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Analyticity, crossing symmetry, and the limits of chiral perturbation theory
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The chiral Lagrangian for Goldstone-boson scattering is a power-series expansion in numbers of
derivatives. Each successive term is suppressed by powers of a scale, A~, which must be less than of or-
der 4rrf /&N where f is the Goldstone-boson decay constant and N is the number of flavors. The chiral
expansion therefore breaks down at or below 4rrf/&N. Because of crossing symmetry, some "isospin"
channels will deviate from their low-energy behavior well before they approach the scale at which their
low-energy amplitudes would violate unitarity. The breakdown of the chiral expansion is associated
with the appearance of physical states other than Goldstone bosons. We speculate that, since the bound
on A» falls as N increases, the masses of resonances will decrease relative to f„at least as fast as 1/&N
and argue that the estimates of "oblique" corrections from technicolor obtained by scaling from QCD
are untrustworthy.

PACS number(s): 11.40.Fy, 11.30.Hv, 11.30.gc, 11.50.Jg

I. INTRODUCTION

The chiral Lagrangian [1] and [2] is a compact way of
calculating the amplitudes for low-energy processes in-
volving Goldstone bosons. Though it was originally
developed to describe pions, it has more recently been ap-
plied to calculate amplitudes for processes involving the
longitudinal components of the 8' and Z gauge bosons
[3—5]. The equivalence theorem [4] ensures that, at ener-
gies large compared to M~, the scattering amplitudes of
longitudinally polarized gauge bosons are approximately
the same as those of the Goldstone bosons, which would
be present in the ungauged theory. In technicolor models
[6], frequently there are also additional, approximate
Goldstone bosons [7]. For example, the one-family mod-
el [8] has 60 pseudo Goldstone bosons, in addition to the
three "swallowed" degrees of freedom. In this case, the
chiral Lagrangian may also be used to describe low-
energy processes involving pseudo Goldstone bosons as
well as longitudinal Wor Z bosons [9].

Consider a model in which the symmetry-breaking pat-
tern is SU(N)t XSU(N)tt-+SU(N)t, (N=2 in the sim-
plest technicolor model and N = 8 in the one-family mod-
el). The most general chirally invariant Lagrangian may
be written in terms of the field
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X =exp(2i n'T'/f ),
where the m' (which we refer to as "pions") are the
Goldstone-boson fields, the T' are the generators of
SU(N), normalized to trT'T =o' /2, and f is the analo-
gue of the pion decay constant. Under a chiral transfor-
mation, the field X transforms as X~LXR, with
L ESU(N)t and R ESU(N)z. The most general chirally
invariant Lagrangian can be written as an expansion in
powers of derivatives. There are no nontrivial chirally in-
variant terms involving no derivatives and only

tr 8"X r) X2 4 P (1.2)

with two derivatives. Additional terms with more deriva-
tives are suppressed by powers of some momentum scale,
denoted Az.

Chiral perturbation theory is an expansion in p /A&.
The utility of the chiral Lagrangian arises from the fact
that at energies less than Az, the interactions of exact
Goldstone bosons are determined by Xz' ', i.e., they are
entirely determined by the symmetry structure of the
theory. For this reason, these lowest-order predictions
are universal [5].

At energies near or above A&, however, all terms in the
expansion contribute and the chiral Lagrangian becomes
e6'ectively useless. Here the amplitudes become model
dependent. In general, the expansion will fail at an ener-
gy scale associated with the appearance of additional par-
ticles or resonances. Therefore, we associate the scale Az
with some kind of new physics. For example, in the case
of the one-Higgs-doublet standard model the chiral ex-
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pansion fails at an energy scale of order the Higgs-boson
mass. In a weakly coupled theory, these particles will
generally be light and the chiral expansion will fail at low
energies.

In a strongly interacting theory, such as QCD or tech-
nicolor, the resonances will generally be heavy, and the
predictions of chiral perturbation theory may be used to
fairly high energies. It is important, therefore, to under-
stand how large A& may be. This question was first ad-
dressed by Weinberg [10], who argued that, since the
higher-order terms are required as counterterms to loops
involving the lowest-order interactions, it was incon-
sistent to assume that the size of these terms was smaller
than that typical of the corresponding loop correction.
This leads to the estimate of naive dimensional analysis
(NDA) that Az must be less than or about 4~f.

In this paper, we discuss how the bound on A& varies
with N, i.e., how it depends on the number of Goldstone
bosons. By examining the size of corrections to the one-
loop effective action, Soldate and Sundrum [11]have ar-
gued that Az is bounded by 4' /&N. We address this
question by examining pion scattering in chiral perturba-
tion theory, and explicitly confirm their results to all or-
ders in chiral perturbation theory. This result does not
depend on any expansion in 1/N. In particular, if N is
significantly larger than 2 (e.g., 8 in the one-family mod-
el), the chiral Lagrangian ceases to be valid at energies
much lower than suggested by naive dimensional
analysis.

In realistic cases &N is a number of order one, and the
reader may be concerned that, since there may be other
factors of order one that cannot be taken into account,
one should not take this factor seriously. However, our
results show that this factor appears consistently to all or-
ders in perturbation theory. Moreover, since we have ar-
gued that A& corresponds to the scale of new physics, this
change is extremely important in the context of elec-
troweak symmetry-breaking phenomenology at the Su-
perconducting Super Collider (SSC) and CERN Large
Hadron Collider (LHC) [12,9,13]. Naively scaling from
QCD, one would conclude that, to within a factor of a
few one way or the other, pseudo Goldstone-boson in-
teractions become strong in the one-family model tech-
nicolor model at approximately 1 TeV and may barely be
accessible at proposed accelerators. These results imply
that, to within a factor of a few, pion interactions become
strong at an energy of order 500 GeV and are much more
likely to be experimentally accessible.

We wish to state how our work is related to that of
other authors. Previous papers [1] and [14] have includ-
ed resonances into the chiral Lagrangian in various ways
and computed the effects on low-energy parameters. 1

Our approach is the converse. We do not know what the
form of the new physics is, and we make no attempt to
modify the chiral Lagrangian in order to accommodate
it. Instead, we use the chiral Lagrangian to infer the ex-

~Inclusion of resonances in nonlinear O(X)—+O(X —1) models

appears in [15].

istence and scale of the new physics. What is new to our
work is the exploration of how the scale of new physics
depends on N, the number of light Aavors.

The plan of this paper is as follows. In Sec. II we con-
sider Goldstone boson scattering. Using crossing invari-
ance we show that all amplitudes may be expressed in
terms of two invariant functions. We decompose them
into Aavor and angular-momentum channels.

In Sec. III, we consider pion scattering from Xz. We
find that the SU(N) i,-singlet, spin-0 channel would
violate unitarity at an energy of order 4vrf/&N. As
physical amplitudes cannot violate unitarity, we can con-
clude that the terms of order p and higher must become
important and that A& cannot be larger than of order
4~f/&N. This argument is a generalization of that ap-
plied by Lee, Quigg, and Thacker [16] to longitudinal
gauge-boson scattering in the standard one-Higgs-doublet
model.

In Sec. IV, we compute the corrections to Goldstone-
boson scattering at one loop. Confirming Ref. [11],we
find that the corrections are larger than naively expected
by a factor of N.

In Sec. V, we give a simple argument that this pattern
of enhancement by powers of N persists to all orders in
chiral perturbation theory. In particular, we show that
the contributions to Goldstone-boson scattering of order
p

+ are greater than or of order

p
f 2

Np
4n.f

2k

(1.3)

implying again that Az is of order 4rrf/V'N. This im-

plies that alI terms in the chiral expansion are relevant at
energies of order 4~f /&N and chiral perturbation
theory breaks down.

While the singlet channel saturates unitarity at ener-
gies of order 4rrf/&N, the other channels have ampli-
tudes that are still much less than one. Is it possible that
the low-energy predictions from X2 continue to be valid
in these other channels, as in a generalization of the
"conservative" model of Chanowitz and Gaillard in [4]?
In Sec. VI, we argue that, in general, the chiral Lagrang-
ian will be valid at all energies below the energy scale as-
sociated with new physical states; i.e., Az may always be
interpreted as the scale of new physics and is not just a
formal artifact of chiral perturbation theory. This new
physics will enter in all channels, and hence the low-
energy predictions for all channels fail. The behavior of
the theory above A& depends on what new physics is
present, and one cannot trust arbitrary unitarizations of
the low-energy amplitudes (such as summing a subset of
the chiral loop diagrams, the K matrix, or the Pade ap-
proximants) [17,18].

In QCD, the chiral Lagrangian ceases to be valid at an
energy scale of order the mass of the p meson. The argu-
ments we make here imply that in a theory with more
than two light flavors, at least some of the resonances are
lighter than would be expected by scaling from QCD, and
that any results for such a theory based on scaling from
QCD are suspect. In particular, the estimates of oblique



2932 CHIVUKULA, DUGAN, AND GOLDEN

corrections in the one-family technicolor model [19] are
not trustworthy [20].

II. GENERAL PROPERTIES OF PION SCATTERING

Consider the scattering process ~'m —+m'~". The am-
plitude for such a process may be decomposed into irre-
ducible representations of the unbroken SU(N)~. We
may understand the representations contained in
adjointadjoint of SU(N) as follows. Consider the object
(T')z(T")&, where the indices a, b are in the adjoint of
SU(N), while i,j,k, l are in the fundamental. First, we
may trace i with l, and j with k, yielding a singlet. Next,
we may form an adjoint: Remove the singlet already con-
structed, then symmetrize (i, k), antisymmetrize (j,1), and
contract i with I. Another adjoint is obtained by sym-
metrizing both (i, k) and (j,I) before contracting. The
next possibility is to antisymmetrize (i, k) and (j, l) and
remove all traces. This representation has dimension
(N+1)(N —3)N /4. We may symmetrize (i, k) and (j,1)
and remove traces, yielding a representation of dimension
(N —1)(N+3)N /4. Lastly there are two complex rep-
resentations, conjugates of each other, in which the traces
are removed and either (i, k) is symmetric and (j, l) is an-
tisymmetric or vice versa. These complex representa-
tions have dimension (N+2)(N+1)(N —1)(N —2)/4.
We refer to the seven representations as

F, D, Y, X, T, and T, respectively. The representa-
tions 6, D, Y, and X are symmetric under the exchange
of a and b, and therefore only the angular momentum
J=even partial waves can contribute. The others are an-
tisymmetric under a ~b, and only the odd angular-
momentum partial waves contribute. For N =2 only

F, and X exist, corresponding to the isospin 0, 1, and 2
channels. If X =3, Y does not exist, while the others are,
respectively, the 1, 8„8„27,10, and 10.

There can be no part of the amplitude proportional to
d' 'f ' ': Because of Bose symmetry and the symmetry of
d' ' under a~b, the initial state would have to be in an
even angular-momentum state, while by the antisym-
metry of f' ', the final state would have to be in an odd
angular-momentum state. Therefore, the most general
amplitude is

a (s, t, u)' ""=g'"g' g (s, t, u)+g "g dg (t, s, u)

+5'"5 '3 (u, t, s)

+d' 'd' '8(s, t, u)

+d"'d "d'8 (t, s, u)

+dadedbceB(u t S) (2.2)

where s, t, and u are the Mandelstam variables and A
and B are unknown functions. Bose symmetry also im-
plies that the functions A and B must be symmetric un-
der the exchange of their second and third arguments.

Applying the projection operators defined in Appendix
A to the amplitude (2.2), the amplitudes for pion scatter-
ing in the various SU(N) v channels can all be written in
terms of A and B:

Next, we construct the most general amplitude for m-m

scattering consistent with Bose symmetry, crossing in-
variance, and SU(N)~ conservation. There are nine in-
variant tensors with four adjoint indices, corresponding
to the nine singlets in (adjoint) . A set of nine linearly
independent invariants is 5'~5'", 6"5"",
gadfibc dabedcde dacedbde dadedbce dabepcde dacepbdeJ Jd'"'f ",where d' ' and f' ' are defined by

feb'= —2t tr[Ta T ]T' and dabc=2tr [Ta T )
T'

(2.1)

X —4
a (&st, u)=(N —1)A (s, t, u)+ A (t,s, u)+ A (u, t, s)+ [B(t,s, u)+B(u, t, s)],

1V

N —4
a~(s, t, u)= A (t, s, u) —3 (u, t,s)+ [8(t,s, u) B(u,s, t)), —

2%

—4 X —12
a (Dts, )u= 3 (t, s, u)+ A(u, t,s)+ 8(s, t, u)+ [8(t,s, u)+B(u, t, s)),2X

ar(s, t, u) = 2 (t, s, u)+ 3 (u, t, s) [8(t,s, u)+8(—u, t,s)),N +2 (2.3)

N —2
az(s, t, u)= A (t, s, u)+ A (u, t, s)+ [8(t,s, u)+8(u, t,s)],

a (sT, t, u)=a ( Tts, )u= A (t, s, u) —A(u, t, s) ——[8(t,s, u) B(u, t, s)]—.
2

There are nine when X)3. Using the relations in Appendix A, all the other invariants can be shown to be dependent on these
nine. For N =2 the d symbols do not exist, and there are only three invariants. For N =3 the relation (Burgoyne s identity [21])
3(dabedc e+Jaceyb e+ Jade/ bce) gabgc +gacgbd+gadgbc permitS uS tO eliminate One Of the inVariantS.
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The partial wave amphtudes are defined by

at, (s) = at(s, cosg)P, (cos8)d cosg,
64m

(2.4)

where P& is the Legendre polynomial of order l, and J
runs over h, F,D, Y,X, T, T. The functions A and 8 will
be such that all these partial wave amplitudes obey the
usual unitarity relations.

III. PION SCATTERING FROM L

The chiral symmetries of technicolor are generally only
approximate symmetries. In addition to the three ab-
sorbed, exact Goldstone bosons, there are often addition-
al pseudo Goldstone bosons. If the mass of a typical
pseudo Goldstone boson is m, chiral perturbation theory
is also an expansion in m /Ar, i.e., Ar also sets the scale
for the size of corrections due to chiral-symmetry break-
ing. Chiral-symmetry-breaking interactions induce non-
derivative terms in the chiral Lagrangian. For simplicity,
and so that the general considerations of the preceding
section continue to apply, we consider a chiral-
symmetry-breaking interaction, which gives the same
mass to all Goldstone bosons. At lowest order in the
symmetry breaking the Lagrangian is

2+2
Z, =X,"'+ ' tr(X+X') . (3.1)

We will show that in a theory with a large number of
pseudo Goldstone bosons, since A& is smaller than ex-
pected, the effects of chiral-symmetry breaking are corre-
spondingly larger than expected. While this particular
kind of symmetry breaking cannot occur in a technicolor
theory —such a symmetry-breaking term would break the
weak gauge symmetry —the calculation will illustrate the
enhancement of symmetry-breaking effects in a theory
with iV )2.

Using (3.1) to compute the invariant functions defined
in the preceding section, we find 2 (s, t, u )

=(2/N)(s —m )/f, and B(s, t, u)=(s —m )/f . The
scattering amplitudes in the various channels from X2
[17]are then

iVs

32~f
Xs

QDp
=

64~f

Xm
48m f16aNf 192mf

m s
8~N '

m

16' (3.2)

S m
&Xo= — 2+32nf 16rtf

All other partial wave amplitudes are zero (including az,
and ar i). Note that a&o, aFi, and at, o are enhanced by a
factor of X.

The amplitude a&p calculated at tree level is real, and
(for small m ) would exceed 1 when &s )4' /V N. A
physical scattering amplitude must lie on or inside the
Argand circle. The point a =1 is far outside the Argand
circle. At these energies, therefore, loop corrections and
higher-order terms in the chiral Lagrangian must make
as large a contribution as the two-derivative term, and
the calculation using Xz ceases to be useful. This sug-
gests that Ar is less than or of order 4m fl&N, as was
emphasized in [11]. Note that this result holds indepen-
dent of the largeness of X. No expansion in powers of
1/N need be made.

IV. PION SCA'l I'ERING AT ORDER p

An alternative approach to put a limit on A& is based
on an estimate of the size of loop corrections [10]. Since
the theory is not renormalizable, the terms of order p
are required as counterterms to loops involving the
lowest-order interactions. In calculating the scattering
amplitude to order p, one must consider tree-level dia-
grams with interactions coming from operators of fourth
order in momenta, and one-loop diagrams using X2. It is
unnatural to assume that the contribution from the form-
er is much larger than the latter, since such a statement
could only be true for a particular choice of renormaliza-
tion scale. Similarly, the two-loop calculation using X2
will require counterterms of order p, etc. In this section
we compute the one-loop corrections to Goldstone boson
scattering.

The next-to-leading-order Lagrangian is made up of
terms containing four derivatives, two derivatives and
one power of the symmetry-breaking parameter, or two
powers of the symmetry breaking:

X,=t, [tr(a~X'a„X)]'+i, [tr(a~X'a X)]'+i,tr(a~X'a„Xa X'a„X)+t', tr(a~X'a Xa„X'a.X)

+14m tr(X+Xt)tr(a"X"a„X)+lcm tr[(X+Xt)(a"Xta„X)J

+I m [tr(X+Xt)/ +I m [tr(X —X )J +l m tr(X +Xt ) . (4.1)

All other possible terms vanish by the equations of motion. This notation agrees with that of Gasser and Leutwyler
[22]. In their case the term proportional to 13 is not linearly independent, because they were considering an
SU(3) X SU(3) chiral symmetry.

The calculations of the mm. —+m.~ amplitudes at one loop is straightforward, if tedious. The result is
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2 $ m
A (s, t, u)=—

+ J(s) 1 2 2 z J(t) 1 2 5 2 7 ~ 1 2——s'+ m4 + ——t+ —mt ——m ——st+ —msf4 2 N2 fc 3 3 3 6 3

+ J(u)
f4

——'ll +—m 0 ——m ——SQ +—m S
1 2 5 2 7 4 1 2
3 3 3 6 3

2 1 m2 8 23 1
ln +Sl)(p)+4l2(p)+ —13(p)+

2+'
f4

+ — ln —812(p) — 13(p)—tu 2 1 m 2 16, 13 1

f 3 16~ p N 9 16m.2

+ — ln —321, (p) —16lz(p) — l, (p)+16l4(p)+ t5(p)
m s 2 1 m 32 16 28 1

f4 3 16~' p'

+ —2+ ln +32l&(p)+32l2(p)+ I3(p, )+ 13(p)
m 2 1 m 32 32

f N 16m p,

s m 2

8(s, t, u)=

—3214(p) — l5(p)+3216(p)+ 1s(p)+32 32 20 4 1

N 16~
(4.2)

NJ(s)
f4

1 q+ 2 4 + NJ(t)——s + m
g N2 f4

1 2 1 2 2 4 1 1t+ —m t ——m — st+ —ms
24 3 3 12 3

NJ(u)
f4

Ns
f4

1 2 1 2 2 4 1 1

24 3 3 12 3
Q +—m 0 ——m — sQ+ —m s

2

ln +—l3(p)+
12 16~ p N 36 16~2

+ +,ln, ——1', (p) ——Ntu 1 1 m 8, 2 1

f4 12 16' p N 9 16'

Nm s
f4

1 1 m
ln

6 16~ p

16 8 5 1I3(p)+ —I5(p) ——

Nm

f4
2 1 m 16

I
16 I, 161 16( 4 4

(4.3)

1 2 +1—4m /x+1J(x)= 2+1—4m /x ln
16m. 1 —4m /x —1

(4.4)

Gasser and Leutwyler have computed the function 2 (s, t, u)
for the case of 1V =2. Our formula (4.2) agrees with their result.
They do not use the modified minimal subtraction (MS)
prescription. Their subtractions are proportional to
D + 1/16m instead of D

Here we have used dimensional regularization in 4 —e di-
mensions with a scale p and, as detailed in Appendix B,
the parameters 1;(p ) are renormalized at this scale. The
function J is defined as

I

where ln(z) and &z are both understood to have a cut
under the negative real axis. The quantities m and f,
which appear in (4.2) and (4.3), are the physical mass and
decay constant. Their renormalizations are also given in
Appendix B.

From (4.2) and (4.3) we see that the typical corrections
to the tree-level results are of order Ns/(16' f ) or
Nm /(16m f ). In agreement with the preceding section
and Ref. [11], then, it is inconsistent to assume that the
corrections to pion scattering of order p are less than or
of order (v'Np/4rtf), where p is a typical momentum in
the process.

Moreover, following Ref. [10], we see that a change in
the renormalization scale p by order one will result in a
change in the renormalized parameters 1;(p) by order of
N/16m f . It is therefore inconsistent to assume that the
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I,. are smaller than this order of magnitude. This implies
that the parameters I; are larger by a factor of N than ex-
pected by NDA and that, insofar as X4 is concerned, it is
inconsistent to assume that A& is much greater than
4n f l&N

V. PION SCATTERING TO ALL ORDERS

f2
Np

4m.f
where p is a typical momentum in the process. Since all
higher-momentum corrections are enhanced, chiral per-
turbation theo' as a whole breaks down by energies of
order 4n.f l&N, since by this scale all terms are equally
important.

This is exactly the same argument as (and is exactly as
rigorous as) the one given by Weinberg in Ref. [10] to

The result that loop corrections are larger by powers of
N than expected by naive dimensional analysis persists to
all orders in chiral perturbation theory, as we now show.
At order p +, there are several contributions to be con-
sidered: tree level from interactions of order p

+ in the
chiral Lagrangian, k loops using interactions from
Xz, k —1 loops using one interaction from X4 and the
rest from X2, etc.

In order to keep track of powers of N, we may use a
double line notation for each Goldstone boson, analogous
to the double line notation used by 't Hooft [23] in large-
Nc QCD. Each Goldstone boson is a member of the ad-
joint representation of SU(N)z, and is analogous to a
gluon in the adjoint of the SU(NC) color. Analogous to
large-Nc QCD, then, the contributions to a process at I.
loops that have the highest power of N arising from
traces of the Aavor indices are proportional to
N'Z(16~')'

First, consider pion scattering to order p . There are
three types of contributions: two-loop diagrams with ver-
tices from X2, one-loop diagrams with one vertex from
X~ and any others from X2, and tree-level contributions
from terms in the sixth-order chiral Lagrangian X.6. The
argument given above shows that the leading contribu-
tions from two-loop diagrams with interactions from Xz
are larger than the estimate of NDA by a factor of N .
Similarly, the leading contributions from a one-loop dia-
gram with one vertex from X& is also enhanced by at least
N relative to the expectation of naive dimensional
analysis: one power of N from the loop and one power of
l;, which, as shown in the preceding section, is larger
than assumed in NDA by a factor at least as large as N.
The tree-level contributions are required as counterterms
to the loop corrections and must therefore also be at least
as large as the other two contributions: the unknown
coefficients in X6, therefore, are also larger by a factor of
at least N than expected by NDA.

Similarly, we can show that the corrections of order p
are larger than expected by at least a factor of N, the
corrections of order p' by at least N, etc. In general,
the contributions of order p

+ to pion scattering are at
least of order

2k

show that all counterterms are suppressed by a factor of
(4m. ) ". There is always uncertainty in this answer —there
could be a small numerical factor that goes one way or
the other. For any fixed N, it is possible that the
subleading-in-N terms, which arise from nonplanar con-
tractions of the SU(N) z group indices, are numerically as
important as those that are leading. However, making
A& much bigger than 4m f l&N would require, at euery
order in chiral perturbation theory, either a cancellation
among the leading terms or both an enhancement of the
subleading terms by a numerical factor as large as N and
a cancellation of these with the leading terms.

VI. IMPLICATIONS OF ANALYTICITY AND CROSSING

Some interesting questions arise at this point. We have
argued that chiral perturbation theory breaks down at or
before A&, but what actually happens to the amplitudes
as s increases beyond this value? What is the significance
of A&? The amplitudes for the partial waves other than
a ~ are all below their unitarity limits when
&s =4vrf!&N. Is it possible that these other channels
continue to behave like the prediction of the lowest-order
chiral Lagrangian, as in the SU(N) ~ generalization of the
"conservative model" of Ref. [4]?

The pion-scattering amplitudes are determined by the
two functions 3 and B. We will examine the analytic
structure of these functions in the complex s, t hypersur-
face, where u is determined by the mass shell condition.
Let us consider the case of a small m &0, so as to avoid
the subtleties associated with infrared problems. Ampli-
tudes in chiral perturbation theory are expansions in s
and t. The S matrix is analytic on this hypersurface ex-
cept for cuts on the physical (s, t) plane and poles or cuts
on the unphysical hypersheets. The cuts in the physical
(s, t) plane are due to multipion states, and the appear-
ance of poles or other structure on the unphysical hy-
persheets correspond to resonances or physical states oth-
er than pions. The masses of the new physical states are
not protected by a chiral symmetry and the correspond-
ing structures in the S matrix are therefore away from the
origin.

Consider the region R with s, t, and u all less than
4m . Here, assuming there are no particles lighter than
twice the pion mass, the S matrix is analytic. The func-
tions A and B computed from the chiral Lagrangian to
arbitrary order have an infinite set of adjustable
coeKcients multiplying the terms s't j for all i and j. We
can regard this as a convergent expansion about any
point in the region R. Therefore, the amplitude cornput-
ed in chiral perturbation theory can be adjusted to match
the S matrix exactly in R. Going outside R, the singular-
ities of the S matrix on the physical plane correspond to
cuts from multipion states and are determined by unitari-
ty. They are correctly included in chiral-loop calcula-
tions. Moving away from this region, therefore, the
chiral Lagrangian calculation should reproduce the S rna-
trix so long as there are not any singularities closer to the
origin associated with physical states other than mul-
tipion states. That is, chiral perturbation theory is a
good approximation to the S matrix all the way out to an
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energy scale associated with the appearance of new phys-
1cs.

In chiral perturbation theory, ignoring pion masses,
the arbitrary polynomial in the dispersive part of the
scattering amplitude is a function of the form

k —1

a ~
f2 A2

where all the a; are the numbers of order 1. In the
preceding section, we gave an all-orders argument that
the contributions to pion scattering of order p

+ are
enhanced by powers of X" relative to the expectation of
naive dimensional analysis, and therefore that A& was
bounded by 4vrf IV'N.

When does such a series fail to converge? Since the ak
are of order one, the radius of convergence is A&. Be-
cause the series diverges at energies higher than Az,
chiral perturbation theory (to any, arbitrarily high, finite
order) cannot give good approximation to the scattering
amplitude at energies beyond A&. We have previously ar-
gued the chiral Lagrangian can accurately match the
scattering amplitude out to the first nonanalytic structure
representing new physics. It follows that the mass of the
lightest nonanalytic structure in the S matrix correspond-
ing to new physics is lighter than a scale of order
4m f l&N.

Admittedly, the argument given above for the range of
validity of the chiral expansion is not truly rigorous.
This is because it works only if one computes without ex-
panding in m . As emphasized by Pagels and Li [24], the
S matrix is not analytic in m . However, as motivated by
the theory of critical phenomena [25], we assume that the
coefFicients of the chiral Lagrangian are analytic in m
and that the nonanalyticity of the S matrix is reproduced
by chiral-loop calculations.

If this standard assumption is correct, then the argu-
ments given above are correct so long as m is small
enough, and the chiral expansion is valid for all energies
below the first nonanalytic structure in the S matrix cor-
responding to some real, new physics. The breakdown of
the chiral Lagrangian is not a calculation artifact; the
scale A& has direct physical significance, unlike the scale
A&cD in perturbation theory. Moreover, the arguments
above show that this physical scale cannot be larger than
about 4rrf l&N.

In general, there are many possibilities for the new
physics at Ar. In QCD with N=2, the p pole gives a
singularity in A when t or u is m —im I . In the one-
doublet-Higgs model, there is a pole in A whenever s is
MII —iMHI H. The first singularity to appear could be a
branch cut instead of a pole. Consider a world in which
the vr's are massless, but the IC's weigh 200 MeV. (The
pion decay constant is still 93 MeV. ) Imagine construct-
ing an SU(2)-invariant chiral Lagrangian to describe the
massless pions. The first new singular structure one en-
counters in the S matrix is the two-K branch cut, at 400
MeV, and at this energy the chiral expansion breaks
down.
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FIG. 1. Data and lowest-order prediction for Rea&0. The
data are from a compilation in Ref. [26] of the experimental re-
sults in Ref. [28].

4We thank G. Valencia for providing us with the data com-
piled for Ref. [26].

Since the scale A& is associated with nonuniversal
structure, such as the p, the Higgs boson, or the ECK

states in the examples above, the behavior of the scatter-
ing amplitudes at energies at or above A& cannot be
universal. Therefore, there is no reason to trust predic-
tions based on an arbitrary, e.g., E matrix, Pade approxi-
mant [18], or bubble sum [17], unitarization of the
universal, lowest-order, chiral amplitudes.

Finally, we address the issue of whether the channels
other than a&o can follow their low-energy predictions
beyond energies of order A&. Consider again the func-
tions 3 and B. Because of the crossing relations (2.3), all
channels will be affected by whatever new physics enters
at the scale A&. In particular, we expect that at A& the
amplitudes in all channels will deviate strongly from the
low-energy predictions, even though the low-energy pre-
dictions may be well below 1.

Consider pion scattering in QCD. The data4 and
lowest-order predictions for the low isospin channels are
plotted in Figs. 1, 2, and 3. The amplitude in the
isospin-0 spin-0 channel (aao) starts to deviate from the
lowest-order prediction at an energy of about 600 MeV.
This is not surprising because the amplitude is at that
point a substantial fraction of its unitarity limit. Exam-
ining the other partial waves, we find that they deviate
from the lowest-order chiral Lagrangian formulas above
approximately the same energy scale. For example, in the
isospin-1-spin-1 channel (a~, ), the p resonance appears at
770 MeV. While we cannot predict the appearance of the
p, the fact that the isospin-1 and -2 amplitudes deviate
strongly from their low-energy predictions, while they
would still be relatively weakly coupled, is not a surprise.
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FIG. 2. Data and lowest-order prediction as in Fig. 1, for

VII. CONCLUSIONS AND SPECULATIONS

—0.2

—0.4
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In this paper we have argued that, in general, the
chiral expansion will be valid at all energies below the en-
ergy scale associated with new physical states. That is,
A& may always be interpreted as the scale of new physics
and is not just a formal artifact of chiral perturbation
theory. In general, there is no procedure to infer the
high-energy structure of the theory from the universal
lowest-order chiral Lagrangian. In the three examples
given in the preceding section, the high-energy physics is
different, while the low-energy behavior is precisely the
same. In particular, there is no reason to trust the ampli-
tudes constructed by unitarizing the lowest-order predic-
tions.

In a theory with a spontaneously broken
SU(N)& XSU(N)„chiral symmetry, the scale Az is
bounded by 4n f/~N. This result depends only on the
low-energy effective theory and is independent of the pre-
cise form of the fundamental theory. If the theory is
QCD-like, Ar is presumably associated with the appear-

ance of resonances such as the p. When N =2 and
f =93 MeV, the limit on Az is about 825 MeV, and the

p is close to saturating this bound.
In QCD with two light flavors the new physics associ-

ated with Az is the formation of vector mesons. If this
pattern persists for larger N, then we may speculate that
the masses of the vector mesons will decrease relative to
f at least as fast as I/~N as the number of fiavors in-
creases. For example, we know that QCD, with three
colors, is well defined for the six quarks that actually ex-
ist. If they were all light and f were fixed at 93 MeV,
then if the vector mesons appearing in the channel az&
remained the lightest, the above argument would say that
the masses of the analogues of the p would have to be less
than 500 MeV.

In the one-family technicolor model, N =8 and f= 125
GeV. The low-energy prediction for the singlet spin zero
channel would saturate unitarity at an energy of order
550 GeV. Because of the arguments we have given we
expect that the new physics in this model has a mass of
this order of magnitude. In technicolor phenomenology,
however, one usually scales from QCD [27] by multiply-
ing all mass scales by frclf and applying large NTC ar-
guments [23]. When NTC=3 in the one-family model,
this gives a technirho mass of about 1000 GeV. While we
cannot say conclusively that there are resonances as light
as 550 GeV, it is clear that the one-family model is quite
different from QCD and that predictions based on scaling
from QCD, e.g., [12], cannot be trusted in detail. In par-
ticular, if the masses of the resonances are much lighter
than naively expected, then the estimates of oblique
corrections from technicolor obtained by scaling from
QCD [19]are untrustworthy [20].
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APPENDIX A: PROJECTION OPERATORS
AND IDENTITIES FOR SU(N)

FIG. 3. Data and lowest-order prediction as in Fig. 1, Reagp.
The following relations may be derived from the SU(N)

Fierz identities:
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fabef cde d «ed bde d aded bee+ (gacgbd gadgbc)2

fabed cde d adef bee+ d acef bde

AT2 4
d aefd bef ~~ gab

1V

X —12
d aefd bfgd cge d abc

2%
& —4

d aefd bfgd cghd dhe (fiabgcd+ gadgbc)
+2

AT2 6
( d abed cde+ d aded bce

)
4X

a Z
—1/2 a~0 ~

m =Z~ mp

f =Z/fo,
where the subscript 0 denotes the bare quantities. The
calculation of the mass and wave-function renormaliza-
tions is straightforward. We demand that the pion prop-
agator have a pole of residue 1 at m . There is only one
one-loop diagram, which contributes. In addition, some
terms in X4 make a contribution, and the total is

mZ„=1— 8M4+8I5+
d aced bde

4
The operators that project a state m'vr") onto the vari-

ous irreducible representations of SU(N) i are

+—D+
16m.

1 m
ln

16~ p
(82)

p gab/cd
1

X —1

p ( d aced bde
d aded bee) + ( cOacfibd gadgbc)1 2

F

p & dab. dcde
X —4

p (gacgbd+ gadgbc) + gabficd
4X 2N (N —1)

( d aced bde+ d aded bce
) + d abed cde

4 4(N —2)

(gacgbd+ gadgbc) gabficd
4X 2N(N + 1)

( d aced bde+ d aded bce
) d abed cde

4 4(N +2)

p —p et
( gacgbd fiadgbc)X —4

4%

( d aced bde d aded bce
)

2%

(A2)

Z = 1 — 42A4 +4l 5
—8XI6 —818

+ D+1 1

16~2
1 m

ln
16m p

m
Zf = 1+ 4%lq+415

Here p is scale of dimensional regularization and D is the
quantity ( I/16m )(2/e —yE+in4rr).

To renormalize f, we must define the axial-vector
current. To do this we replace Bi'X by (i'' t'ai')X—i Ra"—
in X. The axial-vector current A" is what multiplies a"
in X; at lowest order it is A„'=(if /2)tr[T'(XtB„X—Xc)„X )]. The decay constant f is then defined by

(O~ A'&~+') =ifpi'5" . (83)

The operators multiplying I„.. . , l3 make a contribution
to A", but not to the matrix element in (83). The only
contributions in X~ are from the l4 and l5 terms. In addi-
tion there is a one-loop diagram from X2. The result is

~a, b;c,d~c, d;g, h g pa, b;g, hPI PK IK I (A3)

pa, b;, d ga gbdI
I

(d acef bde d adef bee)
4

Using the identities (A1), one can verify that these are
projection operators satisfying

+—D+
16m

1 m
ln

16~ p
(84)

Finally, the infinities in the computation of the scatter-
ing amplitudes can all be absorbed by defining renormal-
ized quantities l (p) by

l, (p, ) =l, + D, 12(p) =12+ D, /3(p) =l3+ D,1 1

a(s, t, u)' ""=g aI(s, t, u)pt'
I

(A5)

where I runs over b„F,D, I;I,T, T, yielding Eq. (2.3).

APPENDIX 8: RKNDRMAI. IZATIDN DF X

We may write the amplitude in terms of the seven
SU(N) i, channels:

l'(p)=l3+ D,
96

l6(p) = l6+ +1

32

is(p) = l8+
32

1
14(p) =l4+ D,

16

16N2

D .1

8X

l, (p) =15+ D,X
16

(85)

Calculating at one loop, there are renormalizations to
the pion mass, the decay constant, and the pion wave
function. We define

This computation does not yield the renormalization of I7
because that term makes no contribution to m.m. —+me.
scattering. Equation (85) agrees with the results of
Gasser and Leutwyler [22].
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