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Second order power corrections in the heavy-quark
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II. Baryon form factors

Adam F. Falk and Matthias Neubert
Stanford Linear Accelerator Center, Stanford University, Stanford, California g$80g

(Received 22 September 1992)

The analysis of I/rn& corrections of the previous paper is extended to the semileptonic decays
of heavy baryons. %'e focus on the simplest case, the ground state Ag baryons, in which the light
degrees of freedom are in a state of zero total angular momentum. The formalism, while identical
in spirit, is considerably less cumbersome than for heavy mesons. The general results are applied
to the semileptonic decay Ab —+ A, E v. An estimate of the leading power corrections to the decay
rate at zero recoil, which are of order 1/m~, is presented. It is pointed out that a measurement of
certain asymmetry parameters would provide a direct measurement of I/m& corrections. Finally, it
is shown how the analysis could be extended to include excited heavy baryons such as the Zg and
the Zg.
PACS number(s): 11.30.Hv, 12.38.Lg, 13.30.Ce, 14.20.Kp

I. INTRODUCTION
In the preceding paper [1] (hereafter referred to as I),

we have developed the formalism for including in the
heavy-quark effective theory (HABET) terms in the mass
expansion of order 1/m~&. That paper focused on the
case of the ground-state pseudoscalar and vector mesons.
Here we extend the analysis to the case of the heavy
baryons, in particular the spin-2 Aq. It turns out that
the formalism is far less cumbersome than for the heavy
mesons. The structure of the previous paper may be
taken over almost in its entirety to the baryons, but
with the number of invariant form factors considerably
reduced. Hence to avoid redundancy we will abbreviate
considerably those aspects of the presentation which are
common to the two cases and concentrate instead on fea-
tures which distinguish the baryons from the mesons. In
Sec. II we discuss the Lagrangian of HABET and the ex-
pansion of the baryon masses. Section III reviews the
form of baryon matrix elements in the mg —+ oo limit
and the corrections of order I/mg. In Sec. IV we present
the extension of this analysis to order 1/m&. Some phe-
nomenological applications of our results to semileptonic
decays of the Ab baryon are discussed in Sec. V, while
Sec. VI contains a discussion of excited baryons. In
Sec. VII we provide a brief summary.

For the sake of simplicity, we shall completely ignore
radiative corrections in this paper. In particular, we
omit the p dependence of the universal form factors of
HABET and ignore the short-distance coefficients in the
expansion of the currents. All these effects would not
change the structure of the heavy-quark expansion, but
they would complicate the presentation. As discussed in
detail in I, renormalization effects may be incorporated
straightforwardly into our general formalism in a pertur-
bative way.

II. LAGRANGIAN OF THE EFFECTIVE
THEORY'

h(v, x) = e' ~ *P+Q(x), (2.1)

where P+ ——
2 (1+)) is a positive energy projection oper-

ator. The e8'ective Lagrangian for the strong interactions
of a heavy quark becomes [7, 10, ll]

8'HABET

6 lv D h (2.2)

where D~ = 8 —ig, t A is the gauge-covariant deriva-
tive. This is corrected by an infinite series of terms
involving higher-dimensional operators, which are sup-
pressed by inverse powers of mq.

1 1
&power = &1+ 2 &2+ ''

2mq 4m'
(2.3)

The terms in Zp~ „are treated as ordinary perturbations
of the Lagrangian EH@ET. Omitting operators which
vanish by the equations of motion, the first- and second-
order terms are [12—14]

Zi ——h (iD) h+ Z h sapG ~h,

mass of a heavy quark [2—9]. It is useful when one con-
siders external states containing a single heavy quark,
dressed by light degrees of freedom to make up a color-
singlet hadron. HABET is constructed by redefining the
field operator Q(x) of a heavy quark in such a way that
the heavy-quark part of the @CD Lagrangian can be ex-
panded in powers of I/rnid. This expansion is indepen-
dent of the nature of the hadronic states one wants to de-
scribe. Hence the field redefinition and the construction
of the effective Lagrangian and the efFective heavy-quark
currents are the same as described in I.

In brief, then, there are two objects which one must
expand to construct HABET. The first is the @CD La-
grangian. In the limit mg —+ oo, the heavy-quark field
Q(x) is replaced by the velocity-dependent field

The heavy-quark effective theory provides an expan-
sion of hadronic matrix elements in inverse powers of the Z.2 ——Zg hvpiD~G h+ 2Z2 h, s~pv~iD G ~h, ,

(2.4)
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where s~p = —zo p, and G i = [iD, iD~] = ig, t~G~~
is the gluon field strength. Expressions for the renormal-
ization factors have been given in I and Ref. [14]. It is
necessary to perform a similar expansion of the heavy-
quark currents which mediate the weak decays of heavy
hadrons. In the full theory these currents are of the form
Q'I'Q. At the tree level in the effective theory the ex-
pansion takes the form

1 / ~ 1 —(Q'I Q t 'r h+ 5'rich+ h'( —iP) rZ
2m@ 2m@I

4m' 4m~~,

j+ h'( —iP) I'iP h+
4mgmq

(2.5)

A more complete form of the expansion, which allows for
the inclusion of radiative corrections, is given in I.

The eigenstates of ZHqET differ from those of the
full theory in the baryon sector in the same way as
in the meson sector. The latter case was discussed
in some detail in the previous paper. For the spin-

2 Ag baryon, the situation is in fact simpler, because
the light degrees of freedom carry no angular momen-
tum and hence there is no spin symmetry-violating mass
splitting. We expand the mass of the physical Aq as
mA = mq+ A+ Am&/2mq+ . The mass of the Aq
in the strict mg ~ oo limit is given by M =—mg + A;
the next term in the series represents the leading correc-
tion to this quantity. Fixing, as usual, the heavy-quark
mass mq so that there is no residual mass term [15] in
the Lagrangian (2.2), the parameter A is well defined and
controls the phase of the efFective heavy-baryon state:

~Aq(x))HABET = e ' "*~Aq(0))HABET. (2.6)

Note that A as defined here is not the same as the analo-
gous parameter A defined for the heavy mesons. In order
to make clear the parallels with the analysis for mesons
given in I, and in order to avoid a further proliferation of
nomenclature, we will sometimes use the same (or simi-
lar) names for parameters and form factors appearing in
the description of heavy mesons and baryons. However,
under no eireumstances should there be confusion that
these form factors are at all related.

In the rest frame of the Aq, the mass shift Am~& is
given by

(Aq(v s) I
(-~i) IAq(v s))

(Aq(v, s)
~

hth iAq (v, s))
(2.7)

The matrix elements which appear in the numerator of
(2.7) are restricted by Lorentz invariance to take the form

(Aq ~

h (iD) h ~Aq) = 2M%,

(2.8)

(Aqi hs pG ~h iAq) =0.
Vector current conservation implies that the matrix el-
ement in the denominator equals 2M. We thus fi.nd
Am~2 = —A. At this order in the heavy-quark expan-
sion, then, A and A are the fundamental mass param-

eters of the efFective theory. They are independent of
mq and of the renormalization scale p. Unfortunately,
these parameters cannot be measured directly. While one
may na'ively estimate A = 700 MeV from the constituent
quark model, little is known about the higher-order cor-
rection A.

III. BARYON FORM FACTORS IN THE
EFFECTIVE THEORY

Consider the semileptonic decay of a spin-2 baryon A
containing heavy quark Q of mass mq, to a spin- ~ baryon
A' containing heavy quark Q' of mass mq . This transi-
tion is governed by the hadronic matrix elements of the
flavor changing vector and axial-vector currents. They
are conventionally parametrized in terms of six form fac-
tors f, and g, , defined by

(A'(p', s')
~

Q'p"Q ~A(p, s))

= uA (p', s') fi p" —ifz cr" q~ + fs q" uA(p, s),

(A'(p' s')
I
Q'~"~'Q IA(p s))

= uA (p', s') gi V" —ig2 ~" q + gs q" V' uA(p, s),

(A'(v', s')
i
Q'p"Q iA(v, s))

= uA~(v, S ) Fi '7 + F2 V + Eg V tiA(V I S),

(A'(v', s')
i
Q'p"p Q iA(v, s))

= uA~(v )s ) Gip +Gzv + Gsv f uA(v, s) .

(3.2)

Here u~(p, s) and u~(v, s) are the same spinors and are
normalized to the physical mass mp.

up(v, s) up(v, s) = 2rng . (3.3)

While the form factors f, and g, are conventionally writ-
ten in terms of the invariant momentum transfer q,
it is more appropriate to consider F, and G; as func-
tions of the kinematic variable m = v v', which mea-
sures the change in velocity of the heavy baryons. Using
the fact that the spinors are eigenstates of the velocity,

g uA(v, s) = uA(v, s), one can readily derive the relations
among these sets of form factors. They are

(3.1)

where ql" = p~ —p'& is the momentum transfer to the
leptons. For heavy baryons it is convenient to replace
this with a parametrization in terms of the velocities of
the initial and fi.nal baryons. We thus define an equivalent
set of form factors by
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2mA
j'23=

2mA

2mA~

2m+I

fi = Fi + (mA + mA ) I
+(2m' 2mAI p

(3.4)

As shown by Georgi, Grinstein, and Wise [19],the lead-
ing power corrections to the infinite quark mass limit in-
volve contributions of two types. The first come from
terms in the expansion of the current (2.5) which involve
operators containing a covariant derivative. Their matrix
elements can be parametrized as

( Gz Gs )
gi =Gi —(mw —mA )I +

(2mA 2mA ) '

Gg G3
gg =—

2mA 2mAI

Gz Gs
g3 =

2mA 2mAI

Let us now review the analysis of the baryon form fac-
tors in HQET [16—19]. This will allow us to outline the
procedure and to set up our conventions in such a way
that the extension to the next order becomes straightfor-
ward. At each order in the heavy-quark expansion, one
writes the contributions to F, and 0, in terms of univer-
sal, mq-independent form factors, which are defined by
matrix elements in the efFective theory. At leading order,
one needs the matrix elements of the first operator on
the right-hand side of (2.5) between baryon states in the
efFective theory. They have the structure [7, 18]

(A'(v', s')
I

h'r h IA(v, s)) = q(~) u (v', s') r u(v, s),
(3.5)

where ((ui) is the Isgur-Wise function for A baryon tran-
sitions, and u(v, s) denotes the spinor for a heavy baryon
in the effective theory. It is normalized to the effective
mass M = mq + A of the state in HQET,

u(v, s) u(v, s) = 2M , (3.6)

and is thus related to the spinor of the physical state by

u(v, s) = ZM'~ u(v, s), ZM = A

2-'+
(3.7)

At order 1/m2q in the heavy-quark expansion we will have
to include this factor.

From (3.5) one can immediately derive expressions for
the baryon form factors in the infinite quark mass limit.
One finds Fi = Gi ——g(ui) and F2 ——F3 —G2
G3 —0. One can then use the conservation of the Havor-
conserving vector current to derive the normalization of
the Isgur-Wise form factor at zero recoil [3]. From

(A(v, s) I Q po q IA(v) s)) = 2mAvo,

it follows that

) F,(i) = i
i=1,2,3

(mA =mA), (3.9)

which implies the normalization condition ('(1) = 1.
Prom here on we will omit the velocity and spin labels on
the states and spinors. It is to be understood that un-
primed objects refer to A and depend on v and s, while
primed objects refer to A' and depend on v' and s'.

(A'Ih'r™iD h[A) = ( (v, v') u I' u.
As in I, we do not have to specify the nature of the ma-
trix I' in the definition of the universal functions. At the
tree level, however, I' = I'p . Matrix elements of oper-
ators containing a derivative acting on h are, as usual,
obtained from this by complex conjugation and inter-
change of the velocity and spin labels. The most general
decomposition of (~ involves two scalar functions, defined
by [i9]

( (" v ) = 4+(ui) (v + v ) + (—(ui) (v v ) (3 11)

As in the case of the mesons, one can use the equation of
motion iv.Dh=0 and the known spatial dependence (2.6)
of the states in the effective theory to put constraints on
these form factors. One finds [19]

(+(~) =
2 „ 1

((~)
(3.12)

A
4-(~) =

2
((~)

From these relations it follows that the matrix element
in (3.10) vanishes at zero recoil.

The form factors also receive corrections from inser-
tions of higher-order terms in the efFective Lagrangian
(2.3) into matrix elements of the lowest-order current
J = h'I'h. In fact, the contribution of the chromomag-
netic operator vanishes by Lorentz invariance, and the
entire effect takes the form of a correction to the Isgur-
Wise function ((tu):

Bi(u~) = A ((ur) + A(u)),lU+1
(3.i4)

2A
~z(~) = -„+,&(~)

the result becomes [19]

( 1
Fi(~) =4(~)+ I(2mq

G( )=(( )+I 1

(2mq

+
l ~i(~) —~2(~)

2mql )
1+

I ~i(~)
2mq~ ) (3.i5)

F~(~) = G2(~) = 1
~z(~)

2m@i'

1

2m
~~(~).

{A'I i der( z(o), c,(x) ) IA) = A(~) u I u.
(3.13)

It is now straightforward to compute the form factors
F, and G, at subleading order in HQET in terms of A and
the universal form factors ((ui) and A(tu). Introducing
the functions
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For the subleading form factors, vector current conserva-
tion [cf. (3.9)] implies

Bi(1) = 0 m A(1) = 0. (3.16)

Thus at zero recoil all leading power corrections are de-
termined in terms of Bz(1) = —A, and in particular one
finds that Gi(l) = 1 is not renormalized at this order
[»]

(A'I h' I' (iD) h
I A) = Po(ur) l7 I' M,

(4.5)
(A'lh'I' ~G phlA) =P (ur) (v vp —v' vp) L7 I' ~u.
We may then use (4.4) and the relations given by the
equation of motion to write the form factors @; in terms
of P, , g, and A:

IV. SECOND-ORDER PO%ER CORRECTIONS Wi =4o+~4i+
tU+ 1

We are now in a position to extend this analysis to
include corrections of order 1/mz (from now on m will
designate a generic heavy-quark mass). As in the case
of the mesons, we must discuss separately three classes
of contributions: corrections to the current, corrections
to the efFective Lagrangian, and mixed corrections. We
shall take them in turn.

A. Second-order corrections to the current A

1

)
4o+(2~ —1)4i

2 tU+1

+(2 —~)(~ —1) A.
m+1

Pp+ (2iv+ 1) Pi — Az(,

Am+1

(4.6)

The effective operators appearing at second order in
the expansion of the current (2.5) are all bilinear in the
covariant derivative, a property which remains true even
if one goes beyond tree level. It is thus sufficient to ana-
lyze the matrix element

(A'lh'( —iD )I ~iD, hlA) =q, (v, v') u r ~u.
(4.1)

Considering the complex conjugate of this equation leads
immediately to the relation Q~p(v, v') = Q&~(v', v). De-
composing the form factor into symmetric and antisym-
metric parts, @~@ = 2[ps& + Q+P], we then write down
the general decomposition in terms of real functions of

A
Q~p(V) V) = —(g(yp

—V~vp) .
3

(4.7)

Furthermore, only the last operator in (2.5) contributes
at zero recoil, yielding corrections of order A/mqmq. .

B. Corrections to the Lagrangian

where we omit the kinematic argument m in the form
factors. It follows from (2.8) that the function Pp(ip) is
normalized at zero recoil, Pp(1) = A. The equation of
motion then implies Pi(1) = —zA. From the relations
(4.6) we see that, as in the meson case, at zero recoil all
matrix elements of second-order currents may be written
in terms of the single parameter A, since

4.'p(v v') =4i(~) g v+0'(~)(v+v') (v+v')i

+ps (ip) (v —v') (v —v')p,
(4.2)

ap(v, v ) = Ql (w) (v~vI9 —v~vp) .

The equation of motion implies v @~@= 0, yielding

~is+ (~+ 1) @zs (~ 1)O'+ ~-e", -= o,
(4.3)

(ur + 1) Qz + (ur —1) Qs —'lt', = 0 .

As with the mesons, it is convenient to use an integration
by parts to relate (4.1) to matrix elements of operators in
which two derivatives act on the same heavy-quark field.
We find

(A'I h'I' ~iD iDp hlA)

=q.~(v, v') u'r i'u+A(v-v'). q~(~) u'r i'u.

(4.4)

In particular, we define form factors for the matrix ele-
ments

We now turn to 1/m corrections which come from
insertions of higher-dimensional operators from the ef-
fective Lagrangian into matrix elements of the lowest-
order current J = h'l. h. These fall into three classes.
First, there are insertions of the second-order effective
Lagrangian Z2. Although there are two new operators at
this order, only one of them gives a nonzero contribution.
This follows simply from Lorentz invariance, for the same
reason that the chromomagnetic operator at order 1/m
gave no contribution. We then define

(A'I d*T( ~(0) Zz( ) ) IA) = Zi a( ) u r u
(4.8)

Insertions of Zz are parametrized by the same function.
Second, there are corrections which come from two in-

sertions of the first-order correction Zq. These have the
structure

(A'I 'z dxdy (~( ) ~i(x) l'i(y) )IA)

=C( i)pal'0+2 C i3 (v, v')571'P s PP s~ M,

(4.9)
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where we decompose

C p s(v v ) —C2(m) (g gps g sgp )
+Cs(QJ) (g~pvpvs —gppv~vs

—g~svpv + gpsv~v ) . (4.10)

an integration by parts. Because there are fewer possible
Lorentz structures for the heavy baryons than for the
mesons, here these relations take a particularly simple
form, namely

E~ —E' = A (v —v') ~ A + v~ Pp —A (,
The matrix element for a double insertion of Zz is given
by the same formula, but with C p&s(v, v') replaced by
C~s p(v', v) = C p~s(v', v).

Finally, there are corrections from an insertion of both
Zq and Z, z. These have the structure

E3 —E3 ——0 .
(4.15)

Hence we are left with only one new independent form
factor, E3. The others may be written

(A'l i dxdy T( J(0),dg(x), ZI (y) )lA)

= D, (~) u'r u
+ZZ'D p~s(v, v') u s pP+ I'P+ s~ u. (4.11)

E,'= —~E,' = —P+AAto+ 1

Ej = u)E2 —= mP+ AA
tU+ 1

(4.16)

We decompose D~p~& analogously to (4.10):

D p&s(v, v ) = D2(B)) (g~& gps —g~s gp&)

+ s( )(g~ ps —gp~

g~svpv& —+ gpsv~v&). (4.12)

Note that D p~p obeys the symmetry constraint
D~p~s(v, v') = D~s~p(v', v), since we have chosen the
functions D, (m) to be real.

C. Mixed corrections to the current
and the Lagrangian

(A'li dxT(&'r'iD h, &i(x) ) IA)

= E,(v, v') u'r~u+ ZE,.p(v, v') u'r&P s pu,

(A'l i dx T( h' (—i D, ) r' h, &i(x) ) lA)

= E,'(v, v') u r&u+ZE,'.p(v, v')u'r+P, s Pu.

(4.13)

Again, insertions of Z~ give rise to the conjugate ma-
trix elements, with primed quantities interchanges with
unprimed. We parametrize

E~(v, v') = Eg(n)) v~+ E2(~) v',
E' (v, v') = EI (u)) v~ + E2 (tu) v~,

(4.14)

E~ p(v, v ) = Es(w) (g~~vp —g~pva)

E,'.p(v, v') = Es(~) (g~-v p
—»pv-') .

The equation of motion implies v~E~ = v'~E' = 0, yield-
ing Ej ———m E2 and E2 ———to E&. There are no condi-
tions on E3 and E3.

As discussed in detail in Appendix C of I, the two
matrix elements in (4.13) may be related to each other by

Finally, we turn to second-order corrections arising
from insertions of Zq into matrix elements of erst-order
corrections to the current. The structures of interest are

where

4(~) = Pp(u) —A ((m) (4.17)

is a nonsingular function as tv —+ 1, since Pp(1) = A.

Finally, we note that the equations of motion imply
that the form factor E~ takes the form E~ = E2 (v'—
mv~), which vanishes as v —+ v'. The expression for E'
has a similar structure, while the kinematic structures
multiplying E3 and E3 vanish at zero recoil. Hence, as
with the mesons, the mixed corrections give no contribu-
tion at zero recoil to form factors which are not kinemat-
ically suppressed.

D. Form factors and normalization conditions

6) —1 2
b5 = —2Dz —2(ut —l)Ds —3 A g(~+1)'

j.+
tU+ 1

—Pp + (2 —tu) Pq + 2 (P —AA)

%'e have introduced a set of ten new universal func-
tions which describe the 1/m2 corrections to heavy A-
baryon form factors in the heavy-quark expansion. Two
of these, Pp and Pq, parametrize the corrections to the
current, seven more, B, C, , and D, , for i=1, 2, and 3,
parametrize the effects of higher-order terms in the ef-
fective Lagrangian, and one, E3, is needed to include
mixed corrections to the current and the Lagrangian. It
is now straightforward to express the vector and axial-
vector form factors F~ and G, up to order 1/m in terms
of these universal functions. To this end it is useful, as
in the meson case, to collect certain combinations of uni-
versal form factors by introducing the functions

bq ——A(+ B+Cq —3'+ 2(m —l)Cs

+(m —1) (Pg —2Es) + (u)P+ AA),
QJ+ j.

2
bz = —2 (Pi —2Es) — (mP + AA),to+ 1

bs ——Dy + Dg —Py + A g —2 (P —AA)
tU+ 1 (4.18)

b4 —— (P —AA),
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bs = 2Dz + 2(ur + 1)D3 6)+1
1+ $0+(2+vi)p, + (p —AA).

QJ —1 'N+ 1

Recall that P was defined in terms of other universal func-
tions in (4.17). The term A( in bi arises from substitut-
ing the relation (3.7) between the physical baryon spinors
u(v, s), which appear in the definition of the form factors
F, and G, , and the effective spinors M(v, s) of HQET,
into the leading order matrix element (3.5). Let us fur-
thermore specialize to transitions of the type Ab ~ A„
and abbreviate e'b = 1/2mb and e', = 1/2m, . We then
find

Fi = (+ (s, + sb) Bi —Bz

+(s, + sb) bi —b2 + s,sb bs —b4

Fz =s, 82+ s, bq+s, pbbs,

+3 &b~2+ b ~2+c&b~5 q

2

Gi = (+ (sc + sb) Bi + (s + sb) bi + scab b's,

G2 —— e, Bq + e, bq + e,Cb b6,

G3 = ~b B2 ~b b2 &c~b bs

(4.19)

2bi (1) + bs (1) —b4(1) + 2b5 (1) = 0,
which is equivalent to

(4.20)

Order by order in the heavy-quark expansion, the
normalization condition (3.9) imposes a constraint on
the universal functions of HQET. Hence, in addition to
((I) = 1 and A(1) = 0, there is a relation at zero re-
coil between the form factors which arise at order 1/m2.
Evaluating the sum over F,(l) for equal masses, we ob-
tain

dI'(Ab ~ A, l v)
lim —1 dw

mg (mg, —mA. ) ~Gi(l)~2. (5.1)

The form factor Gi(l) is protected against corrections at
order 1/m [19], but it receives contributions from order
1/m2 effects. Incorporating the normalization condition
(4.20), we find

Gi (1) = 1 + (sc —sb) bi (1) + scab b4(1) —
2bs (1)

(5.2)

We may estimate the size of the corrections to Gi(1) by
considering the form of the corresponding vector current
matrix element at zero recoil, given by

(A, (v, s)
l

'V"
I Ab(v, s)) = 2+mA mii, F(l) v",

where

F(1) —= ) F~(l) = 1 + (s —&b) bi(l. ) .
i=1,2,3

(5.3)

(5.4)

The function F(1) measures the overlap of the wave func-
tions of the light degrees of freedom between a Ab and
a A, baryon. While the light quarks and gluons were
insensitive to the mass of the heavy quark in the strict
m —+ oo limit and in precisely the same configuration in
a Ab and a A„at order 1/m the wave functions differ
from each other and the overlap is incomplete [F(1)( 1].
We may estimate the size of this diEerence in a nonrela-
tivistic model in which a Aq baryon is composed of a con-
stituent diquark of mass mqq A 700 MeV, orbiting
about the heavy quark. In this case the mq dependence
of the overlap integral comes from the mq dependence
of the reduced mass m~'d = m~qmg/(m~~ + mq) of the
diquark. We then obtain the estimate

2B(1) + 2Cr (1) + Di (1) —6C2(1) —3Dz(1) = —A . bi(1) = —3A = —1.5 GeV (5.5)

(4.21)

V. APPLICATIONS TO SEMILEPTONIC
Ay DECAYS

In this section we apply our results to semileptonic Ab
decays and give some estimates of the size of the second-
order corrections. For simplicity, and in order to focus on
what is new in our analysis, we shall continue to ignore
radiative corrections.

A. A~ —+ A, lv decays near zero recoil

The semileptonic decay Ab ~ A, E v is particularly sim-
ple to analyze near the zero-recoil point tu = 1, where the
invariant mass q2 of the lepton pair takes on its maximum
value q „=(mp, —mA. ) . In the limit of vanishing lep-
ton mass, angular momentum conservation requires that
the weak matrix element (A, (v, s')

[ (V" —A")
~
Ab(v, s))

depend only on the function Gi(1). The differential de-
cay rate near this point is given by

This combination is the same as appears in the first term
which corrects Gi(1).

The second term, b4(l) —2bb(l) = sA + 4D2(l), is
harder to estimate. However, we note that the function
D2 arises from the double insertion of the chromomag-
netic operator in l:i, and there are indications from QCD
sum rules that it is likely to be quite small [20]. Further-
more, for heavy mesons sum rules predict a value for the
analogue of A which is positive and about 1 GeV [21].
Let us for the sake of argument assume such a value here.
Using m, = 1.5 GeV and mb = 4.8 GeV, we then obtain

Gi(1) 1 —7.7% + 4.6% . (5 6)

While this estimate is of course quite rough, it is reason-
able to expect at least that the signs of the two terms
are as we claim, such that there is a partial cancellation
of the two contributions. Then if the magnitudes are
even approximately correct, one may argue that 1/m
corrections to Gi(1) at the level of 10% would be sur-
prising. Consequently, we expect the semileptonic decay
Ab —+ A, l v to be well described by HQET, if the leading
power corrections are included.
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B. Asymmetry parameters in A~ —+ A, Ev decays

The angular distributions in the cascade A~
A, lv ~ AX lv provide an efficient analysis of polar-
ization effects in semileptonic Ab decay. This is particu-
larly true at the kinematic end point q2 = 0, where only
the helicity amplitudes in which a longitudinal virtual R'
boson is emitted contribute. Such effects are discussed
at length in Ref. [22], to which we refer the interested
reader for details. Here we shall merely cite the final
expressions.

There are several asymmetry parameters which are
particularly interesting at q2 = 0 within the heavy-quark
expansion, The simplest comes from the distribution in
the angle 8~ between the A and A, directions. The dif-
ferential decay width in this variable is given by

dI'
oc 1 + A 0,'p cos 6p )

dq d cos 6p
(5 7)

where a; is the asymmetry parameter of the Ab decay, and
is the measured asymmetry parameter in the decay

A, ~ AA. For the nonleptonic decay A~+ —+ Avr+, a
particularly useful mode, there are recent measurements
o.g. = —1.0+0'o [23] and o.p. = —0.96 + 0.42 [24].

Two additional asymmetry parameters which have in-
teresting HQET expansions may be defined for the decay
of polarized Aq baryons. Let P be the degree of polariza-
tion of the Ag, and 8~ the angle between the A~ polar-
ization and the direction of the A, . Then the parameter
a~ is de6ned by the form of the differential distribution:

dI'
(x 1 —o.~P cos 6I~ .

dq dcos8~ (5.8)

Further, let y~ be the angle between the plane of the A,
decay and the plane formed by the Ab polarization and
the A, direction. Then the angular distribution in y~ is
given by

dI' 7r'
(x 1 —p~ —Pap. cosy~ )dq2 dy~ 16 (5.9)

fi(o) —ei(0)
(o) + gi(0)

(5.11)

At leading order in HQET, this ratio vanishes since fi =
gi = (. In this limit the asymmetries are predicted to
be n = —n~ = —1 and p~ = 0 [22]. Using (3.4) and
(4.19), we find that there are no 1/m corrections to these
predictions. The leading power correction comes at order
1 m2:

where p~ yet is another asymmetry parameter.
At q = 0, the expressions for o, , np, and p~ take

simple forms:

1 —lelz
0,' = —Ay

1 + l~l 2 '

(5.1o)
2 Re(e)
1+ l. l&

'

where

~1/m~ = 1

)
(s, —sg) bs(w) —bs(u)

+2m, eb 2bs(ur) —b4(ur) (5.12)

where w = (m&, + m& )/2m', m~. , corresponding to
q = 0. Note that the terms proportional to e, and
zb in this expression are generated from z,cb terms in
(4.19) when one computes the physical form factors in
(3.4). Based on our previous estimates, we expect ei~
to be of the order of a few percent. A contribution of
similar magnitude comes from perturbative corrections
to the heavy-quark currents at leading order in HQET.
It is given by [25, 26]

2&8 fDbfBg fAb
&@CD =

) (5.13)

where we have used o., /m = 0.09.
In view of its smallness, it will be virtually impossi-

ble to determine
l

~
l

from a measurement of n or n~,
since these parameters depend only on

l

e
l

and should,
therefore, be very close to the asymptotic values given
above. A measurement of a nonzero asymmetry pz, on
the other hand, would provide a direct determination of
Re(e) and yield valuable information about the size of
1/m corrections.

VI. MATRIX ELEMENTS OF
EXCITED BARYONS

The entire analysis presented here could be extended to
matrix elements involving excited baryons, in particular
to baryons of higher spin. To order 1/m, this was done
by Mannel, Roberts, and Ryzak [27]. The Aq baryons
which we have been considering are extremely simple, be-
cause the light degrees of freedom are in a state of zero
total angular momentum, and hence the polarization of
the baryon is the same as the polarization of the heavy
quark. There is, however, an excited state in which the
spins of the light quarks are aligned so that the light de-
grees of freedom have angular momentum sg ——1. When
combined with the heavy quark, this state becomes a
doublet of an excited spin-& baryon, the Zg, and a spin-

&
baryon, the Z. The analysis of the semileptonic de-

cays of and into these states is analogous to that for the
mesons and Ag baryons, except that the states have to
be represented differently, and the counting of form fac-
tors is modified accordingly. Rather than elaborate the
entire analysis yet again, we shall simply indicate how it
differs from the cases already presented.

As for the pseudoscalar and vector mesons, in HQET
it is convenient to assemble the degenerate doublet
(Zg, Z&) into a single object. This allows us to im-
plement the spin symmetries in a compact formalism.
Let us represent the spin-2 Zq by the spinor @ and the
spin-& Zq by the Rarita-Schwinger vector-spinor @@. In
the heavy-quark limit, these objects satisfy gg
gQ& = @", v„@~ = p„Q~ = 0. Then the doublet is
represented by [18,28]

@IJ —gp + i (+p + &p) ~s g



SECOND-ORDER POWER CORRECTIONS IN. . . . II. 2989

which satisfies the constraints @~4"= 0 and g i'" = 4'".
It is straightforward to construct the analogues of 4'" for
baryons of arbitrary spin [28].

From here on the heavy-quark expansion proceeds al-
most exactly as before. For example, for semileptonic
transitions of the form Aq —+ Zq or Aq —+ Z&„one
repeats the analysis of Secs. III and IV, but with an ad-
ditional index p on all universal form factors. There is,
however, a subtlety which must be considered. The spin
parity 8& of the light degrees of freedom may be either
in the series 0+, 1,2+, . . ., in which case it is "natu-
ral, " or in the series 0,1,2, . . ., in which case it is
"unnatural. " As noted in Ref. [29], there are additional
restrictions on the universal functions which describe the
transitions between "natural" and "unnatural" baryons
[18,28]. These restrictions may be imposed [27] by con-
structing form factors which are pseudotensors, rather
than tensors.

In particular, the Ag is a "natural" baryon, while the
Zq and Z& are "unnatural. " Hence at leading order,
Z —+ Z transitions are governed by a tensor form factor
of the form

(Z'i h' I' h iA) = K„(v, v') O' "I' u = 0, (6.3)

since no such object K„can be built from the available
vectors v and v'.

Once this subtlety has been taken into account, the
construction of the heavy-quark expansion proceeds
just as before. Order by order, one identifies the
(pseudo)tensor-valued functions which describe a given
type of correction, performs a general decomposition in
terms of velocities to obtain the complete list of universal
functions, and then writes the physical matrix elements
in terms of them. The restrictions imposed by the heavy-
quark spin symmetries are built into the formalism from
the start. For example, one might consider the correc-
tions to Z —+ Z' transitions which arise from insertions
of the 1/m terms in the efFective Lagrangian. One finds
five form factors L, , defined by

(Z'~ i dx T( J(0), h(iD) 2h(x) ) ~Z)

(Z'i h'I'h iZ) = K,(,v') O' "I'@'
Ki (iU) g~ + K2(iU) v„v' 4 "I' 4

(6.2)

while the leading A ~ Z transitions would require a pseu-
dovector form factor. However,

(Z'~i dxT( J(0), hs PG ph(x) ) ~Z)

Ls(u )(g~pgp~ —g~~gpp)

+L (ur) (g vpv„—gp v' v„)

+L5(m) (g „vpv„' —gp~v' v„') @"I'P+ s p@

This procedure clearly becomes more tedious as the spin
of the baryons increases and with higher order in the 1/m
expansion; however, the enumeration of form factors is
straightforward, systematic, and complete.

Finally, we note that in the case of b —+ c weak decays,
it is only the transitions of the form Ab —+ A„Z„Z;, . . .
which are likely to be of experimental interest. This is
because the excited bottom baryons will decay strongly
(if the mass splitting is sufBcient to allow pion emission)
or electromagnetically to the ground state A~, and thus
their weak decays will not be observable. On the other
hand, the decays Ab ~ Z„Z,"will be particularly inter-
esting, since they arise solely due to eKects of order 1/m,
and higher.

VII. SUMMARY

We have extended the analysis of 1/m2 corrections in
the heavy-quark effective theory to the heavy baryons.
We have focused in detail on the simplest case, the weak
matrix elements relevant to the decay of a heavy Aq to a
heavy Ag . Because of the trivial I orentz structure of the
light degrees of freedom in this system, the description of
the power corrections is considerably simpler than for the
heavy mesons. At order 1/m2, one needs a set of ten new
mg-independent Isgur-Wise functions of the kinematic
variable v v', and a single new dimensionful parameter A.
Vector current conservation forces a certain combination
of form factors to vanish at zero recoil.

We have given a rough estimate of the size of the
second-order corrections for the semileptonic decay Ab ~
A, l v. We find a partial cancellation of 1/m~ correc-
tions at zero recoil, with the conclusion that large de-
viations from the infinite quark mass limit are unlikely,
and the heavy-quark expansion is well under control. In-
vestigating briefiy the asymmetry parameters which may
be defined in this decay, we have suggested a particular
measurement which would probe the 1/m2 corrections
directly. Finally, we have sketched the extension of the
formalism to excited heavy baryons of arbitrary spin.
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