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SU(16) grand unification: Breaking scales, proton decay,
and neutrino magnetic moment
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We give a detailed renormalization group analysis for the SU(16) grand unified group with general

breaking chains in which quarks and leptons transform separately at intermediate energies. Our

analysis includes the effects of Higgs bosons. We show that the grand unification scale could be
as low as 10 GeV and give examples where new physics could exist at relatively low energy

( 250 GeV). We consider proton decay in this model and show that it is consistent with a low

grand unification scale. We also discuss the possible generation of a neutrino magnetic moment in

the range of 10 to 10 ps with a very small mass by the breaking of the embedded SU(2)„
symmetry at a low energy.

PACS number(s): 12.10.Dm, 13.30.Ce, 14.20.Dh, 14.60Gh

I. INTRODUCTION

Recent treatments of the SU(15) grand unification
group [1—5] have shown that in the versions of that model
which produce "ununified models" [6] at intermediate en-
ergies, grand unification may be reached at a relatively
low energy and that the lowest intermediate scale may be
within the reach of the Superconducting Super Gollider
(SSC). It has also been shown recently that the efFects
of Higgs bosons in the renormalization group equations
of SU(15) models are quite large [4]. In the literature,
there is also some discussion of the gauge group SU(16)
[7], which has some desirable features that are not found
in SU(15) models. Among these are separate gauging
of baryon and lepton number [7] and the embedding of
Voloshin symmetry [8,9] SU(2) which might play an im-
portant role in the solar neutrino puzzle [10, ll]. In this
paper, we will analyze the renormalization group equa-
tions (RGE's) of the SU(16) grand unification model with
breaking chains in which quarks and leptons transform
separately at intermediate energies. We will include the
effects of Higgs bosons, which are significant, and use
the newest data from the CERN e+e collider I EP for
couplings at low energy. We give this analysis in Sec. II.

In the SU(16) model, all known left-handed fermions
of a single generation together with a left-handed an-
tineutrino transform like the fundamental representation
of the gauge group: i.e. ,

A A A

v, v, e e+ u] ll2 v3 d] d2 d3 Q] Q2 Q3 d$ d2 d3
L
(1.1)

Here, the caret over a particle's symbol denotes its an-
tiparticle. Of course, mirror fermions must be introduced

*Present address: Center for Particle Physics, Physics De-
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to make the model free of anomalies, but we do not need
to discuss them explicitly here. Our interest is to look
for chains with low unification scale. The existence of
such chains is known [1—4] in SU(15) models, for which
it has been shown that a low unification scale makes the
model free from the monopole problem [12] while being
perfectly consistent with the proton lifetime [5, 13]. We
discuss proton decay for our SU(16) model in Sec. III.

Another reason for examining the SU(16) model is to
implement the suggestion of a previous paper [9] which

points out that this group contains the subgroup SU(4)i,
in which the left-handed leptons including an antineu-
trino transform as the fundamental representation. Fur-

ther, SU(4) i contains Voloshin symmetry which allows for
the magnetic moment of the neutrino to be in the range of
10 p, a to 10 p~ and at the same time allowing only
a small neutrino mass [9, 14, 15]. A magnetic moment
in this range might be required [16] if the anticorrelation

[11] of solar neutrino flux with sunspot number is con-
firmed. We shall discuss the implementation in detail in

Sec. IV.

II. SU(16)-BREAKING SCHEME AND RG
ANALYSIS

In Fig. 1, we show the symmetry-breaking scheme of
our model. The purpose of our scheme is to have the lep-
tonic sector transform separately from the quark sector
at intermediate energies and to have the leptonic sec-
tor SU(4)i break in the same manner as in the previous
SU(4)i based model [9]. In the figure, we show the rep-
resentations of the Higgs fields used to break symmetries
at their indicated mass scales. We use the hypothesis of
minimal fine-tuning [17], which allows us to choose the
mass scales of submultiplets of these fields at diferent
scales. We are interested in scenarios where an interme-
diate gauge group exists at energies of the order of 1 TeV
so that we shall have new physics at observable energies.
We will show in this section that such scenarios are con-
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sistent with renormalization group analysis.
In the one-loop approximation, couplings o,, = g2/4vr

evolve as

1
Q~ = diag(0, —3, —3, 6, 1(s), —4(3), 2(3)) .

2 15
(2.10)

()) ln M 2x
which implies

n, (M2) = n, (Ml) — '
ln2' M2

(2.1)

(2.2)

In these equations, the notation of the form a(~) stands
for 6 successive entries of a. For example, "l(6)" stands
for "1,1,1,1,1,1." The ordering is the same as in Eq. (1.1).

The breaking scheme shown in Fig. 1 has the following
boundary conditions at the breaking scales M~.

For the standard model couplings nly, n21. , and ns„we
use the conventional normalization which determines the
relations

Tr (T~T~) = 2|1;, , B, = N ———(2ng) —-T(S,),
11 4 1

(2.3)

where the T, 's are the generators of the SU(16) funda-
mental representation. To simplify the boundary condi-
tions, we normalize the couplings a, of the intermediate
gauge groups and the SU(16) gauge group such that

Tr(T,T, ) = —6...
1

B; = —
i

N ——(2—ns) — T(S,)—~

.
1 Kll f 1

f(3 3 ' 6

(2.4)

Here, f is the number of fundamentals of the subgroup
per generation in the 16 of Eq. (1.1). To be explicit, for
the SU(2)qr, group f = 3, for the SU(3)ql, and SU(3)q~
groups f = 2, and for all other intermediate groups and
the SU(16) group f = 1. The above equations for B,
hold for SU(N) gauge groups and with N = 0 hold for
U(l) gauge groups. In the second terms, ng, the number
of fermion generations, is multiplied with a factor of 2 to
account for mirror fermions. This term does not affect
the scales of symmetry breaking. In the third terms,
T(S,) is the quadradic Casimir invariant for all Higgs
submultiplets with masses less than the scale of interest.
For a complex field, the value of T(S,) should be doubled.

With the above normalizations, the U(l) generators
that enter our symmetry breaking pattern (see Fig. 1)
are

1820 MG = (v,v,e-e+j

255

M =CH~)

4 3L2L.6~1L

255 M6B = (0(4),0(6), 1(3) (3)

43 2L3 3gl 1

560
)( MB = (((d()O

4 3L,2L3~1y

255 M4( = (1,1,1,—3,0op))
)(

L. LZV

lt
M3i =(0

2L 1 y 3L2L 3~ 1 y

560
i(

Mr =(d(ue —dv, ))

3c2L1 Y

Mz = (e'e j136
)(

3c1Q

4'12~

l(
M12 (0(4) 1(&) (6))

4 6i6~1

1
Qq~ = diag (0(4), 1(s},—1(s)),

2 6

1
Qq)l = diag (0(4) ) 0(s)1 l(3) ~

—1(3)),
2 3

1
Qq& = diag (0(4), 1(6) ) 4(3) ~ 2(3})i

2 33

1
QUr = diag (1, 1, 1, —3, 0(l~) ),

2 6

1
Qi~ = diag (0, —1, —1, 2, 0(l2)) )

2 3

(2.5)

(2.6)

(2.7)

(2 S)

(2.9)

FIG. 1. A possible chain of symmetry breaking. The num-
bers n denote a factor SU(n) in the gauge group if n ) 1, and a
U(1) factor if n = 1. The superscripts q or l indicate whether
only quarks (and antiquarks) or only leptons (and antilep-
tons) are non-singlets under that part of the gauge group. If
one considers the 255 as a traceless matrix, its VEV's are di-
agonal and the notation 1(6), e.g. , stands for six consecutive
'entries of unity. In the 560, the symbol (due), e.g. , stands for
the VEV of the color singlet combination of the components
with one index having the quantum numbers of d, another of
u and another of e. One can contemplate chains with fewer
steps by equating two or more energy scales. Note the fol-
lowing transformation properties: At'~ ']: 1820, TI" . 255,
Ht ]:14144 BI""]:560 V': 16 C~"~: 136.be] '

7
' )
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aG1(MG) = n121 (MG) = a4/ (MG),

al2q (M12) = asqL(M12) = asqR(M12) =
a1qR (M12) 1

6 L( 6L) a3 L( 6L) a2 L( 6L) &

as 'R(M6R) = as„'R(M6R) = o/~q'~(M6R) = a1~ (M6R),
1 ]

2
a3„—'R(MR) + 2o/sq~(M&) = n3qR(M&),

—„ /qa( R)+ —
1Aq( R) = 1qy(MR)

a4/ (M4/) = ns/'(M4/) = al/x(M4/) i

(M3/ ) = a2/L (M3/)
1 ~ 8

(Ms/) + &1/X (M3/) = a1/y (Ms/)

2o/3L (My ) + 2ns R(My ) = ns, (My ),
3+2 1L(My ) + n2/L (MY) = o/2L (My ),

5 &1qY (MY) +
5 a//Y (MY) = alY(MY) ~

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

In writing Eq. (2.17), we have used the fact that in the
group SU(3)l there is a generator

leaving unbroken SU(3), which has the two diagonal gen-
erators

1
A3/ = diag (2, —1, —1,0, 0(12))

2 3
(2.19)

~„=A~sqL+ AwsqR,

A3, = V 2A3qL + V 2AsqR .

(2.25)

(2.26)
which is broken at the scale Msl. At the same scale
U(1)/x also breaks, leaving unbroken the combination

2v2
Q/Y = ~3/ QlX3 3 (2.20)

In deriving Eq. (2.18) for the breakings at the scale
M~, we have used similar considerations. In particular,
SU(3)qL, which has the two diagonal generators

Similarly, SU(2)qL with the diagonal generator

1
A2qL = diag (0(4), l(3) —1(3),06),

2 3

and SU(2)/L with the diagonal generator

1
A2/L = —diag (0, 1, —1, 0, 0(12))

(2.27)

(2.28)

1
AsqR = diag (0(4), 0(6), —1, 1,0, —1, 1,0),

2 2
1

A3qR — diag (0(4), 0(6), 1, 1, —2, 1, 1, —2),
2 6

(2.23)

(2.24)

1
A3qL diag (0(4), 1, —1, 0, 1, —1,0, 0(6)), (2.21)

2 2
1

A3qL — diag (0(4), —1, —1, 2, —1, —1, 2, 0(6)), (2.22)
2 6

breaks, as does SU(3)qR, which has the two diagonal gen-
erators

are broken, leaving SU(2)L unbroken with the diagonal
generator

~2L ~~~2qL + ~2/L.

Now, using

(M, l
n' —= loglo Ipl GeV) '

(2.29)

(2.30)

the one-loop equations and boundary conditions give us
the following equations for the standard model couplings:

o/3, (Mz) = 4nG — [ (ny —nz)B3, + (ns/ —ny)(2BsqL + 2B3qR)
ln 10

+(n4/ 3/)n(2B3 L+q2B3qR) + (nR —n4/)(2B3qL + 2B3qR)

+( — )(2B +B +B ~ )+( — )(2B +2B )
+(n12 —nsL) (2BsqL + 2BsqR) + (nG n12)4B12q]

a2L(Mz) = 4a.G —
[ (ny —nz)B2L+ (ns/ —ny)(3B2qL+ B2/L)

ln 10

+(n4/ —n3/)(3B2, L + Bsl) + (na —n4/)(3B2, L + B4/)

+(nsR nB)(3B2qL + B4/) + (nsI n6R)(3B2qL + B4/)

+(n12 —n6L)(3B6qL + B4/) + (nG —n12) (3B12qL + B4l)],

(2.31)

(2.32)
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ln 10 9
o.i~(Mz) = 4m~ — (ni —nz)Bii + (nst ni-) Biqi + B1Iv

(11
+(n4t nsl) l

B—iqY +
qY
f2

+(n6R nB) I BlqB +
q5

(2
+(n12 n6L) l BlqB-+

q5

8
B—st+ B—ii~ l

5 5

g g
B1A—, + —B4i l

9 9—Bs,R+ —B4~ l

5 ' 5

+ (nB —n4t) l

—Biqi-
qY

K2
+ (n6L n6R) l

BlqB—
q5

+ (nG. —n12) l

Bi—gqqY

+-B4t
I5

9 9+ 5BsqR+ 5B4t

9

r
+ B4&

l
(2 33)

nG ———3.28 —0.09n~ —0.21n3) + 0.90n4)

+0.32n~ + 2.99n6R —2.60n6L, ,

n12 ———2.08 —0.02n~ —0.22n3t + 0.73n4~

+0.37n~ + 2.70n6~ —2.34n6L, .

(2.35)

(2.36)

We note that Higgs fields make significant contributions
to the above equations. From the structure of the above
equations, we see that n4t and nsR being relatively high
helps to meet the requirement nG & n12. In fact, no
solution with low n4t is found to be acceptable.

We are further interested in seeing that it is possible to
have new physics, including breaking the Voloshin sym-
rnetry, at less than 1 TeV. Since our lowest intermediate
stage, which contains the Voloshin symmetry, is broken
at M3) we are interested in n3~ 3. So as to investigate
this possibility, we make the simplification

For the couplings at Mz we use the experimental val-
ues [18]

ns, (Mz) =8.197,
n2L (Mz) = 30.102,

(2.34)

~;~(Mz) = 59.217,
Mz = 91.176 GeV.

The B,'s are determined by Eq. (2.3) and Eq. (2.4)
with the T(S,)'s being determined by the Higgs structure
given in Fig. Ref. 1 along with the principal of minimal
fine-tuning. We note that to impliment the suggestion
of ref. [9] an additional rank-2 antisyrnmetric tensor is
to be included. However, this Higgs field has little effect
on the RGE's and is not included in the analysis of this
section.

Now, the above equations for the standard model cou-
plings can be solved silmutaneously in terms of nG and
n12 to obtain

graphed in Fig. 2 for the allowed region where MG &

M12 + M3& + 250 GeV. This gives the range of unifica-
tion scale to be 10 GeV & MG & 10 5 GeV.

We also investigate another possible solution where

M4) = MJP = M6~ = M6L, = M12,
M~ ——10 GeV.

This yields

nG = 3.99+ 0.56n3t,

n12 ——4.62 + 0.48n3t .

(2.40)

(2.41)
(2.42)

We graph this case in Fig. 3. Note that MG can be as
low as 10 GeV. In fact, from the constraint M12 & M3~,
we note from Fig. 3 that the unification scale has to be
smaller than 10 ' GeV. One characteristic of this solu-
tion is that all intermediate scales other than Mi are
larger than 10 GeV, so that the only observable new
physics comes from the scale Mz. However, we shall see
in the next section that this solution is inconsistent with
the constraints arising from nonobservation of proton de-

cay, unless the discrete symmetry V~ —+ —V~ is imposed
on the Lagrangian.

Each of the solutions discussed above has the feature
that one can achieve grand unification at scales much
lower than what is expected in standard unification mod-
els based on gauge groups SU(5) or SO(10). Such low

grand unification scale has many interesting features not

M6L ™12 ™G~

M4~ = M~ ——M6R.

(2.37)

This yields

nG = 9.35 + 0.66n~ —0.28n3~,

n6~ = 8.77 + 0.59n~ —0.19n3) .

(2.38)
(2.39)

In this example both M~ and M3t may be low. The
particular case of this solution which has My = M3t is

10

F~C
tion of n3i = log].p G v with M~ = M3) M4$: MQ = M6RM3)

and M6L, ——M12 ——MG. in Fig. 1. The shaded area is not
acceptable since by definition MG & M6& & M3&.
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02=(C "O'H@ 4")Bl,
& V„. (3.2)

8. 6

8. 4

8. 2

8. 4 8. 6 8.8

FIG. 3. n& = logio G v and n~2 = logic G v
tion of n3$ = logyp cev w'ith M4L = MH = M6R M6L

M3)

Mq2 and My = 10 GeV in Fig. 1. The shaded area is not
acceptable since by definition M& & M&2 & M3l.

III. PROTON DECAY

Since baryon and lepton numbers are part of the gauge
symmetry of the model, proton decay diagrams must in-
volve baryon number and lepton number violating vac-
uum expectation values (VEV's) in the Higgs sector. The
only VEV in our symmetry breaking scheme which vio-
lates baryon number is the VEV of the 560-dimensional
representation Bk™having the quantum numbers of

A A

udd, which has B = —1. Lepton-number violation

arises from the VEV of Bk™having the quantum num-

bers of d ue —dv, , which has I = 1, and the VEV
of 16-dimensional representation V~ having the quantum
numbers of (v, ), which has L = —1. Note that lowering
indices changes the signs of the quantum numbers.

To examine proton decay, we use the method of ef-
fective operators. In this method, one writes down all
effective operators involving fermions and scalars which
are invariant under the full SU(16) group. When the
scalars develop VEV's, one obtains an efFective operator
involving fermions only. These VEV's are responsible for
baryon or lepton violation.

The lowest order efFective operators for proton decay
involve four fermionic fields [5]. From the discussion
above, we find two SU(16)-invariant efFective operators
which can induce proton decay [20]. These are

Gi = (4"0 'H @ @"jBI,I,„B"'"4 „4„,, (3 1)

present in standard unification models. For example, it
has been shown [12] that, unlike the SU(5) model, one
can circumvent the cosmological monopole problem eas-
ily. Also, the intermediate scales are low, and some of
them can be in reach of the next generation of experi-
ments. If new gauge structure exists at TeV energies, as
occurs for example in the second solution with low My,
there will be new gauge bosons to mediate a lot of pro-
cesses [3]. Direct production of these gauge bosons at the
SSC will also provide exciting physics, some of which has
been discussed in the context of SU(15) models [2, 19].

~ mf ~ ~BC ~BBMYMBMw
&Mw) MG6

f mf ) AM~Ms(

(Mw)

(3 3)

(3.4)

Here, the quantity my is the mass of a typical fermion,
and comes from the Yukawa couplings. Antisymmetry
of Bgt„and fermion indices require use of second gen-
eration fermions [5]. Therefore, we use mf 100MeV.
Also, A~C„A~~, and A denote the scalar couplings. We
have assumed that all virtual colored scalars have masses
of order MG, the largest scale of this model. The mass
scales in the numerator are the scales of the VEV's. Mak-
ing a rough estimate, we have neglected factors of gauge
coupling constants.

Known bounds on proton lifetime imply

~i, rc2 + 10 GeV (3.5)

If we use the above constraint with M~ MG, , which
can be seen to be true from Sec. II, and assume A~@,
A~~, and A are ~ 1, then we find the constraints

a ~ 102s GeV
M~ (3.6)

Md.de- A
I

ue-

)l uu
I

ue+

e+e-
I

FIG. 4. Tree diagram generating Qq. The labels on the
Higgs boson lines represent, via Eq. (1.1), the transformation
properties under SU(16). The indices should all be considered
as upper indices.

Here, (4'"4~j:—(4'") C4'~, where C is the conjugation
matrix for fermions.

Typical diagrams generating Gi and Gq are shown in
Fig. 4 and Fig. 5, respectively. In Fig. 4, C„„- gets a
VEV. In determining the RGE's, we only gave a VEV to
the O' ' component of 136. However, in order to give
masses to the quarks as well as the charged leptons a
VEV must be given to each of the I"",I"~, and 4' '
components of 136, i.e., a linear combination of C ",
4"",and C' ' represents the standard model Higgs bo-
son. At higher scales additional components make con-
tributions to the RGE's. These contributions are small
compared to other Higgs contributions. Therefore, we
ignore them.

From the figures we obtain an order-of-magnitude es-
timate of the coeficients rci and r2 of the 4-fermion op-
erators Gi and Oq respectively:
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I

d&

FIG. 5. Tree diagram generating 02.

M3
Q ) ]024 GeV2

M3
(3.7)

assume only 4s4 gets a VEV [9]. This VEV gives masses
to charged leptons, but not to neutrinos. The multiplet
y, on the other hand, is assumed to have no VEV [9]. The
dominant contributions to the mass of v, then come from
the one-loop graphs of Fig. 6. The diagrams involve a
Higgs potential term of the form py ~p~ A p~b, where
p is a coupling with the dimension of mass and A~p~b
is the antisymmetric rank-4 SU(16) tensor whose VEV
(Aizs4) breaks SU(16) to SU(12)~ x SU(4)i at MG. Be-
cause A p~b is antisymmetric, (Azsi4) = —(Az4is), and
therefore the mass contributions of the two diagrams of
Fig. 6 have opposite sign.

Prom Fig. 6, we estimate

from Oi and Oz respectively. Equation (3.6) puts no
restriction on the solutions to the RGE's, but Eq. (3.7),
resulting from Oz, does. For example, Eq. (3.7) rules
out the entire special case defined by Eq. (2.40) which
gives M~ as low as ~ 10 GeV, although it does not
rule out any region of the case defined by Eq. (2.37)
which allows for a low energy M3t. However, the efFective
operator 02, which yields this constraint, is no longer
allowed if we impose the discrete symmetry V —+ —V
on the Lagrangian. Another feature that would exist if
this discrete symmetry is imposed is mentioned in the
next section.

It is important to note that the decay modes of the pro-
ton obtained from the operators Oi and Oz are difFerent
from the predictions of standard SU(5) or So(10) grand
unification models. In Oi, the indices k, t are antisym-
metrized and so are rn, n. Thus, the quark level operator
for proton decay [5] arising from it is usus+. This gives
rise to the decay mode p -+ Kop+. On the other hand, in

Oz, the quark level operator is usdv, where the neutrino
can belong to any generation since the indices rn, n are
not necessarily antisymmetric for this operator. Thus,
we expect a decay mode p ~ K+v. Note that both op-
erators give rise to (B —L)-conserving decays.

IV. NEUTRINO MAGNETIC MOMENT

We now discuss generation of a sizeable magnetic mo-
ment for the neutrino. The most general Yukawa cou-
plings of the model are given by

—Zi. =) h 4 I @I@p+) f 'b4 1.@blip p+H. . c
CL ahab

(4.1)

Here, latin indices refer to the generation. 4 is the sym-
metric 136-dimensional rank-2 SU(16) tensor representa-
tion, whose couplings in the generation space are chosen
diagonal without loss of generality. The additional mul-
tiplet p is a 120-dimensional antisymmetric rank-2 ten-
sor, so its coupling f~b is antisymmetric in its generation
indices. This field is put into the model to generate a
magnetic moment for the neutrino. Since quarks play no
role in the magnetic moment of the neutrino, we focus
our attention on the leptonic part of the interactions.

O is the Higgs field which breaks SU(3), x SU(2)L x
U(1)& down to SU(3), x U(l) &. In the leptonic sector we

f,',q(A, 4») m. , (M,4M»b
16' Mz4 (Mi4Mzs)

(4.2)

where M~p
—= (massof&p~p). The important point to

realize here is that, in the limit of unbroken SU(3)i,
M23 —M13 and M24 ——M14, and so the mass contr i-
butions from the two diagrams cancel each other.

The diagrams of Fig. 6 with one photon line attached
give the dominant diagrams for the magnetic moment of
v, . These diagrams add because of an extra negative
sign between the two diagrams arising from the photon
vertex. We estimate

efisp (Az4is) rn~ 1 1
Mz Mz Mz Mz24 13 14 23

2314
I

'P23

2413
I

+ V V L

FIG. 6. The diagrams that contribute to the mass of the
neutrinos at the 1-loop level. Magnetic moment arises by
attaching a photon line to any internal line.

In the limit of unbroken SU(3)i, we can write Mis ——

Mzs = M —zb, M4i and Mi4 ——Mz4 = M + zAM4i,
where AM4i is the mass difference due to SU(4)i break-
ing. The breaking of SU(3)i then changes the masses
according to

Mis M AM4i + AM3[ Mzs M AM4i2= 2 1 2 2 2= 2 1 2

2
(4.4)

M]4 M + EM4i + AMsi M/4 M + AM4i2 2 1 2 2 2 2 1 2

2 2
(4 5)

where AMs& to lowest order is due to the term
A(vi) (V ) &p &pi . Here, V isthe vector representation
Higgs field and A is a dimensionless coupling. Putting Eq.
(4.4) and Eq. (4.5) into the expressions for m„. and p„.
gives us
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2 2f,spMGmr 2 2,(AM4t )
16~'Ms " " 'q 2M' )

2- —1
efis~M~m (aM4, )

8 'M' i 2M')

(4 6)

(4.7)

2 2
also 2M", (( 1 then M 10 eV. Typically, M is

of the order of 1TeV with SU(3)t and SU(4)~ breaking
inducing small mass changes in the y~p's with LM&&

AM4t 10s GeV .

V. SUMMARY

AMsiwhere we have used (A24is) MG and assumed
1. Now, requiring rn . + 10eV and p, . & 10 p~, gives
from Eq. (4.6) and Eq. (4.7) the constraints

2- —1

I
[

4t~~
M' " "

I, 2M')
& 10-',

(4 8)

2- —1

f~qpM~ AM4t )
M4 2M' )

&10-'G V-' (4.9)

Also, demanding the mass-mixing matrix for y to have a
positive determinant gives the constraint

1

M2 AM2 5

M~ 2M2 (4.10)

We remark that if we impose the discrete symmetry U
—V on the Lagrangian, then we should expect p to be
small because then p&p ~p~ A p~~ is the only term of the
Lagrangian not invariant under A p~p ~ —A p~p. An
example of this is when in each of Eq. (4.8), Eq. (4.9)
and Eq. (4.10) the left and right sides are approximately
equal. In this case, AMstAM4t 10 fis GeV and if

We have shown in this paper breaking chains for the
SU(16) grand unification group which lead to the stan-
dard model with the quark and lepton sectors transform-
ing separately at intermediate energies. The grand unifi-
cation scale for this model can be as low as 10 0 GeV.
We have shown that this does not produce any conHict
with know bounds of proton lifetime. In fact, if a dis-
crete symmetry is imposed on the model, one can obtain
chains with the unification scale as low as 108 5 GeV.
Also, low intermediate breaking scales can exist in the
& 1 TeV range. This has many observable consequences,
including guage bosons at the TeV range which can give
rise to a rich phenomenology.

Further, the model embeds the Voloshin symmetry
SU(2) into its subgroup SU(4)t. By using a rank-2 an-
tisymmetric Higgs field, it is possible to get a significant
magnetic moment for a neutrino with small mass. For
this to work, this Higgs field typically should have masses

1 TeV with relatively small mass differences induced by
SU(3)t and SU(4)t breaking.
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