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Different experiments on measuring van der Waals (Casimir) and gravitational forces for obtaining re-
strictions on the constants of hypothetical interactions which decrease with distance on Yukawa or
power-law potentials are considered. New restrictions which are based on experiments on direct force
measurements (such as E6tvos and Galileo ones, measurements of Casimir and van der Waals forces) are
obtained and reviewed. Restrictions on the parameters of light elementary particles which follow from
the results of force measurements are discussed. New experiments in which an optimized configuration
of test bodies is used for obtaining the strongest restrictions on long-range force constants are suggested.
It is possible to strengthen all contemporary restrictions by a factor of 10 and even by a factor of ten mil-
lion depending on the region of parameter values in such experiments.
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I. INTRODUCTION

Recent developments in quantum field theory have re-
vealed the possibility of the existence of a large number of
light and massless elementary particles of different types.
Among them are particles such as the axion [1,2], scalar
neutrino [3] (which arises in supersymmetric theories),
spin-1 antigraviton [4,5] (which arises in all extended su-
pergravity schemes), dilaton (which appears in the
theories with broken scale invariance [6,7]), etc. Ex-
change of such particles may show up not only in the
scattering of elementary particles and in their reactions
and decays, but also leads to some new effects in atomic
spectroscopy. Moreover, it can reveal itself as an addi-
tional interaction between macrobodies. The last possi-
bility is under investigation now in more than 40 labora-
tories all over the world. Additional long-range interac-
tions may result in a deviation of the gravitational force
from Newtonian law (experiments of Cavendish type), in
the difference between inertial and gravitational masses
(experiments of Eotvos and Galileo types), in deviations
of the Casimir force from the theoretical predictions un-
der their experimental verification, in atomic force mi-
croscopy, etc. (for a review of gravitational experiments
and best limits of the inverse-square law see [8,9]).

There are statements in the literature that a hypotheti-
cal (so-called “fifth”’) force was observed in the experi-
ments of E6tvos and Cavendish types [10—12]. But at the
same time other research groups do not find this force
[13-18].

In the present paper, an analysis of different terrestrial
experiments on measuring the van der Waals and gravita-
tional forces is carried out in connection with the possible
existence of new long-range interactions. The implica-
tions of such experiments on the search for hypothetical
interactions are investigated too. The best limits on the
parameters of hypothetical forces which are obtained
from the experimental data on force measurements are
given. Moreover, some new experiments are suggested,
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the realization of which will cause quick progress in the
search for new long-range forces.

It should be noted that when speaking about long-
range interactions we mean here the forces with an action
range A from one angstrom to hundreds of meters with
an effective potential of Yukawa type,
~(1/r)exp(—r/A), and power-law forces ~r ", where
n=2,3,4,... . The choice of such potentials is dis-
cussed in Sec. II. Also, the restrictions on hypothetical
forces resulting from modern experiments on force mea-
surements are given there. As a consequence, restrictions
on the parameters of elementary particles which generate
these interactions are given also.

It should be emphasized that although the restrictions
from the force measurement experiments sometimes are
not so strong as the ones obtained from astrophysics and
elementary particle physics, they are most reliable and
model independent.

In Sec. III new experiments on force measuring are
suggested in order to search for hypothetical long-range
interactions and stronger restrictions on their parame-
ters. In particular, the optimal shape of test bodies is
found. It provides the best sensitivity of experiment to
the presence of an additional long-range force.

In Sec. IV all the best restrictions on the parameters of
new hypothetical interactions are presented in Fig. 5 and
in Table V together with the prospective limits which
would be achieved if the experiments suggested in Sec. ITI
were performed.

The paper has two main purposes. One of them is to
obtain and review all best restrictions which follow from
experiments on force measurements as was done in Ref.
[19] 12 years ago. The second goal is to awaken interest
in the optimum experiments of Casimir and Cavendish
types which were discussed by us in [43,44] and promise
great progress in the problem of new long-range interac-
tions and light elementary particles.

Throughout the paper the units in which # =c =1 are
used.

n
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II. LONG-RANGE FORCES IN MODERN
PHYSICS AND RESTRICTIONS ON THEIR
PARAMETERS FROM FORCE MEASUREMENTS

A. Types of potentials

As was noted in the Introduction, long-range forces
with an interaction radius from 107!° to 100 m (and
more) are predicted by almost every modern unified
theory of fundamental interactions. Let us consider the
types of potentials which correspond to such forces.

The effective interaction potential between two parti-
cles is calculated in quantum field theory in the form

1

V N,
= i,

Jd*ke % T(s,0), (1)

where T'(s,?) is an invariant amplitude of elastic scatter-
ing of particles (in Mandelstam’s variables), r =|r| is the
distance between them. k is the transferred momentum,
and M, , are the masses of particles. Moreover, it is sup-
posed that s=s,=(M,+M,)?> for extracting the
velocity-independent part of the potential.

The potential of a force acting between two atoms can
be calculated by means of Feynman rules. The result is
the well-known potential of Yukawa type under exchange
by scalar or vector particles with mass m =A " !:

V(r)=a(22)2%e_’”‘ . ()

Here the factor z, which stands for the number of protons
in the atom, is introduced for taking off the dependence
of a on the sort of atom, i.e., on z (number of neutrons is
also supposed to be equal to z). The exchange of hy-
pothetical particles such as a scalar axion [1,2], scalar
neutrino [3], spin-1 antigraviton [4,5], etc., leads to an
effective potential [Eq. (2)].

Another light particle which is interesting for us is the
dilaton. It is a boson which appears due to the breaking
of scale invariance [6,7]. In contrast with the case of usu-
al Goldstone bosons, the effective potential (2) arises even
by exchanging one such particle because of the mixing of
a dilaton with a graviton. Different examples of hy-
pothetical particles and non-Newtonian forces can be
found in [20].

The value of the constant « in the effective Yukawa-
type potential for a spin-1 antigraviton is predicted by
theory: a=87Gm3~10"%, where m,, is the sum of the
current quark masses of a nucleon and G is the gravita-
tional constant. The value of a predicted for the dilaton
is equal to 1GM}~2X107°, where my is the nucleon
mass.

For the case of m =0 in Eq. (1), one has the usual
Coulomb potential. If the particles exchange pseudosca-
lar particles, then the resulting potential depends on the
spins of the interacting particles. Such spins are added
up under the interaction of macrobodies. Hence addi-
tional interaction arises only if the total spin of each mac-
robody is not equal to zero. But in this case the macro-
bodies have magnetic moments which are enormous in
comparison with additional long-range interactions.
Therefore, hereafter, it will be supposed that macrobodies
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have no magnetic moments, and consequently we will not
consider the exchange of one pseudoscalar particle.

However, if the exchange of an even number of such
particles is considered, then the long-range interaction
appears again. Thus, in Ref. [21], it was shown that the
exchange of two massless arions [22] leads to the interac-
tion potential between electrons, V ~r 3.

There is a whole class of unified theories based on su-
persymmetry in which the massless Fermi particle arises,
the so-called Goldstino [3]. In [23] the exchange by two
such particles was studied, and it was found that the in-
teraction potential can be written independently of the
type of theoretical model as ¥ ~r 7.

Additionally, the exchange of the usual neutrinos also
leads to the appearance of a long-range interaction. The
potential of such an interatomic interaction was found in
[24] and has the form V ~r 5.

The list of such examples can be continued. However,
it is essential here to find out what types of potentials and
light elementary particles exist really in nature. So it is
interesting to investigate the restrictions on the parame-
ters of a Yukawa-type potential (2) and power-law ones
following from all up to date experiments.

We shall use the power-law potential of the interaction
between the atoms such as in [17]:

n—1

1

V=1, (2271 To

, (3)

where A, is dimensionless constant and ro=1 F=10"1
m. In such a form, the constant A, does not depend on
the type of atom [such as a in Eq. (2)].

Subsequently, we shall suppose that the hypothetical
long-range interaction field of a macrobody is the addi-
tive sum of the fields of its separate atoms. Such a hy-
pothesis is justified because the additional interaction is
rather small. The atomic field in its turn is the additive
sum of the fields of nucleons and electrons.

Let us consider experiments in which the new hy-
pothetical forces can be revealed.

B. Eotvos- and Galileo-type experiments

In the experiments of this type, the so-called weak
principle of equivalence was verified; i.e., the difference
between inertial and gravitational masses of a body was
measured. In EOtvos experiments two bodies of equal
gravitational mass were hung at the torque balance. If
the inertial masses of the bodies were different, then the
torque moment would appear due to the interaction with
the Earth [17,18,25,26].

In Galileo-type experiments, the bodies such as those
in Eotvos experiments fall down and the time of their fall
is registered [27-30]. The existence of an additional hy-
pothetical force which is not proportional to the masses
of interacting bodies can lead to the appearance of the
effective difference between inertial and gravitational
masses. Therefore some restrictions on hypothetical in-
teraction emerge from the experiments of Eotvos and
Galileo types.

Following the Ref. [19], let us show what restrictions
on A, from Eq. (3) and on A from Eq. (2) can be obtained
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on the basis of E6tvos experiments. The typical result of
such experiments is that the relative difference between
the accelerations imparted by the Earth to various sub-
stances of the same mass must be less than 10™°. Recent-
ly, a new experiment of EGtvos type was achieved [25], in
which this quantity was shown to be less than 1071,

The restrictions of Ref. [25] are shown in Fig. 1 where
the region of a,A permitted by the experiment lies below
curve 1. Curve 2 was obtained in [17,18] where the
Eo6tvos-type experiment was carried out with massive lab-
oratory bodies instead of the Earth.

If we admit that the hypothetical interaction arises due
to a spin-1 antigraviton or dilaton, then one can obtain
restrictions on their masses. So taking into account the
values of the coupling constants predicted by theory,
a~10"* for a spin-1 antigraviton and a~2X 10~ for a
dilaton, one obtains from Fig. 1 for a spin-1 antigraviton
A=m " 1<5m, and A <0.3 m for a dilaton.

Another sort of EOtvis experiment was carried out in
1971 [26]. In that experiment the difference in accelera-
tions imparted to test bodies by the Sun was measured.
The restrictions which follow from [26] are A; <104
A, <1070, A, <107 [7].

In conclusion, it is useful to note that the best restric-
tions on A, from other EGtvos experiments made before
1979 were collected in the Ref. [19]: A,<10™%,
A, <1072 A,<1072

C. Cavendish-type experiments

Originally, the gravitational force between two test bo-
dies (usually between two balls) of known mass has been
measured. As a result, the value of the gravitational con-
stant G =~6.66X 10! Nm?/kg? was calculated [32,33].

logldt
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~42

-43

— 44

log A (m)

FIG. 1. Permitted regions of Yukawa interaction constants
lie under the curves: 1 [25], 2 [17,18] (from EGtvos-type experi-
ments), 3 [32,33], 4 [13], 5 [15], 6 [16], and 7 [14] (from
Cavendish-type experiments).
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The value of G obtained from the experiments of other
types (see, e.g., the geophysical data [10,11]) is equal to
the Cavendish laboratory value of G with an accuracy up
to 1%. It should be emphasized that the difference be-
tween the values of G from [10,11,32,33] are understood
here not as the real effect, but as the accuracy limit. Con-
sequently, starting from the fact that the hypothetical
force must not lead to a shift in the value of G by more
than 1%, one finds restrictions on the hypothetical force
parameters. These restrictions were obtained for a,A in
[31]. Permitted values of a,A belong to the region which
is below curve 3 in Fig. 1.

In the last decade, experiments have been carried out
on measuring the deviations of the gravity force from
Newtonian law [10,11,14,15,18]. It is not necessary to
know the value of G (which is known in fact with an ac-
curacy up to 1%) to calculate such deviations because the
characteristic value of the deviation includes only the ra-
tios of gravitational forces. Therefore these experiments
are more sensitive to the possible existence of an addi-
tional hypothetical force in comparison with classical
Cavendish experiments. Moreover, interest in such ex-
periments was stimulated by Long’s announcement [34]
about the experimental discovery of deviations from
Newtonian law. Later, experiments with contradictory
results were carried out, part of them confirming and part
rejecting Long’s result. For the time being, however,
there are no sufficiently strong reasons to believe that
such deviations really exist.

The characteristic value of the deviation may be writ-
ten as

=1 d ..

ETOF dr(r E), @
where r is a distance between point bodies and F is a
force acting between them. At present, the value of € is
of the order of +10™* with r ~1072-1 m [14,15].

For the parameters of the Yukawa interaction, a,A
from Eq. (2), one then has

— a _ri —r/A
€ Gm2 22 e . (5)

This equation results in restrictions on the values of a,A.
The corresponding permitted regions for a number of ex-
periments [13—-16] are shown in Fig. 1 (curves 4—7). The
difference between the cases of a>0 and a <0 are ex-
plained by the nonzero mean value of € in the experi-
ments under investigation.

It is easy to obtain from Fig. 1 restrictions on the spin-
1 antigraviton m >6X1073 eV (A <3X1073 m) and on
the dilaton m >5X10"*eV (A <4X 10~ * m).

In the same way restrictions on A, in Eq. (3) can be ob-
tained from the experimental values of ¢ defined in Eq.
4).

It gives stronger restrictions than from EOtvos data
(see Sec. II B) for n =2,3: A,< 10726 and A; <107 12,

Today there are new, more exact experiments of
Cavendish type. In addition, the measurements were car-
ried out [13] in a more beneficial way to search for re-
strictions on the power-law interaction region of dis-
tances between the test bodies. The restrictions resulting
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from [13] were found in [35] and proved to be
Ay <TX1073% A3 <7X 10717 A, <1X 1073,

D. Casimir force measurements

One of the types of experiments for the search for hy-
pothetical long-range interactions is the Casimir force
measurement (i.e., the retarded van der Waals force)
[36-38]. In these experiments the experimental force
value E ., was compared with the theoretical one Fy,cq,-
Within the accuracy of the experimental relative error 9,
the difference between Fy,., and F.,, was not found.
Therefore a hypothetical force F,;4 must obey the in-
equality

Fadd <Fexpt8 . (6)

All the restrictions under consideration can be obtained
from Eq. (6).

In [36-38] the Casimir force between the plane plate
and the spherical lens of R radius (R >>1, where [ is a dis-
tance between the plate and lens) for / €0.05-2 um was
measured. An approximative theoretical value of the
Casimir force for such a configuration was given in
[36,39].

Hypothetical forces for such a configuration due to po-
tentials (2) and (3) were obtained in [21,31,40]. Taking
into account that § =10-20 % [37] for [ ~0.8—1 pum, one
obtains restrictions on a, A, shown in Fig. 2 (as usual, the
permitted region lies below the curve).

The restrictions on the parameters of the power-law in-
teractions from (7) can be obtained in the same way [21].

E. Measurements of van der Waals forces
between the crossed cylinders and in atomic force microscopy

The majority of experiments on gravitational force
measurements were performed, as a rule, for distances be-
tween test bodies greater than 1072 m. For smaller dis-

log|et! r

=30 r
-3y

-38

-8 -6 -4 -2 0 2 4 log A (m)

FIG. 2. Restrictions on Yukawa-type interaction constants
a, A from the Casimir effect.

2885

log Il

-6

-1

-12 4

-4y

—46 1 1

¢ (A)

10 15 20 40 60 {00
3

FIG. 3. Restrictions on Yukawa-type interaction constants
a,A from van der Waals force measurements between the
crossed cylinders (curve 1 [38]), from AFM (curve 2 [41]), and
from the Casimir effect (curve 3 [37]).

tances ( <107 % m), the subject of experimental research
was the Casimir and van der Waals forces. In this section
the results of experiments on force measurements be-
tween the crossed cylinders [37] and between a tip of the
atomic force microscope (AFM) and a sample are ex-
pounded with the aim of searching the Yukawa-type
long-range forces on supersmall distances [41].

In experiments [38] the force between the crossed
cylinders with mica plates stuck to them was measured in
a distance region from 15 to 1300 A. The resulting re-
strictions are shown in the usual way in Fig. 3 (curve 1).

Another type of experiment for the search of Yukawa-
type interactions with such small A is atomic force mi-
croscopy [41]. Experimental research on the force depen-
dence F(I) between a plane sample and a tip of the AFM
(I is the distance between them) was performed in [42].
The force was measured with a relative error of 70% and
the distance with the absolute error =1 A.

The corresponding restrictions on parameters a,A are
shown in Fig. 3 (curve 2). In the same figure, the restric-
tions from the Casimir effect are represented in accor-
dance with Sec. II D for the region of A under considera-
tion (curve 3).

As is seen from Fig. 3, the best restrictions on a with
A>60 A0 follow froom the Casimir force measurements,
with 10 ASA 560 A from the van der Waals force mea-
surements [38] and with 1 ASAS10 A from the force
measurements in the AFM [41].

III. OPTIMIZATION OF EXPERIMENTS
WITH TWO MACROBODIES

A. Formulation of the variational problem

As was mentioned in Sec. II, the theoretical values of
Casimir or van der Waals forces are confirmed by experi-
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ment with an accuracy of experimental error 8. There-
fore restrictions on the hypothetical additional force F, 44
were obtained from the inequality (6). Hence, to obtain
stronger restrictions on the parameters of the hypotheti-
cal force, it is necessary to make the ratio y=F, 4y /F
(where F is the known experimentally measured force) as
large as possible. Here two test body configurations only
will be examined. In principle, a similar problem could
be solved for three- and more-body configurations.

It was shown in [21] that an increase in y may be
achieved by modification of the test body configuration,
of the distance between them, and of their density. With
an increase of the distance between test bodies, it is neces-
sary to take into account both Casimir (van der Waals)
and gravitational forces. Therefore, the force F in the

general case turns out to be equal to Fc,,+F,,, and
hence the quantity ¥ must now be defined as
F
y=o (7)
F Cas+F grav

To obtain the strongest restrictions on the constants of
hypothetical forces, it is necessary to have in experiment
a maximal value of ¥ from (7); i.e., the variation of ¥y with
respect to the variation of the test body configuration for
optimum configuration vanishes: 8y =0 [43].

For the case of measuring deviations from the known
force law, the variational problem is more complicated.
As was mentioned in Sec. II C, such deviations may be
parametrized by the dimensionless quantity € from (4),
which describes deviations from the inverse square law
for point masses. However, in real experiments, test bo-
dies are not pointlike. Hence the law for the gravitation-
al force acting between them is more complicated than
the inverse square law. Therefore, in Refs. [13-16,34],
an additional value A was introduced which character-
izes deviations of the experimental force F, from the
theoretical value Fy,.,:

_ (FZ/Fl)expt _

= , 8
(FZ/FI )theor ®

where F,,=F(l,,) and [, , are the distances between
the test bodies. The quantity (8) is independent of the
value of G, which is known with low accuracy.

The value of AB can be connected with the value of
some effective €, which already does not depend directly
on the configuration of test bodies.

Before starting with the optimization of experiments
on measuring the deviations from the known force law,
we must take into account that in the general case both
gravitational and Casimir (van der Waals) forces act upon
the test bodies. So it is necessary to generalize the
definitions of € in Eq. (4) and of AB in Eq. (8).

As shown in [44], such generalizations may be written
in the form

dp . AB
4B jim 8P
dl o0 Al ’
Ao ©)
__ 1 1 a4 | m-14d 2
S —— T E () dr [r dr[Fp(r)r ]] ,
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(4B FelD d
dl F(l) di
FeulD |]7
x || & | Zee | 4 _FD_| (10)
dl | FoaeD) || dl Foru D)

for the force between the test bodies, which consists of
three parts:

F (D) =G Py (1) + C g Fas 1)+ Fogq (1) (11)

(gravitational, molecular, hypothetical). Here also the
following notation is used:

mym C
St - F oy aalP) s (12)

F,(r)=G .,
which is the force between two pointlike bodies of the
same material such as the test bodies. C,, is a constant of
Casimir (van der Waals) force between material points.
The value of the integer number m depends on the dis-
tances r under consideration. Thus m =7 for r * 3 um
(the so-called temperature Casimir forces) and for
r 50.05 pm (unretarded van der Waals forces), m =8 for
0.05 umsSrs3 um (retarded Casimir forces). The
coefficient in (10) is chosen in such a way that the quanti-
ty / dB/dl turns into € when the test bodies collapse into
material points.

Let us show how the restrictions on parameters of hy-
pothetical interactions can be obtained with the help of
the quantities in Eqgs. (9) and (10). Taking, for example,
the quantity (10) and substituting into the force (11) the
concrete form of hypothetical interaction, one calculates
the expression for / df3/dl which depends on the long-
range constants A, or a,A. On the other hand, assuming
that in the experiment there were no deviations of
1 dB/dl from zero within the accuracy of experimental
error 8(/ dB/dl) ey, one can conclude

ld[i'(kn ora,A) dp

dl <®

(13)

expt

From this inequality, the restrictions under considera-
tion can be obtained in the same way as the restrictions
found from the value of € [Eq. (9)] (see e.g., Sec. II C for
the case of purely gravitational forces). It is obvious that
the restrictions obtained in these two ways are equivalent
because the values of € and / d3/dl are unambiguously
connected [44].

Let us now return to the problem of optimization of
experiment on measuring deviations from the known
force law. To obtain the best restrictions, it is necessary
to choose the configuration of test bodies in such a way
that the quantity

= 1
€= A2 fVl fV2d3r1d3r2£(|r1—r2|) (14)

(or the quantity / dB/dl) would have a maximum value
(here ¥, , are the volumes of the test bodies). So we have
again the variational problem 88=0, or 8(/dB/dl)=0
with respect to variations of the test body configuration,
similar to the case of direct force measurements discussed
above.
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B. Approximative method for the calculations
of van der Waals (Casimir) forces

Before going to the solution of the variational problem,
we must calculate the forces in Egs. (7) and (11) for any
given configuration. The gravitational force may be
found by a simple addition of the forces acting between
the atoms of the test bodies. Let us suppose that the
same procedure may be used for the determination of hy-
pothetical forces. As was mentioned in Sec. II, such an
approach is reasonable because of the smallness of the
forces (and also because of conservation of the corre-
sponding charge). An exact calculation of Casimir (or
van der Waals) forces for arbitrary test body
configurations has been impossible up to now because of
the great difficulties connected with the impossibility of
separating variables in the wave equation and construct-
ing photon Green’s functions in the medium. Exact re-
sults are known for the force between two plane-parallel
plates [45] and for the energy of a perfectly conducting
spherical shell [46] (some other cases are, e.g., a small ball
over the plane or two small balls considered in the same
way).

In this connection, in Ref. [39], a simple approximative
method of calculation was suggested. It is based on the
following assumptions.

(1) The potential of, generally speaking, the nonaddi-
tive interaction of macrobodies is derived by simply add-
ing the interactions of their atoms.

(2) The nonadditivity is taken into account by decreas-
ing (renormalizing) the potential constant obtained by

fVl fV2d3r1d3eradd( Ity —r,l)

Y= ,
fVl fV2d3r1d3r2[fCas( Irl—rZI )+fgrav( Il-1_1.2] )]

where f is a projection of a volume force density on the z axis.
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means of assumption (1) in that proportion in which the
exact interaction constant for plane plates (of the same
materials as the bodies under consideration) differs from
that obtained by simply adding.

It was proved in [39] from a consideration of the ex-
treme configurations for which the exact results also exist
that the maximum error of this method for the retarded
Casimir forces between arbitrary bodies is not greater
than 20%.

The retarded forces dominate for distances between bo-
dies which are greater than several hundreds angstroms
but less than several micrometers. For greater distances
the usual Casimir forces turn into the temperature ones.
For such forces the maximum error of suggested method
turns out to be [44] less than 64% in the case of two arbi-
trary metallic bodies. For two dielectric bodies the max-
imum error of the method was shown to be [44] about
25%. This accuracy is quite sufficient for the solution of
the variational problem where we are looking for the
qualitative character of the configuration.

C. Optimal experiments on direct force measurements

Let us find now the solution of the variational equation
8y =0, where y was defined in Eq. (7). We shall suppose
for simplicity that the test bodies under consideration are
the rotation figures around the z axis (this supposition al-
lows us to exclude unnecessary turning moments). As-
suming also that the test bodies are homogeneous, one
can write

Using the standard variational technique, we have, from Eq. (7),

SFadd(FCas+Fgrav)_Fadd(SFCas+6Fgrav)=0 .

(16)

In a cylindrical coordinate system, the projection of every force on the z axis can be written as

T © ¢,(z,) -
F=[Yag, [ dn [ pdp, [ "dgu[° iz,

$,(z,)
PzdP2f(|f1_f21) > (17)

where ¢, , (z; ,) are the boundary functions of upper and lower bodies, respectively, and / is a distance between them.

A pole is on the top of the lower body.

Let us write Eq. (16) taking into account Eq. (17) and with the variation only of the boundary of the upper body:

27 ©
(FCas+Fgrav)fyzd‘pdedeZfo de, fl dz1pf aaa( 11— 12 )|p1=¢1(21 8¢1(z)

27 o
_Faddfyzd‘pzdzzdPZIO d‘Plfl dz1p1[f cas (11 =12 ) fgran (T — 12D, = (2 1881(21)=0 . (18)

Since Eq. (18) is valid for any 8¢,(z,), it can be reduced to

Pi{faaallt; =02 =¥ [fcaslIn =11+ f ey (I =121} 5 =4 2 =0 (19)

A similar equation may be obtained for the second body:

P2{faaallty —E2 D =¥ [ feas{ Iy = 1))+ fgray (I =151 |p2=¢2(22)=o . (20)
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Trivial solutions of Eqgs. (199 and (20),
P1,2=012(2,,)=0, are not interesting. After reducing
Egs. (19) and (20) on p, ,, one has

fadd =y
fCas +fgrav P,-=¢,-(Z,~)

The value of y is constant for the configuration given
(it does not depend on |r;—r,|). At the same time, the
left-hand side of Eq. (21) contains the quantity |r;—r,|.
Hence the unique solution of Eq. (21) is the configuration
for which

i=1,2. (21)

|ty —rallp, =4,z =const . (22)

In other words, for the optimum configuration every
boundary point of the first body is at the same distance
from each point of the second body and vice versa; i.e.,
one of the bodies, e.g., the upper body, is concentrated in
a point, while the lower body is part of an infinitely thin
spherical shell. In the real experiment, the point will be
replaced by a small ball with some radius r and a spheri-
cal shell will have thickness AR and radius R so that 7,
AR <<R (see Fig. 4). Equation (16) is valid also in the
case of F,=F,,, =0, 8Fc,y=08F,,=0, which can be
realized for a small test mass off center inside a spherical
shell (for the calculation of such a configuration, see, e.g.,
[47)].

Finally, to fix the optimum configuration, it is neces-
sary to find a value of R for which the quantity ¥ would
be maximum. It can be done by calculation of y for the
configuration of the ball over the spherical shell and by
solving the equation dy /0R =0. For example, in the
case of the power-law interaction (3), the result is
R .,~200 pm.

Unfortunately, the forces acting in such a
configuration are too small for experimental registration:
Fyray=~F,s~1072° N. In connection with this, the ques-
tion arises of how to change the optimum configuration
to increase the force considerably without a large loss in
the value of . Such a “semioptimal” configuration turns
out to be the configuration of two plane-parallel plates
with thickness D placed on a distance / one from the oth-
er. For this case the force becomes experimentally ob-
servable and the optimal values of D and / may be found
by solving the equations

Oy _ 9y _
aD al 0 (23)
2
A
R
aR

FIG. 4. Optimum configuration of a small ball over a thin
spherical shell.

(a direct calculation shows that the value of y for the
semioptimal configuration is less than for the optimum
one only in several times).

The solutions of the system (23) for the hypothetical
power-law interactions are given in Table I where also
the values of the force between the plates are shown.

Let us discuss what strongest restrictions on A, can be
obtained with the help of an optimal experiment. They
are limited first by the error of experiment, §. Because
the total force F,, consists of more than one-half of
F,,,y, which is known up to 1%, now the error § cannot
be less than 1%. Therefore, dividing the numbers from
the last column of Table I over 100, we conclude that the
strongest up to date restrictions (from Cavendish-type ex-
periments; see Sec. II C) can be improved 30 times with
n =3 and 2500 times with n =4.

In the same way, it is possible to obtain the strongest
restrictions for a Yukawa-type interaction of Eq. (2) from
the optimal force measurements between two plane-
parallel plates. But in contrast with power-law interac-
tions where the additional force contains only one con-
stant, the value of which must be restricted, here there
are two parameters a and A. So if we are looking for re-
strictions on the first constant, e.g., on a, the optimal pa-
rameters of the test bodies (/,D) will depend on the
second one, i.e., on A. Therefore it must be taken into ac-
count that starting with some value of A it is possible to
go out of the region of temperature Casimir forces to the
region of retarded ones. Calculating the value of ¥ with a
Yukawa-type additional interaction and solving the sys-
tem (23), we shall obtain the best restrictions on a which
depend on the value of A. Such results together with the
optimal values of D,/ and corresponding force F,, are
represented in Table II. The best known restrictions aS*P!
to date are shown in the third column of Table II in ac-
cordance with the results of Sec. II.

As seen from Table II for A~ 1072 m, new, stronger re-
strictions on a can be obtained only if § <0.1%. Howev-
er, for A>107* m, the total force consists mainly of grav-
itation, which is known nowadays within an error of 1%.
That is why it is not realistic to demand a decrease in the
error of the force measurements to a value which is less
than 1%.

Another situation takes place for the region
1078SA <1072 m. In this region, as is evident from
Table II, presently the best known restrictions a®*P* may
be increased by several orders of magnitude if an optimal
experiment measuring Casimir forces and gravitation is
realized.

TABLE 1. Prospective limits on the parameters A;** that
could be obtained with a configuration of two plane-parallel
plates of thicknesses D, placed at the distance /,, in the ex-
periments on direct force measurements (F,, is net force be-
tween plates).

100
n Iy (um)  Day (um)  Fop (N/cmd) N:ax—af/i
2 120 100 5x 10714 2%10°7
3 90 80 5% 1014 3x10716
4 80 80 7X107 14 4x1073
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TABLE II. Prospective limits on the parameters of Yukawa-type interactions a,A that could be ob-
tained in direct force measurements. In addition, the best experimental restrictions on a for different A

are displayed.

A (m) s 102% Qs ope (pum) D, (m) Fop (N/cm?)
1072 7.1X107% 4Xx10™% 50-500 1073 42x10712
1073 1.8%x107%8 3X1073% 50-100 1073 42X10712
1074 6.3x10738 1X1073 ~100 10™* 59x107 "
1073 4.0X1073# 2X1073% ~50 107* 1.8x10713
107¢ 48%107% 4x1072° 3 107%-1072 1.5%x107°
1077 4.6x1072% 1Xx107%8 0.4 1076-1072 1.5X1073
1078 4.6X10°"7 2x107" 0.05 1076-1072 2.0X1072

D. Optimal experiments measuring deviations
from the known force law

Similarly to the previous section, it can be shown that
the maximum value of € from Eq. (4) is realized if all
points of the first test body are at the same distance r
from each point of the second one and vice versa, where
7o is the maximum point of €(r) from Eq. (9) (see Fig. 4).

Because the forces in such configuration usually are
very small, it is worthwhile to take instead the “semiop-
timal” configuration of two plane plates for which, as a
direct calculation shows, the forces are considerably
larger, but the quantity € has almost the same value as for
the optimum configuration. The distance between the
plates is chosen in such a way that the value of € would
be maximal. Therefore the optimal configuration of the
test bodies here is the same as in the case of experiments
on direct force measurements (see Sec. III).

The solution of the system of equations (23) (which is
written now not for ¥ but for €) in the case of a power-
law interaction leads to the ©best restrictions
Ay <5X107%°, A;<1X 10718, A, <4X 1077 (here the sen-
sitivity to force variations of the order of AF~10" 12 N is
taken to be 2.5X107* N [16,48]; the plate area is put
equal to 10 cm? and the distance between the plates
changes from 50 to 500 um).

As is seen from these results, the restrictions which can
be obtained in such a way practically coincide with those
from the direct force measurements (see Table I). How-

ever, in this case there is a better prospect because, e.g.,
increasing the plate area up to several 100 cm? would
lead to a strengthening of the restrictions on A, of 10
times.

In Table III the restrictions are collected on the con-
stants of the Yukawa-type interaction which can be ob-
tained from the optimum experiments measuring devia-
tions from the known force law for different parameters
of plates.

Concluding this inquiry, let us note that in the case of
measuring deviations from the known force law there is
an opportunity to use for the strengthening restrictions
on Yukawa constants the optimum configuration of Fig.
4 itself. The fact is that preserving the ratio R >>AR it is
possible to increase R, say, up to several meters. Let
AR =R /10. Hence the force acting in such a system will
be a purely gravitational one and large enough for experi-
mental registration. A detailed consideration of such a
configuration was carried out in [49]. Results concerning
the possibilities of strengthening the restrictions on the
Yukawa-type interaction are given in Table IV. Here 8F
is the sensitivity to the force variation and the absolute
error of distance measurements is suggested to be
AR=10"%m.

IV. CONCLUSION

In this paper modern experiments on force measure-
ments were analyzed from the point of view of searching
for new hypothetical interactions. Such experiments, in

TABLE III. Prospective limits on the parameters of Yukawa-type interactions a, A that could be ob-
tained with plane plates (thickness D, distance /, square S) in the experiments on measuring the devia-

tions from the known force law.

A (m) D=10 cm S=1m’ D=1cm S=10"2? m?
Interval of / (um) Amax Interval of / (um) Cmax
10? 10°-10° 4X10™% 10*-10° 8x10™%
10! 10°-10° 5X107% 10*-10° 1x107%
10° 10°-10° 1X10°% 10*-10° 1X10™%
107! 10*-10° 5X10748 10*-10° 4X107%
1072 10*-10* 2X107% 10°-10* 1X 104
1073 10°-2x10° 5X 1074 10°-2x10° 1X10™%
1074 102-3X 10? 4X10™%4 102-3X 10? 8§x10~#
1073 50-100 9.4X 10738 50-100 3x107%
107 10-20 2X1073%
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TABLE IV. Prospective limits on the parameters of
Yukawa-type interactions a,A that could be obtained with the
configuration of a small ball in the center of a thin spherical
shell of radius R.

A (m) R (m) F (N) 8F (N) Ainax
5 5.5X1073 2x10~ 1 2X 1074
10?
1 8.8X107¢ 2X10713 4X10™%
5 5.5X1073 2x107 ! 4X107%
10!
1 8.8X10°¢ 2X107 1 4X107#
10° 2 1.4X1074 1X10712 4X 1074
107! 0.2 1.4%x1078 2X1071 6X10™%
1072 0.02 1.4X10712 1071 3Xx1074

contrast with astrophysical observations and the con-
sideration of new decay channels of elementary particles,
allow one to obtain more model-independent restrictions
on the constants of long-range interactions from Egs. (2)
and (3).

In Sec. II experiments of E6tvds, Galileo, and Cavend-
ish types [10-18,27,28] were considered, and the
verification of the Casimir effect [36,37], and the mea-
surements of van der Waals forces between crossed
cylinders [38] and the force measurements in atomic
force microscopy [41] were discussed.

The best restrictions on the constants A, of power-law
interactions [Eq. (3)] from different experiments on force
measurements are assembled in Table V.

The prospects of strengthening the restrictions on A,
are shown in the fifth column of Table V. For the cases
of n =3 and 4, they are practically equal for experiments
of Casimir and Cavendish types. The absence of reason-
able prospects with » =1 and 2 is connected with the fact
that all presently available experimental facilities have
been already used in experiments in which the actual re-
sults of Table V were obtained.

In the present paper restrictions on parameters of Yu-
kawa long-range interactions [Eq. (2)] are also reviewed.
The best restrictions to date are shown in Fig. 5. The re-
gion of a,A permitted by all experiments performed up to
now lies below curve 1. The best restrictions on a with
A>1 m follow from experiments of Edtvos type [18],
with 3X107* m SAS1 m from Cavendish-type experi-
ments [13-15], with 1078 m SAS3X10™* m from the
Casimir effect [36-37], and with 107 m SA<107 % m
from measurement of the nonretarded van der Waals

TABLE V. Modern and prospective limits on power-law
long-range interactions.

)\’:mx

n Casimir Eotvos Cavendish Prospective
1 1X107% 1074 no better
2 1X107?% 1072 7X 10730 no better
3 5x1071 1072 7x107Y 1X10718
4 3X1073 10 1x1073 4x1077
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forces [38,41].

In Secs. IIB-IID the experiments on Casimir force
measurements and Cavendish- and Eotvos-type experi-
ments were analyzed for obtaining restrictions on masses
of light hypothetical particles—the dilaton and spin-1
antigraviton—which arise in modern gauge theories of
gravity [4—-7]. It was shown that nowadays the accuracy
of Casimir force measurements is insufficient to obtain re-
liable restrictions on the masses of these particles, al-
though experiments of E6tvos and Cavendish types are
able to do that. As a result, the restrictions found are
m>6X10"3 eV for the spin-1 antigraviton and
m >5X10"*eV for the dilaton.

In Sec. III the variational problem of the optimization
of test body configurations for obtaining stronger restric-
tions on hypothetical long-range interactions was dis-
cussed. The restrictions on a, A, which can be obtained in
future experiments described in Sec. III, are shown in
Fig. 5. Curve 2 corresponds to prospective restrictions
from the experiments on measurements of the Casimir
force and gravitation. The restrictions from the
Cavendish-type experiments with plane plates as test bo-
dies are represented by curve 3 (the thickness of the
plates is D =1 cm, and their area S =102 m? and by
curve 4 (D =10 cm, S =1 m?) drawn in accordance with
the results from Table ITI. Curves 5 and 6 restrict the re-

logiatl
—10

- 20

- 30

FORBIDDEN REGION

- 40

-10 ry -6 -4 -2 0 2 logA(m)

FIG. 5. Permitted regions of Yukawa interaction constants
lie under the curves: 1, the best restrictions to date from
different experiments; 2, from prospective optimum experiments
of Casimir type; 3,4, from prospective Cavendish-type experi-
ments with plane plates [thickness D =1 cm, area S =1072? m?
(curve 3) and D =10 cm, S =1 m? (curve 4)]; 5, 6, from prospec-
tive experiments with the configuration of Fig. 4 [R=1 m
(curve 5) and R =5 m (curve 6)].
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gion of permitted a,A from the optimum Cavendish-type
experiment with the ball over the spherical shell (Fig. 4).

From Fig. 5 it is seen that for 10 ¥ m <A <1073-1072
m the restrictions on a can be improved with the help of
suggested experiments on direct force measurements at
10-10* times for different values of A. Starting from
A>1076-107° m, the restrictions on a can be improved
with the help of the Cavendish-type experiments suggest-
ed in this paper. Moreover, in this region it is possible to
strengthen the restrictions known to date by a factor of
the order of tens of millions for some values of A.

In conclusion, let us mention that the strengthening of
restrictions on a,A with the help of the suggested experi-
ments will lead to an improvement of the limits on the
masses of the spin-1 antigraviton, dilaton, and other light
elementary particles. As seen, from Fig. 5, the restric-
tions m >107% eV (A<2X 1073 m) for the spin-1 an-
tigraviton and m >2X1072 eV (A<1X 107> m) for the
dilaton would be found if the suggested experiments were

done.

Thus compact and relativity inexpensive laboratory ex-
periments on force measurements between macrobodies
can form a new direction alternative to the acceleration
technique for obtaining important new information about
elementary particles and their interactions.
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