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Measurable distributions of unpolarized neutron decay
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Several two- and one-dimensional distributions of unpolarized free-neutron decay are calculated. The
results of the order-a model-independent radiative correction calculations are tabulated numerically.
With these corrections the theoretical distributions become precise enough to make possible the deter-
mination of the ratio of the axial-vector to the vector weak coupling constants to a precision of -0.001.

PACS number(s): 13.40.Ks, 13.30.Ce, 23.40.—s

I. INTRODUCTION

The measurement of free neutron P decay provides pre-
cise values for weak vector and axial-vector coupling con-
stants, which allow precise tests of basic symmetries such
as conservation of the weak vector current, the unitarity
of the weak quark-mixing matrix, SU(3)-fiavor symmetry,
and right-handed weak currents. In addition, neutron P-
decay data are needed to calculate weak cross sections,
for applications in big bang cosmology, astrophysics, so-
lar physics, and the solar neutrino problem.

Recently, several high-quality experiments have been
carried out aimed at determining the neutron-decay pa-
rameters with improved accuracy: neutron lifetime mea-
surements using in-beam neutrons [1—5] and ultracold
stored neutrons [6—9], and electron asymmetry measure-
ments with polarized in-beam neutrons [10,11] (see Ref.
[12] for a recent review of free-neutron lifetime measure-
ments and the third paper of Ref. [13]for a review of par-
ticle physics with cold neutrons). These precise measure-
ments allowed one for the first time to derive the G~ and
G„weak-coupling constants and the V„d mixing matrix
element from neutron-decay data alone [13,14]. They
provide also important constraints on the free parameters
of the SU(2)L XSU(2)z XU(1) left-right-symmetric mod-
el of electroweak interactions [13,15—17] and on the sca-
lar and tensor coupling constants [18].

The neutron lifetime and electron asymmetry measure-
ments provide independent values for the A, =GV/Gz ra-
tio of the axial-vector to vector weak couplings (A., and
A, „). Within the framework of the standard model, A.,
and A, ~ should be equal. The latest polarization measure-
ment [11]indicates, however, a significant discrepancy:

~X,—X„~=0.010+0.003 .

This difference in the two measured A. values could be ex-
plained by assuming the existence of right-handed
currents [16] (although other particle-physics constraints
seem to contradict this explanation [9]). It is obvious
that further, more precise measurements are needed to
confirm or refute this discrepancy.

There is a third method of determining the 1,=6~/G&

II. ELECTRON ENERGY SPECTRUM
AND TOTAL DECAY RATE

The general theoretical framework of our calculations
can be found in Refs. [19,20]. We use the conventions
and notation of Ref. [20] (unless otherwise stated). In-
dices 1, 2, i, and f refer to antineutrino, electron, initial
(decaying) baryon (neutron), and final baryon (proton), re-
spectively. p, p, E, and m denote four-momentum,
three-momentum, energy, and mass, respectively.

The electron energy spectrum, up to order a, can be
written as

woe (Ez) =wo(Ez)Fc(Ez)[1+0 Olr, (x)] . .

The first factor here is the zeroth-order spectrum

(2.1)

ratio: the electron-neutrino correlation measurement in
unpolarized neutron decay, providing a k, value which
is experimentally independent of A,, and A, ~. A precise

result of this experiment would test both the right-
handed currents and the CVC (conserved vector current)
hypothesis (and the reliability of the various corrections
applied to the ft values of the superallowed Fermi de-
cays).

Our paper is devoted to give the order-a model-
independent radiative corrections, in the framework of
the standard model, for several two- and one-dimensional
distributions of unpolarized neutron decay. With these
corrections the theoretical distributions become precise
enough so as to make possible the determination of A,,
within an error of -0.001.

The plan of this paper is the following. In Sec. II we
summarize the most important results of earlier publica-
tions on the electron energy spectrum and the total decay
rate, and we make some comments on the order-a radia-
tive corrections. Section III contains the description of
the (Ez, E&) Dalitz distribution and the proton energy
spectrum (Ez and E& denote the electron and proton en-

ergies, respectively). In Secs. IV and V the (Ez, cos8,„)
and (Ez, cos8, ) two-dimensional distributions are
presented. Finally, the Appendix is devoted to describing
a simple method of the order-e radiative correction cal-
culation to the (Ez,Ef ) distribution.
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Gr(i+3K, )
~0(E2 ) 3 ~p2~E2(E2m E2 )

2m3

the spectrum is less than 0.002%.
The second factor in Eq. (2.1) is the Coulomb correc-

tion
X [1+0.01RO(E2)], (2.2) FC(E2)=F(Z = I,E~)Q(Z =1,E2), (2.4)

E—2

E2m E2 m 2
X 2 —4 +2

m; m; m;Ez

E2 E2 m z
Ro(E2) = 2 +A, 10 —2

1+3&~ m. m; m;E2

+ A(1+2~)

where F(Z =1,E2) denotes the Fermi function and the
effect of the recoil on this function is taken into account
with the aid of Q (Z = 1,E2) (see Ref. [21]). For
E2 —m2 & 5 keV electron energies, the following expres-
sion is a very good approximation of the Coulomb correc-
tion (with a relative error less than 0.01%):

6 —m2
E, =a— ', a=m, —mf,

2m&
(2.3)

Fc(E2)=1+ +a —yz —ln(2PEzR)+
4 E 2

GV=G„V„df ),
1

f2 pp pn

f) 2
where

(2.5)

(see Ref. [21]).
The following notation has been used: Ez is the elec-

tron end-point energy; G„and V„d denote the muon-
decay coupling constant and the up-down Cabibbo-
Kobayashi-Maskawa matrix element, respectively; and

p and p„are the anomalous magnetic moments of the
proton and neutron. The f ', and g', form factors contain
the model-dependent parts of the order-a radiative
corrections [22]. Time-reversal invariance is assumed.
We have neglected the q dependence of the form factors
and other very small terms in the complete zeroth-order
expressions (see Appendix A of Ref. [20]). Their effect on

I

P=, R = 1 fm= ', yz =0.5772 .
0.01

E2 4m2

E2 —m2

E2 —m&
(2.6)

The r, (x) model-independent correction can be written as
[22]

The third factor in Eq. (2.1) contains the model-
independent part of the order-n radiative correction. We
introduce the dimensionless variable x as

r, (x) =100 g (E2),
277

g(E2)= 31n
mf 3 N Ez E2 3——+4 ——1

™ ——+ln
4 p 3E2 2

2(E2~ E~)—4 2P
P 1+P

(E E)—
+—2(l+P )+ 4N-

P 6E' (2.7)

1+p ~ in~ 1 —ti

2 1 —p
'

0 t

The r, (x) correction is tabulated in Table I. We can
see that the model-independent order-a correction has a
rather large effect ( —1%) on the shape of the electron en-

ergy spectrum. The measurement of the electron spec-
trum with 0.1% experimental error could reveal this
correction.

On the other hand, the electron spectrum shape is
rather insensitive to the A, and ~ form-factor ratios. The
weak magnetism part of the Ro(Ez) zeroth-order correc-

tion [terms containing I~ in Eq. (2.3)] varies between
—0. 1% and 0.2%. This seems to be too small for a
meaningful check of the "strong" CVC hypothesis [23] in
free-neutron-decay experiments. This hypothesis has
been verified by nuclear p-decay measurements to the
-10% level [24,25]; therefore, we can safely use the
tc=(p~ —p„)/2 CVC value in our calculations.

The total decay rate is obtained by integrating Eq. (2.1)
over E2..

TABLE I. Radiative correction to the electron energy spectrum.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

1.82 1.74 1.65 1.53 1.40 1.25 1.07 0.84 0.50 0.21



2842 F. GLUCK 47

E2m

poc dEziuoc (Ez) .
m2

We write this integral as

Gv(1+3K, )
POCa 3

m 2foCa
2m

foc foc(1+0.01r ),

foe =
q f dEz lp, lE2(Ezm

m,' m2

(2.8)

(2.9)

X[1+0.01R (E )]F (E ) . (2.10)

(see Ref. [32] for a new survey) and for the derivation of
from the neutron lifetime. The electron energy spec-

trum might be altered as a result of this correction by a
few times 0 01%. On the other hand, the model-
dependent (electron-energy-independent) part can be ab-
sorbed into Gz and A, . This correction might effect con-
siderably the V„d value derived from neutron and nuclear
decay lifetimes. We intend to discuss in detail these
problems in a later publication.

III. (E,Ef ) DALITZ DISTRIBUTION
AND PROTON ENERGY SPECTRUM

Using the mass values of Ref. [26], we get

foc = l.6887+0.0001,

r =1.505,

fpc =1.7141+0.0001

(2.11)

We write the electron-energy —proton-energy correla-
tional distribution, up to order a, as a product of three
factors (similarly to the electron energy spectrum):

Woca( 2~Ef ) Woc(E2~Ef )

X [1+0.0lr, (x)+0 Olr(x. ,y)],
(3.1)

(the errors given here refiect the uncertainties of the mea-
sured mass values).

Expression (2.9) determines the decay rate for a point
nucleon, up to order a. The model-dependent part of the
order-a radiative correction might contain small electron
energy-dependent terms [22] (the relative effect of these
terms on the electron spectrum is probably smaller than
0.01%%uo). The contribution of these terms is unknown for
the time being; therefore, we should increase the error of
fpc to 0.0002. According to Wilkinson [21], the finite
nucleon radius correction yields a —0.0001 contribution
to foc . On the other hand, no complete order-a calcu-
lation exists for the neutron decay. The so-called order-
Za corrections, relevant for the CVC analysis of su-
perallowed Fermi decays, have been studied extensively
in the literature [27—31]. In these calculations the
transverse-wave part of one virtual photon is neglected;
only the instantaneous Coulomb potential is included in
the integrals (this photon interacts between the outgoing
electron or positron and the nucleus with charge Ze).
The other photon is treated exactly. The leading-
logarithmic term of these corrections is Za ln(mf /mz).
For the free-neutron decay (Z =1), this gives a 0.04%
relative correction to the decay rate (which corresponds
to a -0.0007 absolute correction to fpc ). It is, howev-
er, obvious that the result of the exact order-a calcula-
tion might considerably differ from this value. The
leading-logarithmic term of the order-a model-
independent calculation yields a 2.5% relative correction
to the decay rate, while the exact result for neutron decay
is 1.5%%uo [see Eqs. (2.9)—(2.11)]. The new results for the
order-Za corrections of superallo wed Fermi decays
[29—31] show also large deviations from the 0.04Z%
leading-logarithmic predictions. Moreover, the order-a
correction might contain also double-logarithmic terms
[ —a ln ( mf /m z ) ].

We suspect that the electron-energy-dependent part of
the complete order-a correction can be computed ap-
proximately in a model-independent way, similarly to the
order-a correction [22]. This calculation would be useful
for the CVC analysis of the superallowed Fermi decays

Wpc(Ez, Ef ) = Wo(E2, Ef )Fc(Ez,Ef ) .

The zeroth-order distribution can be written as

Gv
Wo(E2, Ef)=m; 3 [Dv+1, D„+A(1+2~)DI],

4m

g2+m2 g2 2

E2 /&
=5 Ef =mf +

2mi 2m, -

6=m; —mf, E) =m; —E2 —Ef
(3.3)

(Ez and Ef are the maximum energies of the electron
and proton, respectively) and A, , a are the form-factor ra-
tios defined in the previous section. E, is the antineutri-
no energy in zeroth order. This expression is a very good
approximation of the complete zeroth-order distribution
[the omitted terms give a few times 10 % relative
correction to Eq. (3.2)]. It is in agreement with the result
of Nachtmann [33].

In the Pc(E2,Ef) Coulomb correction, we take into
account the proton energy dependence of the proton
recoil. This correction is obtained by replacing the
P= lpzl/Ez electron velocity in the F(Z =1,Ez) Fermi
function with the

p, 113 (1 pz)u fcfI—— — (3.4)

relative velocity, where uf = lpf I/Ef, cf =pz pf /
( I pz I I pf I ).

In the third factor of Eq. (3.1), r, (x) is the model-
independent order-a correction to the electron energy
spectrum [see Eq. (2.7) and Table I], and r (x,y)
represents the proton energy dependence of the model-
independent order-a correction. The dimensionless vari-
able y is defined similarly to Eq. (2.6):

Dvigu Ez(Ezm Ez)+Ei(—Ei E, )+mf(Ef —Ef ), —
(3.2)

DI =2[E2(E2 Ez ) Ei (—Ei —E i )], —

where
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Ef —mf

Efm mf
(3.&) 1 m22

E =—m —m +2h 2 i f mi —mf
(3.8)

The r(x,y) correction is tabulated in Table II. The boun-
daries of the zeroth-order (Ez,Ef ) Dalitz region are

1 mf2

f /('Ez ) =—m; —E& +
I p21+2 m,. —E2+ Ip2

(3.6)

and

1 m2Ez;„/,„(Ef)=—m, Ef+—
~pf ~+ f+ IPf

(3.7)

Denoting the bremsstrahlung distribution in this region
by Wh„d(E2, Ef) (see the Appendix), the proton energy
spectrum is obtained by integrating the (E2,Ef) Dalitz
distribution over E2.

F. {E )

avoca(Ef ) dE2 Woc~(E2, Ef )+re (Ef )
2Ini f

f ) J E2 Whard(E2~Ef )~c(E2~Ef )

if Ef (Efh

(3.9)

We mention that, in the absence of hard bremsstrah-
lung photons r(x,y) would be about —0.01 [see Eq. (A2)
in the Appendix].

Equation (3.1) determines the distribution of neutron-
decay events in the Ef;„(E2) Ef Ef,„(Ez) region.
On the other hand, there are also decay events in the
mf (Ef (Ef,n( E2 ) m 2 + E2 E2h region, where

(Ef ) =0 if Ef )Efh,
where

2
1 mf

Efh =—m,. —m2+
2 '

mi —m2

We write

(3.10)

eeoc (Ef )=Sec(Ef)[1+0Olrc(y. )][1+0.01r +0.01r (y')],

where
Zma { f] CX7T

rooc(Ef ) I dE2 Wo(EzqEf ) 1+
E2mi {Ef)

=m, [Q(E~,„(Ef))—Q(E2;„(Ef))],
G

4m

(3.11)

Q(E2 ) = ( I+A, ) E2 Ez(1+rraP) E2+ rr—aE—z m 2ln— —2rraPEz m 2+ PEz—2 2 2ttt 2

—(1—A, )mf(Ef Ef )Ez(1+rraP),
(E2 m 2 )1/2

(3.12)

TABLE II. Radiative correction to the (Ez,Ef ) Dalitz distribution (Ef=Ef;„(E2)+[Ef,„(E2) Ef (E2)]z- '

=m~+(Ef —m&)y ).

r(x,y)

0.99
0.96
0.93
0.9
0.8
0.7
0.6
0.4
0.3
0.2
0.1

0.07
0.04
0.01

—0.20
—0.14
—0.11
—0.09
—0.05
—0.03
—0.01

0.01
0.01
0.02
0.02
0.02
0.03
0.03
0.1

—0.30
—0.17
—0.12
—0.09
—0.04
—0.01

0.01
0.03
0.04
0.04
0.03
0.03
0.03
0.02
0.2

—0.36
—0.19
—0.12
—0.08
—0.01

0.02
0.03
0.05
0.05
0.04
0.02
0.01

—0.02
—0.08

0.3

—0.40
—0.19
—0.11
—0.06

0.01
0.04
0.06
0.06
0.06
0.04

—0.00
—0.03
—0.09
—0.27

0.4

—0.43
—0.18
—0.09
—0.04

0.03
0.06
0.07
0.08
0.07
0.04

—0.04
—0.09
—0.17
—0.41

0.5

—0.45
—0.17
—0.07
—0.02

0.05
0.08
0.09
0.09
0.07
0.03

—0.07
—0.13
—0.24
—0.53

0.6

—0.46
—0.15
—0.05
—0.00

0.07
0.10
0.11
0.10
0.07
0.02

—0.11
—0.18
—0.31
—0.64

0.7

—0.46
—0.13
—0.03

0.02
0.10
0.12
0.13
0.11
0.07
0.01

—0.14
—0.23
—0.37
—0.75

0.8

—0.46
—0.11
—0.01

0.04
0.12
0.14
0.14
0.11
0.07

—0.0
—0.17
—0.27
—0.43
—0.84

0.9
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TABLE III. Higher-order Coulomb correction to the proton energy spectrum.

0.1 0.2 0.3 0.4 0.42 0.43 0.45 0.5 0.6 0.8 0.9

r, (y) 0.07 0.08 0.09 0.11 0.12 0.14 0.11 0.09 0.08 0.06 0.06

(the relative error of this approximation is about 0.001%
or less).

In COpc(Ef ), the Fc(E2,Ef ) =1+ma/i3 approximation
has been employed. The rc(y) function contains the con-
tribution of the remaining part of the Coulomb correc-
tion (see Table III). For the precise computation of the
I' (Z = 1,E2 ) Fermi function, we have used formula (ii) in
Appendix 7 of Ref. [21]. The third factor in (3.11) in-
cludes the model-independent order-a correction. r is

P
the model-independent order-a correction to the total de-
cay rate [see Eqs. (2.9)—(2.11)]. The r (y) additional
correction (which alters the shape of the proton spec-
trum) is tabulated in Table IV. This correction seems to
be rather small. However, neglecting this correction at
the statistical fit of the theoretical and measured proton
spectra would yield a IA, I

value larger than the true IA, I by-0.010.
The model-independent order-a correction to the pro-

ton spectrum was calculated in Ref. [34] by Christian and
Kiihnelt. The comparison of our calculation with their
results shows satisfactory agreement in the lower half of
the spectrum (for Ef —mf (400 eV). In the upper half of
the spectrum, however, the numerical results of Ref. [34]
do not agree with our results. In order to study this
discrepancy, we have computed the r, (x), r(x,y), and
rp(y) corrections using the method of Ref. [34] (see the
Appendix for more details). We have found complete
agreement with our previous calculations.

The order-a correction and the uncertainties of the
order-a calculation (due to neglected model-dependent
terms) are expected to give contributions less than 0.01%
to the r(x, y) and r (y) relative corrections. Therefore,
from a theoretical point of view, the measurements of the
(E2,Ef) Dalitz distribution and the proton energy spec-
trum make possible the determination of the X parameter
with a -0.0005 —0.001 error. Unfortunately, the low
sensitivity of these distributions to A, , the low kinetic en-
ergy of the recoil protons (Ef —mf =751 eV), and other
systematic errors cause serious difficulties in these experi-
ments. As far as we know, only two measurements of un-
polarized neutron-decay distributions were carried out in
the last three decades [35,36] (see also Ref. [37] for earlier
references). We mention that the determination of A, with
a -0.001 error allows a -0.02%%uo experimental error in

c:=cosO ev'
P2 (P2+Pf )

I p2I I P2+ Pf I

(4.1)

as
The (E2,c) distribution, up to order a, can be written

BEfe
&pc (E2 c)= 8 pc(E2 Ef )

where

X [1+0.01r, (x)+0.01r, (x,c)],

d'+ p2+ mf +2d
I p2lc

2(d + Ip, lc)

d =m; —E2,

(4.2)

(4 3)

Ip I(E —E ) 1+
Bc m;

ZE2
(1—Pc) (4.4)

For the zeroth-order (E2,c) distribution

BEf,
W'p (E2 C) = Wp(E2 Ef )

Bc
(4.5)

a simple approximate formula exists [neglecting terms of
order (m, —mf )/m, ]:

G~(1+3K, )~app(E2&c), I P21E2(E2m E2 )'
4~

1 —
A,

2

X 1+ Pc
1+3k

(4.6)

The (E2,c) distribution has the simplest Dalitz region
among the two-dimensional distributions:

m2 E2 E2 —1~c &+1 (4.7)

(this is valid for the bremsstrahlung events, too).
Table V contains the r, (x,c) correction. This part of

the (E2,Ef ) distribution and a -0.01% error in the pro-
ton spectrum.

IV. (E&,cos8,„)DISTRIBUTION

We use the "experimental" definition of coso, (see
Ref. [19]):

TABLE IV. Radiative correction to the proton energy spectrum.

0.1

0.12
0.2
0.11

0.3
0.10

0.4
0.08

0.5
0.05

0.55
0.04

0.6
0.01

0.65
—0.02

0.7
—0.06

0.75
—0.12

r, (y)
0.78

—0.16
0.8

—0.20
0.83

—0.26
0.85

—0.32
0.88

—0.43
0.9

—0.52
0.92

—0.63
0.94

—0.79
0.96

—1.00
0.98

—1.34
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TABLE V. Radiative correction to the (E2,cos0, ) distribution.

r,„(x,c)

0.9
0.7
0.5
0.3
0.1

—0.1
—0.3
—0.5
—0.7
—0.9

0.03
0.03
0.02
0.02
0.01
0.01

—0.00
—0.01
—0.01
—0.02

0.2

0.04
0.04
0.03
0.02
0.01
0.00

—0.01
—0.02
—0.02
—0.03

0.3

0.06
0.05
0.04
0.03
0.01
0.00

—0.01
—0.02
—0.05
—0.05

0.4

0.08
0.07
0.05
0.03
0.02

—0.00
—0.02
—0.05
—0.05
—0.06

0.5

0.10
0.08
0.06
0.04
0.02

—0.00
—0.02
—0.04
—0.06
—0.08

0.6

0.12
0.10
0.07
0.04
0.02

—0.00
—0.03
—0.05
—0.07
—0.09

0.7

0.14
0.11
0.08
0.05
0.02

—0.01
—0.03
—0.05
—0.08
—0.10

0.8

0.16
0.13
0.09
0.06
0.03

—0.00
—0.03
—0.06
—0.08
—0.11

0.9

pz p&
c =cos0, =

Ip2llp) I

(4.8)

definition in their calculations. In the presence of hard
bremsstrahlung photons, (4.1) and (4.8) are not equivalent
(see also Ref. [19]).

The measurement of the W' (E2,c) distribution with a
-0.02% error would yield a A, parameter with a -0.001
error. Unfortunately, this experiment requires the detec-
tion of outgoing electrons and protons in coincidence, in
all directions, and the measurement of their three-
rnomentum vectors.

V. {E»cos8,~ ) DISTRIBUTION

the model-independent correction is largely due to the
hard bremsstrahlung photons [similarly to r (x,y) ].
These photons alter the kinematics of the decay and in-
crease the number of events with positive cos8, . The
r, (x,c) relative correction is finite at the c =+1 boun-
daries [contrary to the r(x,y) correction, which goes log-
arithmically to minus infinity in the E&~E&,„(E2) and
E2 & Eq~, E~~Ef~,„(E2)hmits].

The order-a radiative correction to the (E2,c) distribu-
tion was calculated in Ref. [38]. The r, (x,c) correction
derived from the analytic formulas (14)—(16) of Ref. [38]
is about one order of magnitude smaller than our result.
This discrepancy is probably due to the fact that the au-
thors of Ref. [38] used the

[see Eq. (3.8)],

E+ [(++)2+m 2]1/2

+ — S (h2 4 h)1/2
—b+S

f
a =4(d —pic~), b =4~p~~c&(d +m~ —pz),

h =4(m; mj)(E2 —E—zi, )(H E2), —

1 m22

H =—m,. +m +
2 ' f m +mf

d =m; —E2,

&h
2[p, /m~

m E —Ei 2m 2

/p /

c~ (E~)=—

s~ (E2)=

[1 2 (E )]1/2

BE—+ b SD b SD h

Bc& E& 2a 2 ' 2aS aS

D, = —8pzc&, Dz =4
i pz i

(d + m&
—p2) .

The Dalitz region of the (E2, c& ) distribution is

—1(c~ c~ (E2),

cfm(E2) + 1

(5.3)

(5.4)

(5.5)

8, is the angle between the outgoing electron and pro-
ton directions in the decaying neutron rest frame. We
use the c& =cos8, abbreviation. The (Ez, c&) distribu-
tion, up to order o., is

~Fc (Ez,cf ) Woc(E2 cf )[ 1+0.0lr, (x)

(see Sec. IV of Ref. [39]).
The r, (x, c&) part of the model-independent order-a

correction is tabulated in Table VI. The hard brems-
strahlung photons shift the distribution here toward
lower cf values. We can easily understand this trend by
writing cf as

+0.01r, (x,c&)], (5 1)

Woc(E2, cg)= '

if E2 (E2~,

if E2)E2

(5.2)

c3Ef+
Woc(E2, E~+ )

Bcf

BEf*
g ~oc«z Ey )
+ Bcf

Q =IX2+pyl=lX |+I I

(5.6)

(p, and k are the three-momenta of the antineutrino and
the bremsstrahlung photon, respectively). In the pres-
ence of hard bremsstrahlung photons, Q becomes smaller
than the zeroth-order Qo=m; E2 E& value, implying- —
a decrease of c~. The r,z(x, c~) relative correction has a
negative logarithmic singularity at the E2 & E2&,
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TABLE VI. Radiative correction to the (E2,cos8„)distribution (cr = —1+[cf {Ez+1) ]z; see Eq. (5.5) ).

0.99
0.96
0.93
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.05
0.01

—0.04
—0.04
—0.04
—0.04
—0.03
—0.03
—0.02
—0.01
—0.00

0.01
0.02
0.03
0.04
0.04
0.1

—0.14
—0.14
—0.14
—0.14
—0.13
—0.11
—0.10
—0.07
—0.04
—0.01

0.02
0.06
0.08
0.09
0.2

—0.24
—0.24
—0.24
—0.24
—0.23
—0.21
—0.19
—0.15
—0.10
—0.04

0.02
0.08
0.10
0.12
0.25

—0.64
—0.65
—0.66
—0.65
—0.65
—0.64
—0.63
—0.54
—0.28
—0.12
—0.00

0.09
0.13
0.15
0.3

—0.46
—0.27
—0.20
—0.15
—0.06
—0.00

0.04
0.08
0.11
0.14
0.16
0.18
0.19
0.20
0.35

—0.47
—0.26
—0.17
—0.11
—0.01

0.05
0.10
0.13
0.16
0.19
0.21
0.23
0.23
0.24
0.4

—0.50
—0.25
—0.16
—0.09

0.02
0.09
0.14
0.18
0.21
0.23
0.25
0.26
0.27
0.27
0.45

—0.55
—0.26
—0.14
—0.07

0.07
0.15
0.20
0.24
0.27
0.30
0.31
0.33
0.33
0.34
0.55

—0.60
—0.27
—0.14
—0.05

0.10
0.19
0.25
0.29
0.32
0.34
0.36
0.37
0.38
0.38
0.65

—0.64
—0.28
—0.13
—0.04

0.13
0.22
0.28
0.32
0.35
0.37
0.39
0.40
0.41
0.41
0.75

—0.69
—0.29
—0.13
—0.03

0.15
0.24
0.30
0.34
0.37
0.39
0.41
0.42
0.43
0.43
0.85

cf cf (E2 ) boundary [39] (the zeroth-order distribution
is also singular at this boundary).

The A, form-factor ratio may be determined by measur-
ing the shapes of the cf distribution for Axed electron en-
ergies. The sensitivity of these shapes to A, is maximal in
the 0.2&x &0.5 interval; the determination of A, with a
0.001 error allows a -0.01—0.02% relative error in the
distribution measurement.

Taking into account the r, (x,cf ) radiative correction
in the statistical fit of the theoretical and measured distri-
butions near x -0.4 decreases the iA, i result by -0.01.

Another method for the determination of A, is the mea-
surement of the energy spectrum of electrons emitted into
a given range of angles referred to the proton direction
(see Sec. 3 of Ref. [37]). The backward electron spectrum
is defined as

Cf ~E2 f i

oca(E2i8f ) f ~cf Woca(E2~cf )

where

cf~~ ( xEp82f ) mln[cos8f ycf~ (E2 )]

Our usual factorization gives

woca(E2, 8f ) = w'oc(E2; 8f )[ 1+0 Olr, .(x)

+0.01r, (x;8f )],
Cf (E2, Of )

w pc(E2;8f ) —J dcf Wpc(Eg&cf ) .

(5.9)

Table VII contains the r, (x;8f ) relative corrections for a
few 8f values. We mention that, for 8f =0, Eq. (5.9) be-
comes identical with Eq. (2.1) [woc (Ez', 0)
=wpc (E2),r, (x;0)=0].

In order to determine A, with a 0.001 error, the
(Ez,'8f ) spectrum has to be measured with a -0.01%

relative error.
The measurement of the W'~(E2, cf ) or w (E2', 8f ) dis-

tributions makes possible the determination of A, in unpo-
larized neutron decay even if the proton energy measure-
ment is impracticable.

Finally, we mention that we have calculated the radia-
tive corrections presented in Tables II and IV —VII by
several diff'erent methods (one of them is described in the
Appendix). The precise agreement of the numerical re-
sults of the di6'erent methods (in addition to the tests
mentioned in Sec. IV of Ref. [20]) increases substantially
the reliability of our calculations.

TABLE VII. Radiative correction to backward electron spectra.

r, (x;Of )

170
165'
160'
155'
150'
140'

0.04
0.04
0.04
0.04
0.04
0.04
0.1

0.09
0.09
0.09
0.09
0.08
0.08
0.2

0.16
0.16
0.15
0.15
0.14
0.12
0.3

0.20
0.19
0.19
0.18
0.17
0.15
0.35

0.24
0.23
0.23
0.22
0.20
0.16
0.4

0.27
0.27
0.26
0.24
0.22
0.00
0.45

0.30
0.30
0.28
0.25
0.18
0.00
0.5

0.35
0.33
0.25
0.00
0.00
0.00
0.6

0.36
0.31
0.00
0.00
0.00
0.00
0.65

0.37
0.00
0.00
0.00
0.00
0.00
0.7
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APPENDIX

H2 = H] +2[m 2Q]+ A /K 2—E2/K]

—2(N]2 —N]] )(4'o —4'])

2m 2N]k (f2 rt ] /m 2 ) +2N]kg]E2 /K 2QO /K

=rvs(x, y, co)+rh„d(x, y, co) . (A 1)

Here the first term represents the contribution of virtual
and soft bremsstrahlung photons (the maximum energy
of the soft photons is ro). It can be written as

n 1 —A,
re(x, y, r«})=100 g (P,co)+2 (1 P)Nc-

2& 1+3A2

We show here a simple method of calculation for the
rD (x,y) =r, (x ) + r (x,y) model-independent radiative
correction (see Ref. [34]). The following decomposition
will be introduced:

rD(x, y) =r, (x)+ r (x,y)
2~ "0 (p2k)

dpk

2' "o (p2k)2

AD= m 26+
K

( g 2 I12)1/2

( g 2 Il2)3/2

(A9)

(A 10)

(A 1 1)

+2—(1+P —2N)+4 ——1 ln
N N 2co

771 2

m;

Ip I(E E )
f f

(m,. E2 ) +p2+—mfE 0=
2( m; E)—Ip21

g (P, co ) = 3 ln + L—4 2P 3

m2

(A2)

(p2k) = /1 Bc—osgk,

3 =E2K —
I p2 I K

i~
cos2),

Il = Ip2IK~»ng,

p2
—pf+ 0'
2lp21 Q

Qo
—Q' Qo

2Q Q

II

(A12)

Whard( 2)Ef «Q 1 ) QO) ~)
rh„d(x, y, co) =100

0 2) f
Q] =

I Ip21
—

Ipf I I Qo m' E2 Ef .

Wo(E2, Ef ) can be found in Eq. (3.2) and

Whard (E2 ) Ef t Q g ) Q}i ) r]})

(A3)

(A4)

[see Eq. (2.7) for the definition of N and L] The sma.ll A,-

dependent term of re(x, y, co) was neglected in Ref. [34].
The second term in (Al) is the contribution of the hard

bremsstrahlung photons with co minimum energy:

(see Ref. [20], Appendix B),

N]2 m (Ef Ef )

=—'(Q —Q )
(A13)

~ « Qo r]}—(Qo Q] )/2 (A14)

[see Eq. (3.3) for Ef ].
The co parameter determines the separation of the soft

and hard bremsstrahlung photons. We require

f dQ f dK S(Q,K),

K,„=( Qo+ Q) /2,

(Qo —Q)/»f Q &Qo —2~
Kmin rd jf Q&Q

(A5)

(A6)

so as to satisfy the validity of the soft photon approxima-
tion in the derivation of r],z(x,y, co). At the
Ef Ef (E2 ) and E2 & E2h, Ef =Ef ]a(E2 ) boundaries
QO=Q„and in the E2=E2, Ef =Ef point QO=O.
This means that ~ could not be chosen as a constant over
the whole Dalitz region.

In the mf &Ef &Ef;„(E2), m2 &E2 &E2h
(Qo & Q2 = Ip21+ Ipf I ) points, the

rd(E2)Ef ) —W}„,d(E2)Ef ) Q] ) Q2, 0) (A15)

S(Q,K)= —(1+3k, )H] —(1 A)H2, —
,

H, = 2E, (QO
—K)$0+2m2'K (Qo —K)($2 —]t ]/m'2)

—4E2(QO K)P]+2(QO K)/K—, —

(A7)

(A8)

function determines the distribution of the decay events.
As mentioned in Appendix B of Ref. [20], the integrals

over the K-photon energy can also be calculated analyti-
cally.
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