary" QCD sum rules
and those which follow from the primary ones as the "de-
rived" sum rules. In addition, the two QCD sum rules
for the proton mass, Eqs. (16) and (17), do not necessarily
give rise to completely consistent results, since correc-
tions to the Lorentz structures p and 1 may in principle
differ from each other. Thus, at first we shall analyze
separately these two sum rules, and only at the very end
follow Hatsuda, Hogaasen, and Prakash [5] in combining
the two sum rules in order to get rid of the factor pz.

In our first analysis, we take the logarithm of both
sides of Eq. (16) and apply the differential operator
M 8/BM to both sides. This procedure was used previ-
ously by Ioffe and Smilga [10]; it has the advantage of
treating efficiently a single sum rule (i.e., getting rid of the
parameter p without a need to combine two different
sum rules —perhaps with slightly different behaviors). In
this way, we obtain a sum rule which is free of the param-
eter p:

(1+—', y)M
M4 1 I —4/9E + L

—4/9E + " I 4/9 "
L

—2/27 L
—4/9E

aM' 2 32 24M 2

2 2
d d 0 —26/27 ~ & —26/27I. — I. =M

24 12

adb +
72

34(a, /m. )a„ad, md M

81M
M ln4 8

aM'

Here, as indicated earlier, the "explicit" electromagnetic contribution as illustrated by Fig. 3(a) is included through the
term 4y ,'M L Ez, wit—h y treated as a free parameter [to be chosen so as to ensure consistency between the two sum

rules, Eq. (22) above and Eq. (23) immediately below]. A different procedure to include the pure electromagnetic effects
will be discussed later.

Analogously, we obtain, from Eqs. (17), (20), and (21),

(1+—49')ad M" mdm2 I -'"E
1 32

mda„m„a„ad m, aqM E02 2 2

=M
p (23)

(1+—,'y)M h %&2
M4 ln I —4/9E + "

L
—4/9E + I 4/9 I —2/27 " " I —4/9E

aM' 32 6 24M 2 4

m a m a—26/27 d d 0 —26/27 2L =M„,
24 12

M ln4

BM 4 ' 72 81M

m„ad md ada„2

+ + =M„.
2

(25)

In Eq. (23), we have introduced m, a&=—(2m)2(eqo Fq ), with (u. o-Fu ) =—', (qo"Fq) and (do"Fd ) = —
—,'(qo"Fq).

(F is the electromagnetic-field-strength tensor. ) To attain consistent fits, we choose m, =0.048 GeV .

[m, /ma =0(a/o. , ); see Fig. 5 below. ]
To decide the range of the Borel mass in which the QCD sum rules may be safely used, we may set E2, E„and Eo to
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unity in Eqs. (16), (17), (20), and (21) and compare the diff'erence numerically. More explicitly, we may introduce, for
Eq. (16) or (20),

M bM mdadM'
L (1 E—)+ L (1 E—)— L (1 E—)

8 2 32 0 4 0

a~6
L + L 4/9+ "L4/9 u OL —2/27 d d L d d OL —26/27 u " 0 I —26/27

l AX~ a a m maM mam mam
8 32 24M 2 24 12

(26a)

Note that the denominator is just the left-hand side of Eq. (16) with E2, E„and Eo all set to unity, while the numerator
is the diff'erence between the left-hand side of Eq. (16) and the denominator. It is clear that 5"' is a gauge for the nu-
merical importance of the contribution from the excited states and the continuum to the left-hand side of Eq. (16) (as es-
timated in the continuum approximation). Analogously, we introduce, for Eq. (17) or (21),

adM4

4

adM mdM md''
4 1 4 2 32 0(1 E)+— L (1 E)—— (1 E)L—

adb 34 e, aad, /9 d 8/9 d 8/9 mda„maad2 6 2 2

81 ~ M2 4 32 3 2

(26b)

In Table I, the values of 5"" ', which reflect directly
the contributions from excited states, are listed as func-
tions of the Borel mass squared M . Here we have used
a„=ad=0.546 GeV and m„=md=7 MeV. The range
of the Borel mass may be fixed by assuming, e.g. , that
contributions from excited states, as specified by 6"" ',
are less than 50%%uo and that the expansion (operator pro-
duction expansion) in powers of M converges reason-
ably fast. In this way, we find that 0.9 GeV (M &1.1

GeV is a reasonable choice for Eq. (16) or (20), while 0.8
GeV (M ( 1. 1 GeV is for Eq. (17) or (21).

In the limit that md=m„and a„=a„, Eqs. (22) and
(24) reduce to a single equation (the first mass sum rule)
for the nucleon, while Eqs. (23) and (25) reduce to anoth-
er equation (the second mass sum rule) for the nucleon.
We may then obtain the nucleon mass as a function of the
square of the Borel mass M . The results are illustrated
in Fig. 4, where the solid curve is obtained from the first
mass sum rule, while the dashed curve is obtained from
the second mass sum rule. The input parameters in the
numerical analysis are taken to be the commonly accept-
ed ones [4,13,14]:

b =0.474 GeV

mo=0. 8 GeV

8' =2.25 GeV
(27)

4~a, (p) = =0.434 .
91n(p /A )

1 500

1000—

It is seen from Fig. 4 that the observed nucleon mass (939
MeV) is reproduced reasonably well.

To study numerically the neutron-proton mass
difference, we adopt [4,13,14]

TABLE I. The values of 5"" ', de6ned by Eqs. (26a) and
(26b) in the text, are listed as functions of the Borel mass
squared I . a„=ad=0.546 GeV and m„=md=7 MeV have
been used.

500—

(~eV )

0.6
0.7
0.8
0.9
1.0
1.1
1.2

For 5"' (%)

9.8
16.6
24.2
32.1

39.8
46.8
53.2

For 6' ' (%)

8.9
14.6
20.8
27.0
32.8
38.2
43.2

0 I I I I I I I I I I I I I I I I I I I I I I I I I I 1 I I I I

0.00 0.50 1.00 1.50
squnre of Bore(, m, ass M~ (Ce V')

2.00

FIG. 4. The nucleon mass as a function of the square of the
Borel mass M2 [from Eqs. {22) and (23) with md=m„and
ad=a„]. The solid curve is obtained from the first mass sum
rule, while the dashed curve is obtained from the second mass
sum rule.
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a„+ad
a = =0.546 QeV,

2

y =— —1 = —0.006 57,(dd )
(uu )

m„=5. 1 MeV,

I,=S.9 Mev .

(28)

2.50

2.00

1.50

1.00
I

0.50

+
+

+
+

+++~+++
~ ~ ~ ~

Here a nonzero y represents another source for isospin
symmetry breaking. Our value for y is similar to, but
slightly less than, that used by Hatsuda, Hogaasen, and
Prakash [5],between —0.0067 and —0.0078. Gasser and
Leutwyler [13] obtain via chiral perturbation theory a
formula for y which yields y= —0.0074. Chernyak and
Zhitnitsky [15] obtained another estimate y = —0.009 via
QCD sum rules. Our value for y, while close to all these
values, is dictated by the overall quality of the solutions
to the sum rules (22) —(25). By taking the difference be-
tween Eqs. (22) and (24), we obtain a sum rule for
2M~(M„—M ). In Fig. 5, we plot the resultant mass
difference as a function of the Borel mass squared. The
dotted curve is the result obtained by assuming y =0 (i.e.,
neglecting the explicit electromagnetic effect), while the
solid curve is the result obtained by choosing an optimal
value g =0.0036. In the former case, we obtain
M„—M = 1.53 MeV, while in the latter M„—M = 1.35
MeV, considerably closer to the experimental value of
1.293 MeV (shown as the heavy dotted curve in Fig. 5).

Analogously, we obtain by taking the difference be-
tween Eqs. (23) and (25) another sum rule for
2M~(M„—M„). In Fig. 5, we again plot the resultant
mass difference as a function of the Borel mass squared.
The dashed curve is the result obtained by assuming g=0
(i.e., neglecting the explicit electromagnetic effect), while
the crossed curve is the result obtained by choosing the
same optimal value g=0.0036. In the former case, we
obtain M„—M =0.07 MeV, while in the latter
M„—M =1.35 MeV, in agreement with that from the
solid curve. However, errors on the predictions may be
fairly large, as we observe that, for this particular sum
rule, the final results depend sensitively on the range of
the Borel mass used in the fitting.

It seems from Fig. 5 that the explicit electromagnetic
effect modifies the two (p and 1) sum rules very
differently —for the p sum rule, it contributes to M„—M

0.00

—0.50 '

0.00 0,50 1.00 1.50 2.00
square of Bore/. muss kf~ (Ce V')

a correction of about —0.2 MeV (which is quite insensi-
tive to the Borel mass for M )0.9 GeV ), while for the 1

(unity) sum rule the correction increases from a vanishing
value at M =0.6 GeV to about 1.3 MeV (the entire ob-
served value for M„—M ) at M =1 GeV . It is clear
that the p (first) sum rule works well numerically; by
comparison, we cannot say much about the unity
(second) sum rule. (It is a nontrivial fact that the explicit
electromagnetic effect modifies the two sum rules
differently —as in quark models, the electromagnetic con-
tribution to the neutron-proton mass difference can be
deduced in an almost model-independent manner [16]).

We can take a somewhat different track. We take the
difference between Eq. (16) and Eq. (20) and multiply the
two sides of the resultant equation by (M /2M&pz),
with M& —= (M„+M ) /2 and Pz ——(P„+Pz ) /2. Noting
that M~ ))(M„—Mz) and p~ ))~p„p~~, we obtain —a
QCD sum rule for the neutron-proton mass difference:

FIG. 5. The neutron-proton mass difference as a function of
the Borel mass squared. The dotted curve is the result obtained
from taking the difference between Eqs. (22) and (24) and assum-
ing y=0 (i.e., neglecting the explicit electromagnetic effect),
while the solid curve is the result obtained by choosing an op-
timal value y=0.0036. The dashed curve is the result obtained
from taking the difference between Eqs. (23) and (25) and assum-
ing y=O, while the crossed curve is the result obtained by
choosing the same optimal value y=0.0036. The experimental
value of 1.293 MeV is shown as the heavy dotted curve.

I(a„—ad )
mo m M

L
—2/27 + ( m a i77 a ) L 4/9E L

—26/—27 + X M6L —4/9E
24 2M P

M —(I /M )(M„—M ) — (p —p2 ) e
2M P

Analogously, we obtain from Eqs. (17) and (21) another QCD sum rule for the neutron-proton mass difference:
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(ad —a„) E, — 34 s d u + i/9 +(4 )yM
81 m' M2 " 36

M bM'+ ( ) I —8/9E ™I —8/9E
d u 4 2 32 0

a„ad Mda„—m„ad m, aqM Ep2 2 2 2

2
+

3 24
M

2M~P~

M
(M —M) 1—

N

M —(M //M )
(132 p2 )

N

2M~P~
(30)

Note that we may recast Eqs. (29) and (30) in a linearized
version, i.e., to first order in md —m„, or in ad —a„,. or in
P„—P~. As anticipated, numerical analyses of linearized
sum rules give rise to essentially the same results.

We may use Eq. (29), the first QCD sum rule for the
neutron-proton mass difference, to determine M„—M as
a function of the square of the Borel mass, M . Here we
perform quadratic fits to both the left-hand (L) and
right-hand (R) sides after moving the exponential factor
exp( —Mz/M ) to the left-hand side. The result is illus-
trated by Fig. 6, with the solid curve for the left-hand
side and the dashed curve for the right-hand side. We
obtain M„—M =1.42 MeV and P„—P = —2.0X10
GeV as the best fit for 0.9 GeV & M & 1.1 GeV .

Analogously, we illustrate in Fig. 7 numerical results
from the analysis of the second QCD sum rules on the
neutron-proton mass difference, i.e., Eq. (30). Performing
the same analysis as for Eq. (29), we obtain the result as
illustrated by Fig. 7, with the solid curve for the left-hand
side and the dashed curve for the right-hand side. We
obtain M„—M~=0. 95 MeV and P„—P~= —1.4X10
GeV as the best fit for 0.9 GeV & M & 1.0 GeV .

We proceed to discuss in some detail possible sources
for error in our numerical analyses. As mentioned ear-
lier, it is possible that 8'„differs slightly from O' . Such
a difference affects E2, E„and Ep and distinguishes the
threshold of the continuum in the proton and neutron
cases. In addition, we note that we should in general re-
place the right-hand side of Eq. (16), P exp( —M~/M ),
by the expression P (1+A M )exp( —M~/M ), with A~

I

characterizing the "residual" contribution from the excit-
ed states or the continuum. Thus, the other source for
the difference may come from A~%A„. Nevertheless,
the continuum for the proton may come from a combina-
tion of pm and n~+, while that for the neutron may
come from a combination of nm and pm . For instance,
the first excited —,

'+ state [N(1440)] decays 50—70% of
the time to Xm. Thus, in an average sense, we anticipate
Wp Wn and perhaps Ap A p as wel 1. The effect caused
by A A A„ is in any event of marginal importance, since
most of the effects cancel out when we consider the loga-
rithmic derivatives, as in Eqs. (22) —(25). Thus, we focus
on the effect caused by W„A W~; in view of the above ar-
gument, it is likely that the difference is in the range of
less than 0.1% [i.e., somewhat smaller than
(M„—M~ )/M~].

In Fig. 8, we repeat the analyses performed in obtain-
ing Fig. 5 (taking into account the explicit electromagnet-
ic effect as before). For the difference equation from Eqs.
(22) and (24), the dotted curve (instead of the previous
solid curve in Fig. 5) is obtained if we choose
( W„—W~)/W =+0.1%. This gives rise to
M„—M =1.84 MeV. On the other hand, we obtain the
solid curve and M„—M =0.87 MeV for
(W„—W )/W = —0. 1%. For the difference equation
from Eqs. (23) and (25), we obtain the dashed curve and
M„—M =1.88 MeV for (W„—W )/W =+0.1% or
the crossed curve and M„—M =0.89 MeV for
( W„—W~ )/W = —0.1%. Thus, assuming that the total

4.00

1 s t mass difference sum rule

3.00

2nd mass difference sum rule
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FIG. 6. The neutron-proton mass difference M„—M~, as
determined from our first QCD sum rule (29), is shown as a
function of the square of the Borel mass M .

FIG. 7. The neutron-proton mass difference M„—M~, as
determined from our second QCD sum rule (30), is shown as a
function of the square of the Borel mass M .
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FIG. 8. The error analyses performed for Fig. 5 (taking into
account the explicit electromagnetic effect as before). For the
difference equation from Eqs. (22) and (24), the dotted curve (in-
stead of the previous solid curve in Fig. 5) is obtained if we
choose ( &p Wp )/fY +0 1% This gives rise to
M„—Mp =1.84 MeV. On the other hand, we obtain the solid
curve and Mp Mp:0 87 MeV for (8'„—8'p)/8' = —0. 1%.
For the difference equation from Eqs. (23) and (25), we obtain
the dashed curve and M„—Mp = 1.88 MeV for
( 8 p Wp ) / $V +0 1 % or the crossed curve and
M„—Mp =0.89 MeV for ( 8'„—8' ) /8' = —0. 1%.

adM" mdM md a„m„a„ad4+ 4+ 3

(31b)

where

+(—,'a —M —aMOM )(md —m„)], (32)

which may be contrasted with our Eqs. (16) and (17).
Note that several terms (those proportional to mo and
some higher-dimension terms) are absent from Eqs. (31a)
and (31b). Note also that, in Eqs. (31a) and (31b), contri-
butions from excited states, as derived from our Eqs. (13)
and (14), are neglected, and the Q behavior due to the
anomalous dimension of each term has been left out.
Hatsuda, Hogaasen, and Prakash [5] proceed to take the
ratio of Eqs. (31b) and (3la) and obtain a sum rule for the
proton mass M . Using the substitution Eq. (19), one ob-
tains a similar result for the neutron mass M„. Subse-
quently, one may write down a sum rule for the neutron-
proton mass difference, to first order in symmetry break-
ing:

b,M= [ —(M +—4aMo)ay
Mo

aM

a = —(2m) (qq) =(2m) (250 MeV) (33a)

range of uncertainty for (W„—8'~)/W is about O. l%%uo,

we have to attribute an error +0.24 MeV to the (first) P
sum rule and +0.25 MeV to the (second) unity sum rule.
On the other hand, the analysis of the second sum rule
depends fairly sensitively on the range of the Borel
mass —we may need to assign an additional error of
about +0.25 MeV to the second sum rule.

We have also performed similar error analyses for Eqs.
(29) and (30). Assuming again that the total range of un-
certainty for ( W„—W )/W is about O. l%%uo, we quote the
prediction of Eq. (29) as M„—M =(1.42+0. 19) MeV
and p„—p = —(2.0+0.5) X 10 GeV while that of Eq.
(30) as M„—M& = (0.95+0.25 ) MeV and P„—P= —(1.4+0.2)X10 GeV . (To avoid redundance, we
shall not present figures which enable us to make these
error estimates. )

To sum up, numerical analyses of the difference equa-
tion from Eqs. (22) and (24) yield M„—M =( l.35+0.24)
MeV, consistent with the value of (1.42+0. 19) MeV as
obtained from Eq. (29). Analogously, the difference equa-
tion from Eqs. (23) and (25) yields M„—M
= ( 1.35+0.35 ) MeV, consistent with the value of
(0.95+0.25) MeV as obtained from Eq. (30).

In concluding this paper, we wish to consider an
analysis adopted recently by Hatsuda, Hogaasen, and
Prakash [5]. Specifically, Hatsuda, Hogaasen, and
Prakash [5] obtained the neutron-proton sum rules using
suitable substitutions on the sum rules for X and:-. For
the proton, they have

and

y= —1.(dd )
(uu )

(33b)

Mo and M are the nucleon mass in the chiral limit and
the Borel mass, respectively. These are determined by
BMo/8M=0. Finally, Hatsuda, Hogaasen, and Prakash
[5] assume a simple scaling, viz. every mass scale, except
for (md —m„), is proportional to (qq )". They obtain

b,M = —4.79y ( ( qq )
~

' —1.56( md
—m „) . (34)

We can follow this line of reasoning and obtain a similar
sum rule for the neutron-proton mass difference. In Fig.
9, we describe the numerical difference between our sum
rule and that of Hatsuda, Hogaasen, and Prakash [5].
The long-dashed curve is the result obtained from the
procedure of Hatsuda, Hogaasen, and Prakash [5] togeth-
er with their parameters: Their condition BMz/8M=0
leads to a nucleon mass M„=761 MeV at the Borel mass
squared M = 1.044 QeV and, as a result, one finds
M„—M =1.5 MeV. We would obtain the result shown
in the short-dashed curve should we adopt the procedure
(formula) of Hatsuda, Hogaasen, and Prakash [5] but
with our parameters: M& =743 MeV and
M„—M =1.67 MeV at M =0.96 GeV . Note that the
predicted nucleon mass is in fact a little too low using
their procedure.

If we adopt the procedure of Hatsuda, Hogaasen, and
Prakash [5] by using our formula together with our pa-
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densate values, we perform numerical analyses of the
resultant QCD sum rules. In particular, numerical analy-
ses of the difference equation from Eqs. (22) and (24) yield
M„—M~=(1.35+0.24) MeV, consistent with the value
of (1.42+0. 19) MeV as obtained from Eq. (29). Analo-
gously, the difference equation from Eqs. (23) and (25)
yields M„—M~ = ( l.35+0.35) MeV, consistent with the
value of (0.95+0.25) MeV as obtained from Eq. (30). Al-
together, we find that inclusion of the explicit elec-
tromagnetic effect is essential for attaining the overall
consistency of the numerical results. Our results also
suggest that numerical analyses of QCD sum rules
remain a subtle issue.
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APPENDIX A: THK BORKL TRANSFORM

The Borel transform is defined as
n

rarneters (but without explicit electromagnetic effects), we
obtain the result represented by the solid curve in Fig.
9—an unacceptable result. To understand the
differences, we may use our formula and our parameters
but with L =1 (i.e., neglecting the effect due to anoma-
lous dimensions). The result is shown in the curve
marked by triangles. Furthermore, we may also set
W~ ae (i.e., without proper truncation of the effect due
to excited states or continuum) and obtain another curve
marked by crosses. It is seen that, if these effects are left
out from our formula, we reproduce, step by step, the re-
sult of Hatsuda, Hogaasen, and Prakash [5]. The failure
may be caused by the fact that the two sum rules, those
for p and 1, have different explicit electromagnetic effects
and numerically they also behave differently, so that a
simple combination of them does not work. These
differences make it clear that numerical analyses of QCD
sum rules remain a subtle issue.

B[f(p )]= lim, (
—p )"+'2 n+1

p —+ 002

2
fixed

M

f p' .
dp

—(a/M')e
(P—1)!

=( —1)~(M)'-'~
p cx

B (p ) ln =m!(M )

B[(p2) ]=0, m a non-negative integer,

B[f(p )]=—f ds lmf(s)e
7T 0

iff(p ) can be written as a dispersion integral;

Important examples of Borel transforms include
P

1

(Al)

(A2)

(A3)

(A4)

(A5)

IV. SUMMARY

We have used the method of QCD sum rules to investi-
gate the question of the neutron-proton mass difference.
We attempt to keep diagrams consistently up to dirnen-
sion 9, assuming different up and down current quark
masses (m„%md ) and trying to distinguish between
(0~:uu:i0) and (Oi:dd:i0), the condensates of the up and
down quarks. Using the typical current quark masses,
m„=5. 1 MeV and md =8.9 MeV, and the standard con-

p

k

ln( —p /p )

X 1+0
ln(M /p )

(A6)

1 1

(k —1)!(M )" ' ln(M /p )
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APPENDIX B: THE FIXED-POINT GAUGE

The fixed-point gauge is defined as

x"A„(x)=0, A&
=—A„' (81)

and

1 v 1 2 ~kA„(x)= —g x x x x
o k!(k +2)

(85)

Using

G„,=B„A,—c) A„+Eg[A'„, A, ], G„—=G„', (82)pV 2

Note that A„(x =0)=0 in the fixed-point gauge. We
may also recast Eq. (85) in a gauge-invariant form

multiplying (82) by x", and using (81), we get

xG = —~ —xaWPV p V P

Replacing x by tx, we obtain

[rA„(tx)]= rx G„,—(rx)d
dt

(83)

(84)

~k

o k!(k +2)

X(D . D G„,) o,

where D =r) +ig(A;l2)A'.

(86)
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