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Weak leptonic decay of light and heavy pseudoscalar mesons in an independent quark model
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Weak leptonic decays of light and heavy pseudoscalar mesons are studied in a field-theoretic frame-
work based on the independent quark model with a scalar-vector harmonic potential. Defining the
quark-antiquark momentum distribution amplitude obtainable from the bound quark eigenmodes of the
model with the assumption of a strong correlation between quark-antiquark momenta inside the decay-
ing meson in its rest frame, we derive the partial decay width with correct kinematical factors from
which we extract an expression for the pseudoscalar decay constants fM. Using the model parameters
determined from earlier studies in the light-Aavor sector and heavy-quark masses m, and mb from the
hyperfine splitting of (D,D) and (B,B), we calculate the pseudoscalar decay constants. We find that
while (f,fx)=—(138,157 MeV); (fo,fD ) =(161,205 MeV), (fs,fs )—:(122, 154 MeV), and fs =221

MeV. We also obtain the partial decay widths and branching ratios for some kinematically allowed
weak leptonic decay processes.

PACS number(s): 13.20. —v, 12.40.Qq

I. INTRODUCTION

The discovery of heavy-flavored mesons in the charm
and bottom sector has revived overwhelming interest in
the study of leptonic weak decays of charged pseudosca-
lar mesons. These decay rates are usually expressed in
terms of a hadronic quantity called the weak decay con-
stant fM, which is proportional to the matrix element of
the quark-antiquark axial-vector current between the
vacuum and the pseudoscalar meson (M) state. The de-
cay constants fM have considerable theoretical and phe-
nomenological importance. Governing the strength of
leptonic and nonleptonic decays of pseudoscalar mesons
as well as the phenomena such as 8 Bmixing [1,2],-
weak decay constants can provide information on the
mass of the top quark and on the Cabibbo-Kobayashi-
Maskawa (CKM) quark mixing matrix elements. A
theoretical estimation of the weak decay constants for the
pseudoscalar meson decays of the type M ~i%I requires a
rigorous field-theoretic formulation of quark-antiquark
annihilation inside the meson bound state to a virtual 8'
boson which subsequently disintegrates to IvI. But the
bound quark-antiquark annihilation within the pseudo-
scalar meson, like many other low-energy phenomena,
cannot be studied in a straightforward manner by the
first-principles application of QCD, the underlying theory
of strong interaction between quarks and gluons at the
structural level of hadrons. Therefore, various phenome-
nological models [3—7] incorporating the basic features
of QCD have been tried to estimate the decay rates and
decay constants of these leptonic weak decays. The pre-
dictions for the variation of the decay constants with in-
creasing quark masses, as one goes from lighter- to
heavier-flavor sectors, are not quite consistent. For ex-
ample, while many nonrelativistic quark-model calcula-
tions [3,4] suggest that fz & fD &ftt, some of the models
based on QCD sum rules [5—7] and lattice calculations
[8—10] predict more or less a constant fM between K and

B mesons. Capstick and Godfrey [11] use the so-called
"mock-meson" approach to calculate the hadronic ma-
trix elements for obtaining the relativized quark-model
expression for fM. They find f~ & fD & fthm &

C s

fD & f~ & ft3 &f, whereas their value of the ratio
s

(fxlf )=1.75, which is much higher than the experi-
mental value of 1.22. The bag model, with its reasonable
success in the study of wide-ranging hadronic phenome-
na, also provides a relativistic framework to estimate the
weak decay constants of light as well as heavy pseudosca-
lar mesons. Donoghue and Johnson [12] had applied the
model to light mesons, while Golowich [13] and Claud-
son [14] extended it to the heavy-meson sector. The pre-
dictions of their calculations are more or less reasonable
except in the light-meson sector. Thus we find that while
there are widely different theoretical predictions for the
weak decay constants, experiments in this area have so
far made very limited progress. Although in the light-
Aavor sector the values of f and fthm are accurately
determined, in the heavy-flavor sector only an upper limit
for fD has been reported [15].

Our motivation in the present work is to investigate
the weak leptonic decay of charged pseudoscalar mesons
(M) using an alternative scheme of a potential model of
relativistic independent quarks. Such a scheme has been
very successful in estimating the decay widths and decay
constants in the leptonic decay of light neutral vector
mesons [16]. It also explains quite satisfactorily the Ml
transitions among the low-lying vector and pseudoscalar
mesons [17]. The potential model adopted here has been
used earlier in the study of several low-energy phenome-
na in the baryonic sector, such as octet baryon masses
[18],magnetic moments [19],and weak electric form fac-
tors [20], as well as nucleon electromagnetic form factors
and charge radii [21]. Application of this model in the
ordinary light-meson sector to estimate the (qq)-pion
mass consistently with that of PCAC (partial conserva-
tion of axial-vector current) pion [22] and (p rr) as well as-
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(p-co) mass splittings [23] has achieved remarkable suc-
cess. In view of the success of the model in such wide-
ranging phenomena in baryon and meson sectors, we
would like to extend here its application to the study of
weak leptonic decay of light as well as heavy charged
pseudoscalar mesons. Though our primary concern lies
with a reliable estimation of the decay constants fM, we
would like to realize first the complete expression for the
partial decay width I (M~lvr ) with correct kinematical
factors, from which one can extract the decay constants
as well as the branching ratios.

The assumptions involved in our calculations are main-
ly as follows. We consider that the quark-antiquark pair
inside the pseudoscalar meson annihilates to a single mas-
sive virtual W-boson which subsequently gives rise to a
lepton pair (lv& ). Although in principle the problem can
be formulated for any arbitrary meson momentum P, for
the sake of simplicity alone the decay is assumed to take
place in the meson rest frame. Thus we are led to believe
that a strong correlation exists between the quark-
antiquark momenta so as to have their total momenta
identically zero in the meson rest frame. With such a
consideration, the ground state of the decaying pseudo-
scalar meson can be suitably represented with an ap-
propriate momentum distribution of the bound quark-
antiquark pair in the corresponding SU(6)-spin-flavor
configuration. Then the transition probability amplitude
for the weak leptonic decay, calculated from an appropri-
ate Feynman diagram, can be expressed effectively as the
free quark-antiquark pair annihilation amplitude in-
tegrated over the model momentum distribution. There
is, of course, an obvious difficulty relating to the energy
conservation at the hadron-boson vertex, since the sum
total of the kinetic energy of the annihilating quark-
antiquark pair in the process is not equal to the rest mass
energy of the decaying meson. In the absence of a fully
rigorous field-theoretic formulation of the bound quark-
antiquark annihilation inside the meson, such difficulty
arises as a common feature with all the phenomenological
models based on leading-order calculations. We there-
fore content ourselves with accepting the usual assump-
tion that the differential amount of energy is somehow
made available to the boson, when quark-antiquark an-
nihilation occurs with the disappearance of a meson
bound state. The outline of the rest of this paper is as fol-
lows. In Sec. II, we describe brieAy the framework of our
model in arriving at an appropriate momentum probabili-
ty amplitude for the quark-antiquark pair in the ground
state of a pseudoscalar meson. We obtain, in Sec. III, the
transition matrix element and the partial decay width for
the weak leptonic decays of light and heavy charged
pseudo-scalar mesons, from which we extract expressions
for the corresponding decay constants. In Sec. IV, we
draw together our results and conclusions.

X (x)=f (x) —y"8„—m —U(r) g (x) . (2)

Then the ensuing Dirac equation with E'=Eq —Vo/2,
mq=m +Vo/2, Aq=(Eq+mq), and roq=(aA, )

~ ad-
mits static solutions of positive and negative energy in
zeroth order. Corresponding to the ground-state mesons,
these solutions can be obtained in the form

(y( —)(r )— 4'

igq(r)lr

o rf (r)lr
o' rf (r)lr

gig (r)lr—

(3)

Here the spinors gz and g& stand for

pair with their respective spin and momenta. But the
bound quark and antiquark inside the meson are in a
definite energy state having no definite momenta. Never-
theless, one can consider the momentum probability am-
plitude for the constituent quark and antiquark inside the
meson just before they annihilate to a lepton pair. This
can be done by a suitable momentum space projection of
the corresponding bound quark orbitals derivable in a
model, for which one may have to rely on certain simpli-
fying assumptions. The model adopted for our calcula-
tion here merits a brief discussion, as follows.

According to our model, a meson in general is pictured
as a color-singlet assembly of a quark and an antiquark
independently confined by an average Aavor-independent
potential of the form [16—22]

U(r)= —,'(1+y )(ar + Vo) .

This form is taken as a phenomenological representation
for the confining interaction expected to be generated by
the nonperturbative multigluon mechanism. The
confining interaction is believed to be the dominant one
in the mesonic dimensions involved in the present calcu-
lation. The quark-gluon interactions at short distance
originating from one-gluon exchange and the quark-pion
interaction required in the nonstrange light-Aavor sector
to preserve chiral symmetry are presumed here to be re-
sidual interactions compared to the dominant confining
interaction. Although these residual interactions treated
perturbatively in the model are crucial in generating
meson mass splittings [22,23], their roles in the mesonic
decay processes are considered less significant. There-
fore, to a first approximation, it is believed that the
zeroth-order quark dynamics inside the meson core gen-
erated by the confining part of the interaction can pro-
vide an adequate description of the meson decay process-
es. In such a picture, the independent quark Lagrangian
density in zeroth order is given as

II. THE BASIC FRAMEWORK

The study of the weak leptonic decay of pseudoscalar
mesons using a field-theoretic calculation requires an ap-
propriate representation of the initial state of the decay-
ing meson in terms of its constituent quark-antiquark

1 0
0 & g$ ]

and g~ = l

X$ 0
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respectively. The reduced radial parts in the upper and
lower component solutions corresponding to the quark
flavor q are

g (r)=JV (r/ro )exp( r —/2ro ),
fq(r)= —(JVq/Aqro )(r/ro ) exp( —r /2ro ),

when the normalization factor JV is given by

JVq=SA, /[v mr() (3Eq+m')]

(4)

(5)

It may be possible now to obtain the momentum distri-
bution amplitudes for the bound quark and antiquark in
the meson ground state from their corresponding eigen-
modes derivable in the model. If G (p, A, , A, ') is the ampli-
tude for finding a bound quark of Aavor q in its eigen-
mode Aqua

'(r) in a state of definite momentum p and spin
projection A, ', it can be written as

@'+'(r)= g f G (P, A, , A, ')U (P, A, ')1 Gfp

(2~)' & +2E,
X exp(ip. r) .

Here E =[(p +m )]' and U (P, A, ') is the usual free
Dirac spinor which is normalized according to the rela-
tions

Uq(P ~1)Uq(P ~2) 2Ep5X A. Vq(P ~1)Vq(p ~2)

U (p, l, , )Uq(p, k2)=2mq5q q
= Vq(P, A, , )Vq(p, k2) .

The corresponding projection operators are

g Uq(P, A, )Uq(p, l.)=(P+m ),

g Vq(p, i, )Vq(p, k, )=(P mq) . —

Then Eq. (7) can be inverted to give

U (p, A, ')
G (P, A, , A, ')= f dr@qz'(r)exp( —ip r) .

+2E,
(10)

Now, using N'
& '(r) as provided in Eqs. (3)—(6), one can

find

G (P, A, , A, ')=G (p)5&z. ,

The quark binding energy of zeroth order in the meson
ground state is derivable from the bound-state condition

QA, /a (E' —m')=3 .

XGM(p„p2)b (p„i,i)

Xb (P, A, )~0), (13)

where bt (P„A,, ) and b (pz, kz) are, respectively, the
q) 1& 1

quark and antiquark creation operators. The factor &3
is due to the efFective color-singlet configuration of the
meson. gg (A, „A.2) stands for the appropriate SU(6)-

q)q2
spin-Aavor coeScients for the pseudoscalar meson M.
N(P ) represents the overall normalization, which after
imposing the meson state normalization

(M(P) ~M(P') ) =(2') 5' '(P —P')

can be obtained in an integral form as

(14)

N(P)=
3 f dp, GM(p„P —pi)l

1

(2m. )
(15)

Finally, G~(p„p2) in Eq. (13) provides the effective
momentum distribution amplitude for the quark and an-
tiquark inside the meson. In an independent-particle pic-
ture of the present model, G~(p„pz) can be expressed in
terms of individual momentum distribution amplitudes
Gq (p, ) and Gq (pz) of the quark q, and antiquark q2, re-

q&

spectively. In doing so, we resort to an ansatz that the
effective momentum distribution amplitude GM(p&, p2) is
simply the geometric mean of the individual quark and
antiquark momentum distribution amplitudes G (p, )

and Gq (p2) and is given by

@'qz '(r) to realize that, for like fiavors, G (p) =G*(p).
Since any scattering or decay process occurs physically

in definite momentum eigenstates of the participating
particles, the crux of the problem studied here lies in ex-
pressing the initial state of the decaying pseudoscalar
meson in a suitable manner so as to reAect an appropriate
momentum distribution of the constituent quark-
antiquark pair in its corresponding spin-flavor
configuration. In view of this, we represent the initial
state of the decaying pseudoscalar meson M=(q, qz)
with an arbitrary momentum P as

~M(P))= gg, , (A,„X,)
v'3

N(P)

x f d p id p25' '(pi+ pz
—p )

where, with a =1/2roq, GM(pi P2)=[Gq (Pi)Gq (P2)]'" . (16)

G (r)= Q(E +m )/E (E +E )exp( —p /4a ) .
20.'q A,

q

(12)

Thus Gq(p) essentially provides the momentum probabil-
ity amplitude for a quark q in its eigenmode @'z'(r) to
have a definite momentum p inside the meson. In a simi-
lar manner, one can obtain the momentum probability
amplitude G (p) for an antiquark in its eigenmode

This is a straightforward extension of the ansatz we have
followed for the leptonic decay of neutral vector mesons
[16] in accordance with the idea of Margolis and Mendel
[24]. Such a choice would in fact imply the existence of a
strong correlation between the quark-antiquark momenta
inside the meson so as to have their total momenta identi-
cally zero in the meson rest frame. Now the description
of the initial meson state in its rest frame would follow
directly from Eqs. (15) and (16), so that
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X f dp, [G (p, )G ( —p, )]'
M (J = 0 )

Xb (p„i,, )

Xb ( —p„A, )~0) . (17)

III. DECAY WIDTHS AND DECAY CONSTANTS

We consider here the weak leptonic decay of charged
pseudoscalar mesons such as m*, K, D*, D,—,B, and+

B, . Assuming that the main contribution to the weak
leptonic decay processes comes from the single virtual
boson annihilation of the bound quark-antiquark (q, qz)
pair inside the pseudoscalar meson M, we can illustrate it
by the corresponding Feynman diagram in Fig. 1 from
which the S-matrix element in the configuration space is

Thus the decaying pseudoscalar meson state represented
in the model by the expression in Eq. (17) with the quark
momentum distribution amplitude given in Eq. (12) can
enable one to determine the transition probability ampli-
tude for weak leptonic decay.

FIG. 1. One-boson contribution to the weak leptonic decay
of charged pseudoscalar mesons.

written effectively as

Sf = (l(k„5,)v((k2, 52) ( iG~—/V2)

X d4~ ~.-] x»» —»

X g V Qq+'(x)y„(1 —y )

qm qn

Xg'+'(x)~M(0)) .

Here G~ is the Fermi coupling constant and V are
&m qn

the CKM matrix elements. The quark and lepton field
expansions are taken as

g (x)= g f [b (p', A, ')U (p', A, ')exp( ip'x—)+b (p', A, ')Vq(p', A, ')exp(ip'x)],
q (2 )3/2 +2E

dk'
g&(x)= g 3&2 f [dI(k', 5')U&(k', 5')exp( —ik'x )+dr (k', 5') VI(k', 5')exp(ik'x)] .

(2m ) +2Ek,

(19)

(20)

Now, simplifying the leptonic and hadronic parts sepa-
rately by a vacuum insertion technique and using the ini-
tial meson state as per Eq. (17), one can obtain, with
0—= (1,0, 0,0) and (E~ +E~ )=M&,

Sf, = —i(2m. ) 5'4'(k, +k2 OM~ )At(k—„k 52„5~), (21)

where Af, (k, , k2, 5„52) is the transition matrix element
for the decay process and Mz is the pseudoscalar meson
mass. We must mention the difficulty as well as the as-
sumptions involved here in extracting the correct 6 func-
tion relating to the energy-momentum conservation. In a
zeroth-order description, such as the present one, the to-
tal energy available to the lepton pair produced comes
out to be the sum-total kinetic energies (E~ +E„)of the

1'Z

annihilating quark-antiquark pair, which is not equal to
the rest energy of the decaying pseudoscalar meson. This
difficulty is commonly encountered in all such leading-
order calculations. Here one usually assumes that the
differential amount of energy is somehow made available
to the intermediate boson, when quark-antiquark annihi-
lation occurs with the vanishing of the meson bound
state. With this consideration, (E +E ) in the argu-P) Pp

ment of the 5 function in Eq. (21) has been replaced by
the pseudoscalar meson mass Mz. If we write

and

h„= yg, , (X„X,)

X f dpt[Gq~(pt)G ( qpi)]

(22)

X V ( —p„k~)y„(1—y )Uq (p„k, ), (23)

then the transition matrix element in Eq. (21) can be writ-
ten as
Jkf(k„k2, 5„5~)

GFV l"(k„k~,5„5~)h„/V2%(0) . (24)
(2 )3 F q)q2 1& 2& 1& 2 P

In fact, the spacelike component of h„ in Eq. (23) van-
ishes due to angular part integration for the spin-singlet
configuration of the pseudoscalar mesons, since

f d&[V„(—p, l)y;(I —y')U„(p, 1)

—
Vq (

—p, t)y;(I —y')Uq, (p, L)]=0 (2&)

On the other hand, the nonvanishing timelike component

ho derives its contribution from the current combination

I"(k, , k2, 5„52)
= U„(k),5))y"(1 y') V, (k2, 5—,)/(4E„E„)'~'
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[Vq, ( —p, L)yo(1 —y')Uq, (p, T) —Vq, (
—p, T)yo(1 —y')Uq (p, t)]

—2i[(E i+mq )(Ez+mq ) —p ]/[(Ei+m )(E2+mq )]' (26)

where E;=(p +mq )' . Hence the transition matrix
1

element in Eq. (24) can effectively become

spins (5i, 52). Equation (28) can be simplified to be writ-
ten as

JN(k„k~, 5„52)

3 G~Vq q
1 (k„k~,5„52)ho/v'2%(0) .

(2qr )
(27)

where the leptonic part

(29)

Then the decay width can be calculated from the expres-
sion

I (M~lvi)=
2 f dk, dk~5' '(k, +k2 —OM~)(2'�)

X g ~JM. (k„k2,5„52)~, (28)

where gs & stands for the sum over the final-state lepton
1' 2

I

dk, dk2 5"'(k, —k, —OM, )
kl 12

XTr[(ki+mi)y (1 —y5)

X(kz —m )y (1—y )]

and the hadronic part

(30)

1 G p G p G p G p
1 /2

X [Vq ( —p, J, )yo(1 —y )Uq (p, T) —Vq ( —p, T)yo(1 —y )Uq (p, 1 )]

X [Uq (p', T)yo(1 —y')Vq, ( —p', 1)—Uq, (p', l)y (1—y')V, , ( —p', T)] (31)

After some standard algebra in evaluating the trace fol-
lowed by the integration in Eq. (30), one can easily find,
after taking m =0,

L, =2qrm 2( 1 —m 2/M2 )2

X(0)=

when

8(xq Ex' A,
q

A,
q&z

(36)

Using Eq. (12) for the quark and/or antiquark momen-
tum distribution amplitudes and Eq. (26), it is also
straightforward to express Eq. (31) as

JM= f dp p X(p)exp[ —p (1/a +1/a )/4] (37)

2A' JV

cxq cxq Aq Xq
IM

X(p) = [(E,+mq )(Ez+ m )/(E, E2 )]'~

X(Ei+E )(E2+E ) .

when

IM= f dp p A(p)exp[ —p (1/a +1/a )/8]

and

[(E,+E )(E2+E )]'~

[EiE2(E, +m )(E2+m )]

(34)

Now, substituting Eqs. (32), (33), and (36) into Eq. (29),
one can arrive at the final expression of the weak leptonic
decay width of a pseudoscalar meson M=(q, qz) in its
usual form as

G2
&(M Ivi)= ~V ~

M m (1—m~/M2)~f2, (39)8~

where the decay constant fM finds expression in the form

X [(E,+m )(E2+m ) —p ] . fM
=3IM /(2' Mp JM ) . (40)

The overall normalization factor %(0) for the initial
meson state considered in the center-of-mass frame can
be obtained from Eq. (15) in the form

Here the integrals IM and J~ as defined through Eq.
(34)—(38) can be calculated numerically by the standard
Gaussian quadrature technique. Although we extract
here the expression for the weak decay constant fM
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through the calculation of the corresponding decay
width, it is always possible to obtain it directly from the
hadronic part of the transition matrix element. There-
fore, we can use Eq. (40) as a general expression for the
weak constant even for a neutral heavy pseudoscalar
meson such as B, .

IV. RESULTS AND DISCUSSION

In this section we evaluate the decay constants f~, and
the partial decay widths I (M~lvi) for the leptonic
weak decays of light- as well as heavy-flavored pseudosca-
lar mesons such as m, K, D, D„B,and B„using expres-
sions in Eqs. (39) and (40) derived in Sec. III. The calcu-
lation primarily involves the potential parameters of the
model (a, Vo) and the quark masses (m„=mz, m„m„
and mb). The potential parameters (a, Vo) are taken
from the earlier applications of the model to baryon and
meson sectors [16—22]. They are

( a, Vo ) = (0.017 166 GeV, —0. 1375 GeV ) . (41)

The light-quark masses m„=m& including the strange
quark mass m, along with the corresponding quark bind-
ing energies E„=Ez and E, also follow from our earlier
work in baryon sector [18]. Such parameters have also
been tested in the (p —m) mass splitting [22] yielding
M =785.3 MeV and M =140 MeV and in the leptonic
decay [16] of neutral vector mesons (p, co, P) providing
their electromagnetic decay constants f~ as 0.22, 0.07,
and 0.09, respectively, in very good agreement with the
experiment. In order to get a reasonable set of mass pa-
rameters in the heavier-flavor sector, we generate the
ground-state hyperfine splitting of (D*,D) and (B*,B)
by appropriately taking into account the center-of-mass
correction and subsequently the one gluon exchange
correction as per Ref. [22]. The ground-state mass values
obtained in this manner for (D*,D), (D,',D, ), (B',B),
(B,',B, ), and (B,",B, ) are provided in Table I in compar-
ision with the available experimental data. The quark
masses m and their corresponding binding energies E,
which in fact play the role of the effective constituent
quark masses in a relativistic model, are provided in
Table II. Thus the quark-mass parameters used here can
be recorded as,

(m„=mz, m, )=(78.75 MeV, 315.75 MeV),

(m„mb)—:(1.493 GeV, 4.777 GeV) .
(42)

Although the pseudo scalar meson masses obtained
here show a reasonable degree of agreement with the ex-
perimental values, the theoretical uncertainty due to the
perturbative calculation used here cannot be overlooked.
Therefore, in our present calculation of the decay con-
stants and the partial decay widths, we would prefer to
use the experimental meson masses. However, in the case
of B„where the experimental data are not available, we
would use the model mass as per Table I. The integrals
I~ and J~ in Eqs. (34)—(38) evaluated numerically with
the help of the standard gaussian quadrature technique
are provided in Table II. Then it becomes straightfor-

TABLE I. Hyperfine splitting of the ground-state heavy-
Aavored mesons with a, =0.37.

Meson Spin-averaged mass
M (GeV)

Expt.Theory

Meson mass
M (GeV)

Theory Expt.

D+0

D+4
S

D,+

go+
S

gO

B,—

1.9751

5.3140

2.0658

5.3868

6.2969

1.9749

5.3131

2.0752

5.4138

2.0159

1.8526

5.3306

5.2641

2.1074

1.9503

5.4032

5.3378

6.3078

6.2642

2.0101

1.8694

5.3246

5.2786

2.1103

1.9690

5.4256

5.3786

ward to calculate the weak decay constants f~ from the
expression in Eq. (40). Table III provides the results of
our calculations in comparison with the available experi-
mental data [15] as well as the predictions of other mod-
els. Capstick and Godfrey [11]have estimated the decay
constants using a relativized quark model and have com-
pared their results with those of several others referred to
therein. A comparison of results of almost all model cal-
culations available in the literature except a few such as
[6,25,26] indicate that f~ is smaller than both f and fr .
The present calculation not only con6rms this, but at the
same time shows a remarkable agreement of f„and f~
with the corresponding experimental values. This agree-
ment in the light-flavor sector lends credence to our mod-
el predictions in the heavier-flavor sector, where experi-
mental data are still not available. It may be noted that
our prediction of fn is well within the experimental
upper limit so far available [,15].

It is probably more reliable to evaluate the ratios of the
decay constants without allowing any scope for possible
model constraints to creep in. The recent evaluation of
the decay constants by Rosner [27], in which the quark
mass limit is combined with a factorization hypothesis,
yields sufficiently high values for the decay constants.
Nevertheless, the ratios of the decay constants evaluated
in this calculation agree well with that of lattice calcula-
tions [8,28]. More recently, O'Donnell [29] in a frame-
work of a linear potential model has shown the ratios of
the decay constants in agreement with those of lattice
calculations. In Table IV, we provide a comparative pic-
ture of the ratios of the decay constants evaluated in the
present model with several others. It can be observed
that our predictions are quite consistent with those of lat-
tice as well as other model calculations. This model, like
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TABLE II. The quark mass mq and the corresponding binding energy Eq of pseudoscalar mesons to-
gether with IM and JM.

Meson

m+

re*
D+
D,+
B-
BO

mq
1

(GeV)

0.078 75
0.078 75
0.078 75
1.492 76
0.078 75
0.315 75
1.492 76

mq
2

(GeV)

0.078 75
0.315 75
1.492 76
0.315 75
4.776 59
4.776 59
4.776 59

Eqq&

(Gev)

0.471 25
0.471 25
0.471 25
1.579 51
0.471 25
0.591
1.579 51

E
(Gev)

0.471 25
0.591
1.579 51
0.591
4.766 33
4.766 33
4.766 33

(GeV)'

0.014 31
0.041 42
0.175 65
0.315 79
0.438 86
0.788 95
2.91308

JM

(GeV)'

0.011 76
0.021 38
0.096 81
0.18402
0.375 62
0.737 05
4.225 76

TABLE III. Decay constants of pseudoscalar mesons in MeV in comparison with the predictions of other models together with

the experiment.

Model

Expt. [15]
Present work
Potential [11], Set 2

Relativized quark [11], Set 3

Potential [30]
Bag [13]
Bag [14]
Lattice [28]
Lattice [31]

131.73+0.15
138

79
139
178

141+21

160.6+1.3
157

153

138
176
182

155+21

& 310
161

149

131
150
148
172

174+53
282+28

205

160

175
210
166
196

234+72

122

83
125
98

149
105+34
183+28

154

119
175

170
155+75

221

141

204
425

255

TABLE IV. Ratios of the decay constants of pseudoscalar mesons in comparison with those of other model calculations.

Model

Present work
Potential [11], set 2
Relativized quark [11], set 3
Potential [29]
Potential [30]
Factorization [27]
Bag [13]
Bag [14]
Sum rule [6]
Lattice [8]
Lattice [28]

f» if.
1.14
1.53
1.75

1.27

1.02

1.13
1.04
0.95

1.82

1.59

0.75
0.64
0.63
0.63
0.83
0.68
0.66
0.87
1.10
0.62
0.60

fs ifD

0.76
0.69
0.68
0.67
0.83
0.68

0.87
0.92
0.70
0.66

fa, mfa

1.27
1.16
1.43
1.26
1.40
1.25

1.13
1.07
1.25
1.48

fD AD

1.27
1.07
1.34
1.19
1.40
1.25
1.12
1.14
1.25
1.11
1.34

TABLE V. Partial decay width I (M~lvl ) and the branching ratio B(M~lv&) of pseudoscalar
mesons in comparison with the experiment.

Physical
process

E ~P vp

P

Ds ~P vp
+ +-
~P Vp

+
B+
D—~~—v+ +-
D, ~~—v,
B—~~*v,+

B,—~~+v+

I (M —+lvI )
MeV

0.277 X 10
0.326+10
1.210X 10
0.495 X 10
0 957X 10 1

0.341 X 10
2.762 X 10
4.547 X 10
0.214 X 10
0.821X10-"

B(M /vi )

1.094+0.001
0.613+0.002

(0.196+0.004) X 10
(0.338+0.022) X 10
(0.188+0.007) X 10

(0.447+0.0096) X 10-'
(3.1Q9+Q. 193)X 10
(4.199+0.163)X 10-'

Expt. B(M~lv, ) [15]

0.999 8782+0.000 0014
0.635+0.002
&0.72X10 '
&3X10 '
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many others, concludes that f~ &f~ & fthm, f~ & f~,
C S S

fg) &fg, and f &fg
We can also calculate the partial decay widths of lep-

tonic weak decays using the expression in Eq. (39) and
hence the branching ratios. The branching ratio for the
weak leptonic decay process of a heavy pseudoscalar
meson of ( Qq } type can be expressed as

G2
8(M~lv, )= r~~Vg ~ Mt, mt(1 mt—/Mp) f~8m. q

(43)

where ~~ is the mean lifetime of the meson M of mass
Mz, and V& is the CKM matrix element. Using

~ V&q ~

and w~ as per Ref. [15] and the model estimated f~
values, the branching ratios can be calculated from Eq.
(43). Table V provides our results for the partial decay
widths and the branching ratios of several kinematically

allowed weak decay processes of the type M~pv„and
M —+~v, . We again find that the model predictions are
very close to the available experimental values in the
light-flavor sector.

Thus we conclude that in view of the overwhelming
agreement with other reliable calculations available in the
literature, the present model proves to be a very good al-
ternative scheme to study the light as well as heavy pseu-
doscalar mesons. This model can therefore be further ex-
tended to other interesting areas involving 8 and D
mesons, such as their semileptonic and radiative decays.
The work on this line is being pursued towards this end.
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