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Scaling exponent of multiplicity Auctuation in phase transition
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It is suggested that the study of the multiplicity Auctuations of hadrons produced in high-energy
heavy-ion collisions can be used as a means to detect evidence of a quark-hadron phase transition. In
analogy with the photocount problem at the onset of lasing in nonlinear optics, we use the coherent-state
description in the framework of the Ginzberg-Landau theory. It is shown that the normalized factorial
moments of the multiplicity distribution exhibit a complicated behavior as functions of the resolution
scale and parameters that describe the phase transition. However, there is a scaling behavior that is

universal, and a scaling exponent can be determined that is independent of the details of the phase transi-

tion.

PACS number(s): 13.85.Hd, 05.70.Fh, 25.75.+r

I. INTRODUCTION

Although it has been known for a long time that Auc-
tuations are large for statistical systems near their critical
points, the idea that multiplicity Auctuation of hadrons
produced in high-energy heavy-ion collisions can be used
as a measure of whether a quark-gluon system has under-
gone a phase transition has only recently been suggested
[1,2]. At the present stage of our investigation along this
line it is not certain whether there are complications that
may render the signature ambiguous, since the hadroni-
zation process in soft QCD interaction is far from being
well understood, let alone the detailed properties of phase
transition (PT). In the framework of a Monte Carlo
simulation (Ecca [3]) that can reproduce the data of pp
collisions [4] on intermittency [5], it has been shown that
conventional hadron-hadron and nucleus-nucleus col-
lisions at high energies without PT yield quantitatively
different results on multiplicity fiuctuation [6,7], when
compared to what is theoretically predicted for the case
with PT [2]. Thus it is promising that this line of investi-
gation may provide a useful diagnostic tool to detect the
formation of a quark-gluon plasma, when the experi-
ments on heavy-ion collision can be carried out at higher
energies. In this paper we elaborate further the investiga-
tion initiated in Ref. [2] and examine in detail the scaling
behavior of the factorial moments of the multiplicity dis-
tribution when the system undergoes a second-order PT.

It is useful to point out that, whereas the theory and
experiment for a quark-hadron PT are still in their infan-
cy, there is another area of physics where the study of
multiplicity fluctuation in a similar type of PT is already
in its mature age. That is the problem of photon produc-
tion at the threshold of lasing. It has been known for a
long time that the threshold behavior in nonlinear optics
is a problem concerning the onset of instability of certain
modes of oscillation in the optical system and that the
symmetry-changing instability of stationary nonequilibri-
um states is intimately related to the general phenomena
of a second-order PT [8]. Indeed, the stationary and
time-dependent solutions of the Fokker-Planck equation

for lasers have been thoroughly investigated, and, of
course, in such a mature subject the agreement between
theory and experiment has been well established [9]. In
laser physics the pump parameter is under experimental
control so it is possible to tune the laser system to
different points around the critical point. The photo-
count problem in nonlinear optics may therefore serve as
a guide to the study of the hadron production problem in
heavy-ion collisions, in which there is no experimental
control of the temperature or any other variable specify-
ing the proximity to PT—provided, of course, that the
analogy can be shown to be a helpful guide.

Conversely, the study of scaling properties associated
with intermittency [5] in hadronic and nuclear collisions
may provide insight into problems not yet fully explored
in optical instability. More specifically, we shall derive a
scaling behavior in this paper with a universal exponent
that has been overlooked in laser physics, and should be
checked experimentally. A confirmation of the numerical
value of the exponent would not only cement the theoret-
ical basis on which such a scaling exponent is predicted,
but also offer realistic evidence for what one should ex-
pect in heavy-ion collisions if our description of the
quark-hadron PT that shares a common basis with that
of lasing transition is correct.

II. GINZBURG-LANDAU THEORY
OF SECOND-ORDER PHASE TRANSITION

For quark-hadron PT there are two types to consider:
confinement and chiral transitions. Lattice gauge calcu-
lations indicate that for two flavors the PT is most likely
of the second order for both types at the same critical
temperature T, [10,11]. When strange quarks are includ-

ed, it may become a weak first-order PT [12]. In this pa-
per we shall confine our consideration to the case of the
second-order PT. The problem of pion production be-
comes particularly simple for f =2 chiral-symmetry
breaking when framed in the context of the cr model [13],
as far as the excitation of the pion mode is concerned.
However, the o. model does not provide any information
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u(&) lg & =p(&) lp & . (2.1)

Here P(t) is a complex function of time t, in terms of
which the average photon multiplicity in a time interval
Tat t is

(2.2)

Thus the rate of photon emission is

(2.3)

It plays the same role as ll((r)l for the superconducting
electrons. In the usual formulation of the coherent state
of a stationary system [16], lP& can be expressed in the
photon-number representation as

on the multiplicity of pions produced in a collision,
which involves physics at a scale larger than what the mi-
croscopic theory of chiral transition can readily describe.
The same is true with the treatment of the confinement
problem in lattice gauge theory.

Since the principal observables of the remnants of PT
in heavy-ion collisions are hadron multiplicities and
correlations, it is essential that we have a framework in
which such observables can be calculated. It does not
mean that we must abandon the microscopic theory, but
it suggests that a somewhat more macroscopic descrip-
tion may be more efficient.

The situation rejects well the opposite scenario in su-
perconductivity, where before the advent of the BCS
theory [14] there was first the Ginzburg-Landau (GL)
theory [15], which captured the essence of the supercon-
ducting transition and the macroscopic nature of the su-
perconducting state. In that theory a pseudo wave func-
tion g(r) is introduced to serve as a complex order pa-
rameter, and ll((r)l is related to the local density of su-
perconducting electrons. Although g(r) was later related
to the gap parameter in the BCS theory, that connection
is not of urgent concern to us now, if our immediate aim
is to find a phenomenological framework suitable for
describing multiplicity fIuctuations. The fact that the GL
theory can adequately describe the phenomenological
features of type-II superconductivity (which shows a
second-order PT) and that ll((r)l can be related to some
aspect of the observables relevant to our problem is more
important to our search for an appropriate formalism.

In nonlinear optics the GL theory has long been
known to be directly relevant to the problem of counting
phonon multiplicity at the threshold of lasing [8]. In
laser physics the coherent state lP & provides an essential
theoretical basis, where lP& is the eigenstate of the an-
nihilation operator a ( t ), i.e.,

For a time-dependent lasing system, since
l P(t) l

is
identified with the rate of photon emission, as indicated
in (2.3), the distribution of photon multiplicity at t in the
interval T is

(2.6)

where n(T, t) is given by (2.2). Since the convolution of
Poissonian distributions remains Poissonian, we can in-
crease T in (2.2), and (2.6) remains valid.

In the absence of a theory that can describe hadron
production in heavy-ion collisions with a PT, we adapt
the laser formalism for our problem and treat hadron
production (mostly pions) as photon emission. Instead of
time we consider rapidity (and its generalization) to be
discussed below. In view of the success that the GL
theory has in describing superconducting and lasing tran-
sitions, we adopt that theory also for a macroscopic treat-
ment of the quark-hadron PT. The order parameter will
be in exact analogy with l((r) and p(t) in the former two
cases. We shall also suspend the usual and legitimate
concern about the GL theory being a mean-field theory,
i.e., as such it is not ordinarily reliable in predicting the
critical exponents for any statistical system whose dimen-
sion is less than the critical dimension (which for the Is-
ing system is 4) [17]. Our reasons are as follows. (a) It
works well for the superconducting and lasing transitions
and may also be so for the quark-hadron PT, since the
thermodynamical limit of infinite particle multiplicity is
not taken, at least in the latter two cases. (b) We shall
not calculate the usual critical exponents but study in-
stead a scaling exponent in connection with intermitten-
cy, not necessarily at the critical point. (c) The implica-
tions of the GL theory for this problem should be investi-
gated in any case whether or not its validity can be
confirmed later by a microscopic theory. Even if the crit-
ical exponents turn out to be incorrect, it would still be of
interest to see whether the scaling exponent remains
correct. (d) The critical exponents for quark-hadron PT
are not likely ever to be measured, but the scaling ex-
ponent is a property of the factorial moments that are
directly measurable, as we shall explain below.

In order to pose our problem without being encum-
bered by all the complications of the realistic heavy-ion
collisions, let us assume that for large enough nuclei at
high enough energy a cylindrical volume of quark-gluon
plasma is formed at some temperature T, expanding lon-
gitudinally at relativistic speed. Let us further assume
that relativistic hydrodynamics can be applied to the sys-
tem and that the local thermodynamical quantities are
boost invariant in the longitudinal direction in accor-
dance to the similarity flow described by Bjorken [18].
Thus the longitudinal coordinate of the system is the spa-
tial rapidity

(2.4)
1 t+z

'l7 = ln
2 i —z ' (2.7)

so the probability of having n photons in a pure coherent
state is Poissonian: which is to be identified with the momentum rapidity

n
(2.5)

1 5'o+5'3
y =—ln

2 Po —$3
(2.8)
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Setting g =y enables us to relate the coordinate variable
of an expanding system undergoing PT to the kinematical
variable, in terms of which the produced hadrons are
measured. The azimuthal angle y is the same in the
coordinate and momentum spaces. Thus if the transverse
momentum pz- is integrated over, corresponding to con-
sidering slices of the cylinder, the energy or entropy den-
sity of the physical system in the (q, y) space can alterna-
tively be formulated in the (y, y) space. If one wants to
include the third dimension, one could add the radial r,
or the transverse pz-, in their respective spaces with the
understanding that there is a nontrivial relationship be-
tween r and pz- that depends on the hydrodynamics of the
problem [19]. We shall use z to denote (rI, y, r) collective-
ly, as well as (y, y, pz ), although strict identification is im-
plied only for the first two pairs.

Instead of P(t) in (2.2) we shall use P(z) as the
coherent-state variable of our system. If the system is in
a pure coherent state that leads to hadronization, the cor-
responding average hadron multiplicity in a volume Vis

ni, = f dzlP(z)l (2.9)

We have used dz to denote an elementary volume in the
d-dimensional space of (g, y, r) or any projected subspace
thereof. In referring to the cell volume V in the space of
observable variables, one should choose a space of cumu-
lative variables (y, y,pz. ) [20] in which the hadrons are
uniformly distributed so that n~ in (2.9) depends only on
the cell size and not on where the cell is located. Since
our final result will not depend on the details of such
choices, we proceed formally on the basis that the z space
of any chosen dimension d is uniform.

In the GL theory the free energy of the system is

F[y]=f dz [~ly(z)l'+big(z)l'+clay/azl'], (2.10)

where the integration is over all volume of the system un-
der consideration. The parameters b and c may be re-
garded as constants in the neighborhood of the critical
temperature T„and are positive, but a changes sign as

—4 —3 —2 —1 2 3 4

FIG. 1. Hadron number density p in units of (5"b) ' plot-
ted against the parameter a in units of 2(b5")'

T, is shown in Fig. 1 by the dashed line.
In reality a thermal system need not remain at the po-

tential minimum. The free energy (2.10) specifies how the
system fiuctuates from Po. More specifically, when had-
rons are produced, the hadron multiplicity distribution is
not like (2.6) for a pure state Po but is given by the func-
tional integral

P Z —1 Po —F[P] (2.14)

where

Z = —FIN] (2.15)

O 1 nP„=, f dzl P(z) l exp —f dzl P(z) l' (2.16)

(n ) = g nP„and p= (n ) /V, (2.17)

Thus the probability of having a large n in Vis controlled
by how much P can deviate from Po as specified by the
thermodynamical factor e ~~; it is no longer the Pois-
sonian tail of P„. In fact, even the average hadron densi-
ty is now different.

In the notation

a =a, (T —T, ) (2.11)

lgol = —a/2b )0 . (2.12)

If the system can be adequately described by the coherent
state at $0, then the average hadron density is

po n v /V = —a /2b, (2.13)

provided, of course, a &0. This is the hadron phase with
T & T, . For T )T„ the minimum of the GL potential
being at lPl =0, (2.13) does not apply, and there are no
hadrons. That is the quark phase, for which we have
po=0. The dependence of po on a in the neighborhood to

with a& )0. The values of a&, b, and c are not known in
the quark-hadron PT. Our aim is to derive a feature of
the PT that is relatively independent of these parameters.
The nonkinetic part of (2.10), i.e., the first two terms on
the right-hand side (RHS), has its minimum at lPl =0
for T )T, until a becomes negative at T & T„whence
the minimum occurs at

one can show that, in the case of uniform P(z) [see (3.18)
below],

—Va /4b

1/2 (2.18)
(orb V)'~

I 1+erf[ —(a/2)( V/b)'~ ]]
A sketch of its dependence on a is shown by the solid line
in Fig. 1. Evidently, the break at a =0 (dashed line) is
now smoothed out, implying that the hadron multiplicity
is not strictly zero even at T )T, (i.e. a )0). However,
since ( n ) ~ &V in that region, it can readily be dis-
tinguished from the fully developed hadron phase, for
which ( n ) ~ V, in the large V limit. This blurring of the
transition region for photocount at lasing threshold was
expected and observed long ago [21]. We should not be
surprised if a similar continuous PT occurs for hadron
production. On the other hand, it should serve notice on
us to be careful about how small the cell volume V can be
set, if we want to use p as the order parameter. That is
the subject we consider next.
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III. INTERMITTENCY

An effective way to investigate the nature of the multi-
plicity fluctuation in high-energy collisions is to examine
the dependence of the normalized factorial moments F
on the bin width 6 in rapidity [5,22], where

(n(n —1) . . (n —q+I)) (3.1)
n

F =

Here n is the number of hadrons detected in 5 in an
event, and the averages are taken over all events. This is
the vertical analysis at one bin. To improve statistics in
practice, F may be averaged (horizontally) over many
bins. The multiplicity fluctuation is said to exhibit inter-
mittency behavior if, as 5 is decreased, there exists a
range of 5 in which F has a power-law behavior

o= 5 (3.2)

where yq is referred to as the intermittency index. In a
large variety of experiments involving e e, pp, pp, pA,
and AA collisions, the behavior (3.2) has been observed
[23].

The main emphasis in the line of investigation pursued
in Ref. [2] and in this paper is the use of intermittency
analysis to explore universal characteristics of quark-
hadron PT in the CsL theory. Since we have no control
over temperature (as in superconductivity or pump pa-
rameter as in lasers), we have no way to tune our system
to specific points in the phase diagram and examine its
behavior as it goes through PT. Moreover, only a limited
number of particles are produced in each collision (in the
hundreds), so many collisions (in the hundreds of
thousands events) are needed to reduce statistical fluctua-
tion. Nearly the only parameter that we can vary, apart
from collision energy and nuclear size, is the size of a cell
in phase space, in which to observe the multiplicity Auc-
tuations. That is just the central theme of intermittency.
However, our goal must go beyond the usual power-law
behavior of (3.2), which may or may not be a reality when
there is a quark-hadron PT. What we aim for is a univer-
sal behavior that is independent of whether (3.2) is fully
realized and is insensitive to the details concerning the
PT. In this section we examine whether (3.2) is valid in
the GL theory.

Defining

a 25d

2b
(3.6)

The dependence is shown in Fig. 2. Evidently, for every
Axed q, there is a rise region in lnF vs —lnx, and then
there is a saturation. If intermittency means (3.2) with
5~0, then Fig. 2 implies no intermittency. However,
that is a mathematical limit with little physical
significance, since in heavy-ion collisions the total multi-
plicity in any event is finite; thus when 5 is small enough,
the value of n in a cell would overwhelmingly be only 0 or
1, independent of 5.

Another reason why the 5~0 limit should not be tak-
en is that (when c =0) we have, from (2.10) and (3.4),

f =5~I iI
where

(3.7)

q (3.8)

The exponent of the exponential term in (3.8) is propor-

10--

9--

In Ref. [5] it is shown that, if the multiplicity fluctuation
is only statistical, there would be no dependence of F on
5. That result is trivially obtained here by noting that no
dynamical fluctuation means that P does not deviate from
Po, so f =(5"~$0~ )~ and F = 1. It is therefore clear that
the nontrivial property of F is a measure of the dynami-
cal fluctuations of P from Po as prescribed by the GL free
energy F [P]. We should remark that since F is defined
in terms of the hadron multiplicity n, it has meaning only
in the hadron phase; hence, (3.4) and (3.5) are to be calcu-
lated below only for a (0.

To perform the functional integration in general with
(2.10) for F [P] is difficult. In Ref. [2] the simple case of
uniform P is considered, which is equivalent to setting
c =0. The integrations can then be performed exactly,
and rather interesting results are obtained. One impor-
tant result is that F does not depend on a, b, 5, and d
separately, but on one variable x only, where

ntf =(n(n —1) . (n —q+I)) = $ P„
(n —q)!n=q

we obtain, using (2.14) and (2.16),

f =Z ' f2)P I dziP(z)i e

(3.3)

(3.4)

U 7-
LL

6-

4-

3-

where V is the volume of the cell in which the factorial
moment f~ is measured. We emphasize that f is direct-
ly measurable. Instead of just the rapidity bin mentioned
in connection with (3.1), we now generalize to d dimen-
sions in all or any subspace of (y, y,pT ) discussed in the
previous section. Thus we identify V =5". It follows
from (3.1) that

(3.5)

2-

I

—2 —1 0

FIG. 2. Log-log plot of I'~ vs 1/x. The region to the right of
the dashed line may not be reliable, depending on the parame-
ters a and 6.
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tional to the cell volume 5 instead of the volume over all
space, as required in (2.10), because the part of the in-
tegral outside the cell is common in both the numerator
and denominator of (3.4) and is therefore canceled out,
leaving just the part proportional to 5 in (3.8). It is then
clear that when 5 becomes very small, ~P~ can become
large before the exponential damping suppresses the in-
tegrand in (3.8). When that happens, the GL's F[P] is no
longer valid, since the ~P~ term is not included on the
grounds that ~P~ is not supposed to be large enough to
make it important. A way of estimating the appropriate
range of 5 in which to examine the properties of f» is to
require that the main contribution to the integral in (3.8)
is from the region where F [P ] is negative, i.e.,
0 & ~P~ & —a /b, for —a not too close to zero. Thus if we
demand that the exponential factor in (3.8) at P ~

=
~go~ to

be at least twice as large as at
~ P ~

=0 or —a /b, i.e.,
$ (/g/[yp/ —

b/yp/ ) &2,

~FrJo(a) = e (1+erfa), (3.16)

J, (a)= —+aJo(a) .1
(3.17)

It then follows from (3.13) that

&n) —a
2

e
—a

(mb5 )'~ (1+erfa)
(3.18)

p=(5"b)-'" a+ 1

2Jo(a )
(3.19)

Since (3.6) and (3.15) imply

Comparing this with (2.12), we see that it is the last term
that accounts for the change in Fig. 1 from the dashed
line to the solid line.

To see the effect of the restriction (3.10) on p let us
rewrite (3.18) in the form

then we get

5") 5o =—(4 ln2 )b /a

This implies

x &xo=21n2,

which corresponds to

—lnx (—lnxo= —0.327 .

(3.10)

(3.1 1)

(3.12)

x =2'
we have, at ao= Qxo/2=0. 83,

1 =0.16 .
2Jo(ao)

Thus for x )xo, we obtain, from (3.19),

(p —
po ) /po & 0. 16/0. 83 =0. 19,

(3.20)

(3.21)

(3.22)

&~)=f =(5"/b)'"J /J (3.13)

where

J (a) = dt tqe
q (3.14)

a
cz =

2

1/2
Qd

(3.15)

Carrying out the integration in (3.14) for q =0 and 1, we
get

It means that in Fig. 2 we should take more seriously the
region to the left of the dashed line. To its right the re-
sult on F is not necessarily invalid, since at small —a the
usual GL expression, (2.10), without a ~P~ term can still
be adequate for ~P~ somewhat larger than —a/b Thus.
the dashed line in Fig. 2 does not mark the absolute
bound of the validity of the GL theory. Depending on
the detailed parameters of the problem, the region of va-
lidity may extend to the right of the dashed line. Howev-
er, we shall restrict our attention only to the region on
the left that is sure to be reliable. Note that the region of
rising I' is now emphasized as bearing the true conse-
quence of the GL theory.

Another feature to be noticed in the region of rising I'
is that the local slope y increases with —lnx. Thus with
5 /b kept fixed, the decrease of

~
a

~
increases the intermit-

tency index y, rejecting more fluctuation. This is as one
should expect for T closer to T, .

From (3.3) and (3.7) we have

cdr =7T

where po is given in (2.13). It means that in Fig. 1 the
percentage deviation of the solid line from the dashed line
should be less than 20%%uo. This gives a rough guide on the
region, where p can reliably be calculated. However, as
we have discussed just below (3.12), the bound (3.10) is
not good when —a is small, so the inequality (3.22) need
only be regarded as a reference for reliability, but the
violation of (3.22) does not necessarily mean unreliability.
That is, (3.18) may still be valid for even smaller values of
—a than what (3.22) implies. The point is not very im-
portant in an actual collision process, where T decreases
continuously through T„and the bulk of the hadrons are
produced far away from the critical point, where p be-
comes large, i.e., in the large negative a region in Fig. 1.

The fact that Fq(x) depends only on x allows us to use
the x dependence in Fig. 2 to learn about the 5 depen-
dence for various fixed values of a and b. However, since
a and b are not fixed, it would be hard to determine the
phenomenologically relevant y theoretically. The reso-
lution of this problem is deferred until the next section.

The discussion so far in this section is for the case
where the c~BQ/Bz~ term in (2.10) can be ignored. While
that is exactly the case for the lasing transition problem
[8,9], we must estimate its effect for the quark-hadron PT
problem. A mean-field type approximation has been con-
sidered [24], in which the value of P(z) in the neighboring
cells surrounding the cell under study is fixed at Po. It is
found that the intermittency curves of lnF vs —lnx de-
pend on only one parameter y, in addition to q, where

1/2 1/d

(3.23)
2b
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which is independent of the cell size 6". Those curves are
generally similar to the ones shown in Fig. 2, but the rise
region becomes more extended at higher values of y. The
saturation region is pushed out to much higher values of—lnx, above 15. There are no simple features that can
summarize the intermittency behavior. However, when
examined differently, as will be discussed in Sec. IV, a
universal behavior emerges that does not differ from the
c =0 case by very much. The reader is referred to Ref.
[24] for details.

Here we discuss another way of considering the cAO
case. It is well known [17] that when spatial dependence
is introduced into the problem by the kinetic term, the
correlation length is

C(r, —rz) ~e ' ' /lr, —rzl . (3.25)

To estimate the effect of this correlation in our problem,
let us make the approximation that all points separated
by a distance less than g are fully correlated, and no
correlation otherwise. Thus for the functional integral in
(3.4) we discretize the z space into cells of size 5, and not
only do we let P(z) be constant within each cell, labeled

P; for the ith cell, but we also implement our approxima-
tion of the dynamical correlation by demanding that all

P; be equal for cells within a block of size g . Let the
number of cells in all space be M, and those in the block
be

(3.26)

and, if b =0, the correlation function behaves as

(3.24)
At the center of the block is the cell under study, labeled
j, i.e., it is the jth cell in which the moments f~ are mea-
sured. Let the cells in the block be labeled i H IN~ [. We
then have

ZieIN, . jZieIN, . j ~ (3.27)

where

(3.28)

the experimental 5 is decreased below g, we use the result
of the c =0 case but with 5 replaced by g. This is, of
course, the physical meaning of having nontrivial correla-
tions with a range of g. In terms of the x variable it
means that x should not be decreased to below

(3.29)

T(p, , p, , )=5(p, —p, ), i, i'HINJ I (3.30)

T(P, , P,') is the exponential term involving neighboring
pairs (P;,P; ) in the last term of the first line in (3.27).
Our approximation is to set

a g

so Fig. 2 remains valid for

—lnx & —lnx( .

(3.34)

(3.35)

so that

(3.31)

For cells not in the block, Z;&I& j
cancels the corre-

sponding integrals in the numerator of (3.4), and will not
be of any concern hereafter. We thus get

f d'y(5'l yl')~s "(y)

f d zygo%(y)
(3.32)

N5 =g (3.33)

This means that for 5) g we may ignore the effects of the
kinetic term, but when 5 is decreased to below g, then the
effective cell size for the cAO case is equivalent to g'" in
the c =0 case. We may therefore continue to use the re-
sults obtained for the c =0 case, so long as we do not let
5 get smaller than g. Or, stated more accurately, when

This is essentially in the same form as (3.7) and (3.8) for
the c =0 case, except that the 6" factor in the exponent of
(3.8) is replaced by

What x& is depends on all the parameters (a, b, c,d), so no
general statement can be made about the intermittency
index y . However, the important conclusion here is the
validity of Fig. 2 for the rising part of F . Our final con-
clusion is again deferred to the next section after we
derive the universal property of F that is insensitive to
the parameters (a, b, c,d), whereupon the precise value of
x& for the bound (3.35) becomes immaterial.

IV. SCALING EXPONENT

As we have seen in the previous section, the self-
similarity behavior of F is not clear cut. There is no ex-
tended region of 6, or x, in which one can identify the
power-law dependence (3.2) with unambiguous slopes.
When the kinetic term in the free energy F[P) is includ-
ed, there is some minor variation on the prediction of the
behavior of F (x), depending on what approximation is
used, but roughly Fig. 2 is still valid for the rising por-
tion. Because there are dependences on all the parame-
ters a, b, c, and d, which are not known in heavy-ion col-
lisions, there is no way to determine the intermittency in-
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dices y to be compared with experiment. If this is all
that we can learn about Fq from the GL theory, then
clearly this avenue of investigation is doomed to fail as a
possible way to reveal the signature of quark-hadron PT.

Fortunately, there is a universal scaling behavior,
found in Refs. [2] and [24], that saves this approach from
failure and turns it into a very promising possibility. In
those references it is by numerical computation that the
log-log plots of F vs F2 are shown to exhibit approxi-
mate linear behavior. Here in this section we pursue an
analytical derivation of the scaling behavior as far as pos-
sible.

Let us first summarize our problem. From (3.5) and
(3.7) we have

(4.1)

where I, defined in (3.8), differ from J, defined in (3.14),
only by a multiplicative factor, i.e.,

where

E (a)=(q+ 1)L +&(a)—2qL2(a)+(q —1)L&(a) .

(4.11)

From (4.10) we get

d lnF K
d lnF2 K2

(4.12)

The RHS can be determined algebraically in terms of I.,
and L2 by applying (4.8) recursively; however, its depen-
dence on cx is not simple, though straightforward to com-
pute.

Equation (4.12) gives the local slope of lnF vs lnFz. If
it is approximately constant, then we would have the
scaling behavior

F a-F (4.13)

I =h (q)J

h (q) is of the form

h (q)=c,c),

(4.2)

(4.3)

This behavior describes the relationship between F and
F2 over a range of F2, irrespective of their separate
dependences on a. In that sense P summarizes the scale
invariance property in the global scale. If such a proper-
ty exists, then the local slope

where c& and c2 are constant parameters in the integrals.
Such factors get canceled out in (4.1) so we have P (a) =ICq(a)/Kz(a) (4.14)

Fq =JqJ, qJ( (4.4)

J (a)=aJq, (a)+ J 2(a)g 1

2

where a is given in (3.15) and is related to x by

a=(x/2)'

(4.5)

(4.6)

We have seen in the previous section that the dependence
of F on x, thus on cz, is complicated, and the dependence
on 5 cannot be verified experimentally.

Since F is directly measurable for any 5, our quest for
phenomenological relevance leads us to investigate the re-
lationship among F . The recursion relation (4.5) facili-
tates our inquiry into that. To that end let us define, for
q~1,

Jo(x) and J&(x) are given explicitly in (3.16) and (3.17).
By partial integration J can be expressed in a recursion
formula

2 0-- 10

should be approximately independent of a. Emperically,
it has been found that (4.13) is approximately satisfied by
the data of a wide variety of collision processes [25], all of
which are not related to the GL theory discussed here.

In Fig. 3 we show the dependence of Pq(a) on a for q
ranging from 3 to 10. Evidently, they are remarkably in-
sensitive to the value of a. In a plot of lnF vs lnF2 the
small variations of the local slopes would not be percepti-
ble and a straight-line fit for each q would be excellent.
The range of values of a from 0.3 to 2.0 corresponds to—2 & —lnx & 1.7, which covers the rise region in Fig. 2.
Independence on o, implies that it is immaterial which
section of Fig. 2 is taken seriously as the valid conse-
quence of the GL theory. The same P values result. In
view of our discussion near the end of the previous sec-

2mJI.
qJ

Then we obtain, from (4.5),

(4.7)

(4.8)

17 . 5-.

15-.

12 . 5-.

10--

7. 5--

Since (3.14) implies that

dJ (a) =J, ,(a),
2d cx

it follows from (4.4) that

(4.9)

2. 5-.

In x=

0. 5

—0.69 0.69

1.5

1.50 2.08

2. 5

d lnF (a)
=Kq(a)/a, (4.10) FIG. 3. Scaling behavior of P (a). The numbers for 1nx cor-

respond to the values of a immediately above.
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2 0.-

18--

16.-

12--

10.-

8.-

reference the kinetic term is treated by a mean-field type
approximation. Here, we are to retain the c =0 result as
shown in Fig. 5, but the bound x )x& would restrict the
range of a from being extended to the low end. Depend-
ing on the value of c, the relevant range may well be near
a —3, resulting in a value of v on the high side of (4.16),
in better agreement with 1.316+0.012 quoted above.

For definiteness we may regard

6-. v= 1.31 (4.17)

10 12

FIG. 4. A fit of P~(a) at a=1 by (q —1) shown in solid line.

For example, at a=1.0 the values of p~ are shown by
dots in Fig. 4, and the fit by (4.15) is shown by the solid
line for v= 1.306. Doing this type of fitting for the whole
range of a results in v(a), whose dependence on a is
shown in Fig. 5. The values fall within the range

v= 1.305+0.010 . (4.16)

Since the variation of v throughout the a range is less
than 0.8%, we are well justified to regard v as being con-
stant and refer to it as the scaling exponent.

The value of v in (4.16) is, within errors, in agreement
with that obtained in Ref. [24]: 1.316+0.012. In that

1.75--

1.5--

1.25"

0 25--

0.5 1.5 2. 5

FIG. 5. The value of v for a range of values of o, .

tion on the eff'ective block size g in connection with the
c%0 case and the resultant validity of Fig. 2 for x )x&,
we can now conclude that the scaling behavior holds true
also for the complete GL free energy including the kinet-
ic term, since it is not crucial where —lnx& is, so long as
it is not outside Fig. 2, or a & 3.

To summarize Fig. 3, we now point out the amazing
fact that for every value of a in the range 0.3&o.&2,
p~(a) satisfies very accurately the formula

(4.15)

as our final result for the scaling exponent in the GL
theory. It is universal in the sense that it is independent
of the parameters a, b, c, and d. This universality makes
the result phenomenologically significant because of our
ignorance about those parameters in heavy-ion collisions.
Furthermore, F can be readily determined in the experi-
ment. It should be emphasized that the independence of
v on the parameter a does not imply ignorance about PT,
for which a changes sign. As we have stressed earlier, the
factorial moments in (3.3) and (3.4) are defined only for
the hadron phase, for which a &0. It is only for a &0
that the mathematical properties of F are valid and the
independence of v on a follows.

V. CONCLUSION

We have given arguments to support the use of the
Ginzburg-Landau theory for studying quark-hadron
phase transition. In that framework we have shown that
there exists an experimentally feasible way of relating ob-
servables on hadron multiplicity fluctuations to a predict-
able property of the phase transition. It is the scaling ex-
ponent v for the factorial moments F . The value of v is
1 ~ 31, independent of the details of the parameters in the
GL theory. Since the same theory is known to be applic-
able to the problem of a photocount at the threshold of
lasing, the verification of v=1.31 in the laser experiment
(which is, of course, far easier to perform than heavy-ion
collisions) would accomplish the first step of validating
the theoretical consideration discussed here.

Existing data on nuclear collisions so far give values in
the range v= 1.55+0. 12 [2,26,27]. That is 2o away from
our prediction, so we may regard the GL theory as being
inapplicable to the experiments. A stronger statement
according to our criterion is that there is no evidence for
phase transition in those experiments.

A larger value of v does not mean more fluctuations.
Since p describes the scaling behavior of F relative to
Fz, larger v may well be the consequence of smaller inter-
mittency index yz. Indeed, most nuclear results on F~,
whether experimental [26,27] or theoretical [6], reveal
rough independence on rapidity bin width, although
more recent three-dimensional (3D) analyses have yielded
nontrivial intermittency behavior [23,28]. For 2D Ising
model [29,30] the fiuctuation is large near T, (invalidat-
ing a GL treatment) and the conjectured implication for a
quark-hadron PT is that the intermittency structure is
monofractal [1]; in that case the corresponding value for
v would be 1 [2]. Our present value of v= 1.31 therefore
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implies less fluctuation than 2D Ising model, but more
than what is currently observed in heavy-ion collisions.
A decrease of v in future nuclear experiments would then
be really exciting.

In summary the use of hadron multiplicity fluctuations
in heavy-ion collisions seems to offer a viable scheme to
detect evidences of quark-hadron phase transition. If
there is a phase transition, then the quark-gluon system
under study must erst have been in the state of a quark-
gluon plasma.
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