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Radiative and hadronic transitions of the charmonium 'P
1 state
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Hadronic transitions of the charmonium P, (=h, ) state into J/f are considered in the QCD mul-

tipole expansion. Using the decay rate of y,J~J/1(+y and a quantum-mechanical sum rule, we esti-
mate I (h, (1P)~J/Prr ) ) 1.6 keV, which is close to the recent measurement by E760,
I (h, (1P)~J/Per ) —1 keV. Other transitions of h, are also considered in the same context.

PACS number(s): 14.40.Gx, 11.50.Li, 13.25.+m, 13.40.Hq

The spin-singlet P-wave quarkonium state
[n 'P, (QQ)=—h&(nP)] is an interesting object for both
theoretical [1,2] and experimental investigations.
Theoretically, one can test the ideas of potential models
for heavy quarkonia, QED multipole expansion for radia-
tive decays, and QCD multipole expansion for hadronic
decays into lower level quarkonia states, as well as per-
turbative QCD for QQ. Especially, it can be a useful
source to reach n 'So (e.g., gb) through the radiative de-
cay, h(1P)~n 'So+y. However, it is difficult to pro-
duce the 'P& state in e+e annihilation, since the parity
of 'P, is even. Further, the 'P, state cannot be produced
from the radiative decay of a higher S& state because of
its negative charge-conjugation parity. Therefore, it
would be best to look for the P, state in pp annihilation.
Recently, the charmonium 'P, state h, (1P) has been
found in the h, (1P)~J/fn channel by E760 Collabora-
tion at Fermilab [3]:

I (h, (1P )~J/ger~)
&0. 18 (90% C.L. ) .

I (h, (1P) J/fm).
Also, the data suggest that

=A(n S,~l 'P, +sr )

=(m Im aE'( 0) H'( 0)I0}lspEg &; (4)

where e&
' and e',. ' are spin vectors of S, and 'P, states,

respectively. The gluonic matrix element can be reduced
to G„' G'", and then evaluated using the low-energy
theorem for a pion [5]:

(m era, E( 0) H(k0)I0}

tion on the Green's function Gs of color-octet QQ states,
we consider another class of hadronic transitions between
quarkonia: n S, ~m S, +~tr and n S,m S, +q (or
m. ). Using a quantum-mechanical sum rule, one can then
derive a lower bound on 68, and predict the absolute
branching ratio of h, (1P)~J/gm to be greater than
—1.6 keV. Similar decays in the bottomonium system,
hb~Y(1S)tr and Y(3S)~hbm, will be discussed else-
where [4].

In the QCD multipole expansion, spin-ffip transitions,
1 'P, ~1 S, +~ and n S& ~1'P&+m occur through
the El —Ml transition [1,2]:

Jkt ( 1 'P
i ~ 1 S i + tr )

I „,(h, (1P ) ) -700 keV,

I (h, (1P)~J/Prr ) —1 keV .

(2)

(3)

Two theretical approaches discussed in the literature
[1,2] lead to rather diff'erent results on Eqs. (3) and (1) as
well as on the counterparts in the bottomonium system.
Since the E760 result (1) agrees only with the prediction
of Voloshin [2], we consider absolute decay rates of the
above decays in the framework of Ref. [2]. We try to
minimize dependence of our results on specific models on
the quarkonium potential. Therefore, a specific form of
the potential will not be needed in this work except for
the size of the Y(1S) state.

First, the matrix element for P&~ S&+& in the
QCD multipole expansion is discussed. Then, they are
related to the matrix element for the electric dipole radia-
tive transitions, Pj ~ S&+y. To get informa-

4~2 mg
1 '" v'2 m~+m„

E.

f m„. (6)

Using f =132 MeV and (m& —m„)/(mz+m„) =0.3, we
get A o

= 1.7 X 10 GeV . The matrix element between
quarkonia I&I is defined as

IsJ = — (nSIGs s(E)r+rGs t, (E)I1P},2&3
9m'

(7)

where Gs &(E) and Gs t, (E) are the Green's functions for
the color-octet QQ intermediate states in the S and P
waves. Finally, the decay rate from Eq. (4) is

I (1 'P, 1 S, +m )=I (n S, 1 'P, +sr )
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To get the absolute decay rate for hadronic transitions
between quarkonia, it is imperative to know more about
the "Isp" defined in Eq. (7). Because of our ignorance of
the confinement in QCD, it lies beyond our ability to cal-
culate Isp from the first principle in QCD. We have to
make reasonable approximations. There are two sources
of uncertainties in the matrix element Iz~.

The first is the Green's function for the color-octet QQ
intermediate states, Gs(E):

Gs(E)= g fa& &af
(9)

k k

Here, k runs over color octet QQ states only, E and Ei,
are energies of the initial and the intermediate states.
This quantity is unknown due to our ignorance of quark
confinement in QCD, even in the potential model descrip-
tion of quarkonia. It can be assumed to be a constant
with dimension of inverse mass, since this assumption
leads to nice agreements of theretical predictions and the
measured vnr spectra in P'~ J/Per~ and Y(2S)
-+Y( IS)~sr:

Gs, s(E)=GS,p(E)=GS .

The second uncertainty comes from the matrix element
(nSfrflP). In previous estimations, this quantity was
replaced by the radius of the initial or the final quarkoni-
um. However, such estimates can be improved, since this
matrix element is also relevant to electric dipole radiative
transitions between quarkonia. Electric dipole radiative
transitions are described by

—(a„&qf, E„H, fo) )

1/2

9 2 f.m'„«g '[~;,~~; ~,'(p)~ ]Iss (15)

where e and e' are the spin vectors of the initial and final
quarkonia, and

Iss= —&mSlr;G(E)r; InS & .=2

Under the same assumptions on G (E), Iss is simplified to

Iss= —,'Gs(mSfr fnS) . (17)

Therefore, once (2S fr f
1S ) is known, the absolute decay

rates for these decays can be readily obtained. However,
potential model calculation of this matrix element is not
available on the contrary to dipole matrix elements
(f f

r
f
i ) and the mean square radius of a quarkonium,

&i fr'fi &.

Instead, we use a quantum-mechanical sum rule to get
an upper bound on this matrix element. It turns out that
the following sum rule is useful to study this matrix ele-
ment:

m(2 g(E„E;)f(ifO(—r)fn ) f =(iffVO(r) f fi) . (18)

This sum rule can be derived by considering the identities

sion of the amplitude only for the latter decay, referring
to original papers [1,2,5] for more detailed discussion:

Af(n S, ~m Si+ii)

1.(E1)= ~e,'a,'S,/(2J/+ I ) f ( ls fr f2P ) f',
27

where J& is the spin of the final quarkonium and k is the
energy of the emitted photon. S;&=3 for 'P, —+q, +y
and S/= 1 for other transitions. Comparing Eq. (11) and
the measured decay rate of y,z~J/1it+ y, we get

(i [[H,O(r)], O (r)]fi) =2+ (E; E„)f(ifO(r—) fi) f

(19)

f& ISfrflP&~f=1. 57 GeU '=0.3 fm,

and thus,

(12) [[H,O(r)], O (r)]=— fVO(r) f

2

mQ
(20)

I (h, (1P)~i),y)=400 keV . (13)

Since
f ( 1Sfr f

1P ) &f is determined from the experimental
data on I (y,z —+J/g+y), our prediction (13) is indepen-
dent of specific potentials. Taking m, =1.65 GeV and
G(E)=1 GeV ' in Eq. (7), we get fIsJ, =0.73 GeV
and

f(1Sf 2f S)f2(
mQ Ens E1s

(21)

with H=p /m&+ V(r). This reproduces the optical sum
rule for O(r) =r.

We choose O(r)=r and fi) = flS), and get the fol-
lowing bound on

f
(1Sfr fnS) f:

I (h, (1P)~J/g~ )

1.65

m, (GeV)

2

f G8(GeV ')
f

keV . (14)

This is smaller than the measured value by an order of
magnitude if 68 —1 GeV

To get a better idea on the numerical value of 6&, we
consider another class of decays: n S, ~m S, +~~ and
n Si~« Si+il (or vr ). These decays occur through
E 1 El and E 1-M2 tran-sitions in the QCD multipole ex-
pansions [1,5]. For simplicity, we give an explicit expres-

A.n upper bound on
f
(1Sfr fnS ) f

can be obtained from
Eq. (21), once f(1S r flS)

f
is reliably known. We use

the value of f(1Sfr flS)
f

obtained in Ref. [7]. This is
the only place where our results depend on a specific po-
tential. However, this quantity is almost universal in
various potential models, and can be regarded reliable.

The transition matrix element
f ( 1S

f
r

f
nS ) f

can be
smaller than the typical size of the initial quarkonium
f ( nS

f
r

f
nS ) f by an order of magnitude. For example,

the above sum rule gives a bound

(22)
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for mb =4.8 GeV and ~(1S~r ~1S)&~=1.1 GeV [7].
This is much smaller than

I& 2S lr 12S )~ I

= (2.6 GeV ') =45.7 GeV

we predict

I (h, ( 1P )~J/Qmm )

I (h, (1P)~J/g~ )
(25)

~Gs~ &18 GeV (23)

If one assumes that 68 is independent of the hidden
Aavor of quarkonia, we get the following lower bound on
h, (1P )~J /1t m from Eq. (14):

I'(h, (1P)~J/grr ) & 1.6 keV . (24)

This is consistent with E760 data (3), and moreover, very
close to it. Of course, this would be uncertain by a factor
of -2, depending on the choice of m, . [If g'~J/fq is
considered instead, then the lower bound on ~Gs~ be-
comes looser,

~ Gs ~
& 10 GeV and I (h, (1P )~J/ttjm ) & 0.9 keV. If the E760 data (2) become small-

er, Gs would depend on the hidden flavor of quarkonia. ]
Another hadronic decay mode, 1 'P, ~1 S, ++~,

does not receive any contribution from t'he trace of the
energy-momentum tensor in QCD, and is not enhanced
over 1'P, ~l S, +7r [2]. Using the result of Ref. [2],

which has been frequently used along with G8 —1 GeV
in order to estimate the absolute decay rate for
n S& +m S&m~ and n S& +m S&g.3 3 3 3

By considering Y(2S)~Y(1S)n~ with the correct
upper bound used for ~(1S~r ~2S)~~, one obtains a
lower bound on G8.

Here, a new parameter k=—~a,pG measures the glounic
contribution to the energy-momentum of a pion [8]. One
can extract A, from the m~ spectrum in
g' ~J/gm. ~: A, =2.2. Then, the ratio in Eq. (25) is
0.16%, which is consistent with the E760 data (3). It is
actually very close to the current upper limit for A, -2.
Therefore, h, ( 1P )—+J /grrm may be observed in the near
future.

In conclusion, hadronic decays of h, are considered in
the framework of QCD multipole expansion. Assuming
the Green's function for the color-octet states is indepen-
dent of E, and using a quantum-mechanical sum rule for
the matrix elements of r, we could predict
I (h, (1P)~J/Pm ) & 1.6 keV, I (h, (1P)~J/@rrm)
=0.16I (h, ( lP) +J/grr —), and I (h, (1P)~YI,y ) =400
keV. The first two results are consistent with the recent
data from E760. Clearly, one has to await improved
numbers of these decays to test our predictions.
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