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Value of Gottfried sum rule from the current anticommutator on the null plane
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By extending the sum rules from the current anticommutator on the null plane to the E—+ case, we re-
late the Gottfried sum rule to kaon-nucleon scattering. With the use of this relation, together with
Adler-Weisberger relations, we estimate the value of the Gottfried sum rule as 0.26+0.03 which is con-
sistent with the recent experimental value obtained by the New Muon Collaboration.

PACS number(s): 13.60.Hb, 11.40.Ha, 11.50.Li, 13.75.Jz

I. INTRODUCTION

Recently, a systematic error of the Gottfried sum rule
was reduced considerably and its value was reported as

= f deaf , dPexp(iPp x)h, b(A, ,P)ih(x, A), .

(2.1)

x, —I'2" x, =0.240+0.016 sys
0 x

where c means to take the connected part, lp & is the
stable one-particle state, and the scalar current J,(x) is
defined as

The correction due to perturbative QCD starts from two
loops, and its magnitude is very small [2]. Hence it be-
comes almost impossible to explain the large deviation
from the naively expected value —,

' by this correction.
Two approaches to explain this defect have appeared:
One approach was based on the unmeasured small-x be-
havior of the structure functions, which attached great
importance to physics at high energy [3]; the other ap-
proach used pseudo Goldstone bosons such as pions as a
substitute for spontaneous chir al-symmetry breaking,
where the causes of the defects are considered to lie main-
ly at low energy [4—6]. In this paper we show that the
experimental value of the Gottfried sum rule can be ex-
plained by due consideration for the physics in the high-
energy region. However, our method differs greatly from
the former approach and rather may be related to the
latter approach, i.e., spontaneous chiral-symmetry break-
ing.

Our approach is based on the current anticommutator
on the null plane, which was proposed more than 10
years ago [7,8]. Since this method seems to be unfamiliar
to many people, we give a review of this subject in Sec. II.
Then in Sec. III we deriv'e the modified Gottfried sum
rule and estimate its value. In Sec. IV we discuss the
physical constraint at high energy which played an im-
portant role in deriving this sum rule and the Aavor
asymmetry of the sea quarks predicted in our approach.
In Sec. V we give conclusions.

II. REVIEW OF THE CURRENT
ANTICOMMUTATOR ON THE NULL PLANE

Let us first consider the Deser-Gilbert-Sudarshan
(DCxS) representation of the current commutator [9]. To
avoid an inessential complication, we take here the scalar
model given by

J,(x)=y (x)r, y(x) .

The momentum-space representation of (2.1) is

C,z(p q, q )=f d x exp(iq x)&pl[J, (x),Jb(0)]lp &,

=2m f dkfd, P5((q+Pp) —
A, )

(2.2)

Xs(q +Pp )h, t, (A, ,P) .

(2.3)

C,b (p q, q ) can be decomposed as

C,b(p q, q )=g(2m) 5 (p+q n)—
X &pl J,(0)ln & &n I Jt, (0)lp &

—g(2m) 5 (p —
q n)—

X & pl Jb(0) ln & & nl J.(0) lp & . (2.4)

By taking a frame at rest, p = (m, 0), we find that the first
and second terms are disconnected under the assumption
m ~(M, +M„)/2, where M, and M„are the lowest
masses in the s and u channels, respectively. Further, in
this frame we see that (q +Pp ) is equal to
(p q+Pm )/m; hence, the sign function E(q +Pp ) in
(2.3) can be replaced by s(p q+Pm ). Let us now con-
sider an integration path cr=2Pp. q+q in the (P, cr)

plane with o. defined by cr=A. —P m . The support of
the weight function h, b(A. ,P) is restricted in the region
lPl ~1 and o ~0. Among the regions where the weight
function is required to be zero, the region co~ —P m
corresponding to A, ~ 0 originates from causality. An im-
portant property of the integration path is that the point
(Pi, cr &) where /3i and o i satisfy p.q+Pim =0 and
cr&=2Pip q+q is always in the causality-forbidden re-
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gion cr ~ —P m . Because of these properties, we can ob-
tain

2~f deaf dP5((q+/3p} —A, )

Xh,b(A. ,P)8(q +Pp )

This derivation clearly shows that the spectral condition
m ~ (M, +M„)/2 is essential to reach (2.7).

Let us next consider how C,b and 8',b can be restrict-
ed to the null plane. For this purpose we consider I,b
defined as

=g(2m ) 5 (p +q n—) I,b= lim dq exp —,H, I,(p q, q ),(q )'
P~ oo oo A

(2.8)

and

«plJ. (o)ln &&nlJb(0)lp } (2.5)

2n f dA, f dP5((q+Pp)2 —P2)

X h b(A, ,P)g( —(q +Pp ) }

=Q(2m) 5 (p —
q n)—

X (ply, (0)ln }(nlJ, (0)lp } . (2.6)

Wb(p. q, q )

= f d x exp(iq x )(pl IJ, (x),Jb(0)] lp },
=2' f deaf, dP5((q+Pp) —A. )h, i, (A, ,P) .

(2.7)
I

Then (2.5) and (2.6) give us the DGS representations of
the current anticommutator as

where H, b denotes C,b or 8'b and the integration is over
q for a fixed A. Since the constraint (q+Pp ) —A. =0 is
linear with respect to q where it changes from —~ to
+ ~, we obtain no constraint on P and A, by this integra-
tion. Then we consider under what condition on the
weight function h, b(A, ,P) can we take the limit A~ co.
Since p+ &0 and q+ are arbitrary parameters, we take
q+/p+ & 1. Then the integration path o.=2' q+q in
the (P, cr ) plane passes the support of the weight function
only for p q &0, and we can safely set E(q++Pp+)=1
[10]. Hence we find that the condition necessary to take
the limit A~ ~ for the current cummutator is the same
as the one for the current anticommutator. The same
thing holds for q+/p+ (—1, where in this case p q (0.
After all we find the weight function should be
h, b(A. ,P) -A, ' as A, ~ ~, where e is an arbitrary pos-
itive number. Since this constraint has no dependence on
p and q, it must hold irrespective of the constraint
lq+/p+

l
& 1. Thus, by taking the limit A~ ao under this

condition, we obtain

f dq C,b(p q, q ).=2m fd x f dkfd, Pexp[i(q x+Pp x)]h,b(A, ,P) ——5(xi)E(x )5(x+), (2.9)

and

f dq W', b(p q, q )=2vr f d x f dkfdPex, p[i(q. x+Pp x)]h,b(A, ,P) — 5(x }lnlx l5(x+) . (2.10)

where

21nlx l

= —f exp(iax )
dQ

and

q x=q+x —q'x' .

The weight function in (2.10) appears in the same place as the one in (2.9). In the language of field theory, by using the
current commutator abstracted from the canonical quantization on the null plane, we find

f dkfdPexp. (iPp+x )h,b(A, ,P)=(pl [5,i SO(xlO)+iE, b, A, (xlO)lp }l + (2.11)

where

So(xlO)=qr (x)y(0)+y (0)qr(x),

A, (xlO) =tp (x)r, qr(0) —qP(0)r, p(x),
(2.12)

and the canonical quantization of the scalar field is as-
sumed as

This example shows that the current commutator on the
null plane gives us information of the current anticom-
mutator on it. The fixed-mass sum rules can be obtained
from (2.9) and (2.10). As is well known, to reach these
sum rules we must assume that we can interchange v in-
tegration and setting q+ =0 [11]. Here we need some as-
sumptions. This is known as a class-II graph problem
[12]. Since

[p (x),y(0)]l + = ——s(x )5(x ) .x =0 4
(2.13)

q =2(q+/p+)(v —p q++p q )
—q
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q takes a positive value above some vo for q+ jp+) 0.
However, if we set q+ =0 before v integration, q be-
comes —q, being negative. Hence, to allow for this in-
terchange, we must assume that contributions from the
positive-q region are zero. Since vo —+~ as q+ —+0,
these conditions become the ones as v~ Do and are called
superconvergence relations. It is at this point where a
difference between the current commutator and the
current anticommutator appears. We will encounter this
as the divergence of the sum rules later in this section.

A generalization of the scalar current to the vector
current or the axial-vector current is straightforward,
and we obtain

f dq W,&+

=2p+ f dx exp(iq+x )P G,b(p+x, O),1

00 X

(2.14)

where 8'"& is given as

8'"b = d x exp iq.x p J,"x,J~ 0 p

= f d x exp(iq x)f dA. f dpe px(ipp x)[(B"8"— g" )Ih I +ip Bgl j
0 —1

+I Up"p—'+p. B(p"d +p 8") g" (p—.B) ]hz ]5'"(x,A, ) (2.15)

and G,b(p x, O) is given by

G,„(p x, O)= i f —

deaf

. dPexp(iPp x)P[h; +m (h2 —/3g;")] . (2.16)

Here we assumed

5(x+)[J,+(x),J&+(0)]=if,b,J,+(0)5 (x) . (2.17)

A similar consideration holds for the axial-vector
current, and we obtain

f dq [ W,+b+ —8',b++ ] =0, (2.18)

where 8',&++ is defined similarly to 8',b+, and we as-
sume

lar pieces as p.x~0 [13], but also contributions from
higher-twist terms.

Now the Axed-mass sum rules can be obtained from
(2.14) and (2.18) by using the method of Dicus, Jackiw,
and Teplitz [11]. Corresponding to the Adler-Weisberger
sum rule, we obtain

-dv .+
gg(0)+ f [cr ~(v)+o ~(v) j

0

- da 2&6
5( x+)[ J, +( x), Jb+(0)]=if b, J,+(0)5 (x) . (2.19)

G,b(p.x,O)=d, b, A, (p x, O)+f,b, S,(p x, O) . (2.20)

This nonlocal quantity in general contains not only singu-

In the case of the current commutator, P (1/x ) in (2.14)
is replaced by 5(x ); hence, G,b(p, x,O) is restricted
at x =0. The condition (2.17) or (2.19) plays a role to
select out the nonzero part in the DGS representation.
Thus we can identify the other parts in this representa-
tion as zero. Then a similar discussion as the one
developed in the paragraph before (2.9) shows that the
corresponding parts in the DGS representation of the
current anticommutator to these parts are also zero.
Hence we can select out the nonzero part in this repre-
sentation. Since the singularity structure of this part is
not 5(x ) but P ( 1/x ), we encounter the nonlocal
quantity G,b(p x,O), as in (2.14). It is possible to have
a field-theoretical representation of this quantity as in the
scalar current model. However, we do not need such a
representation. What is really needed is a group-
theoretical structure of G,b(p;x, O). Let us take the
SU(3)-octet currents and the state ~p ) belonging in the
SU(3) octet. Then the terms which remain after taking
the matrix element are two octet pieces and one singlet
piece in the current anticommutator. Hence we can
decompose G,b(p;x, O) as

(2.21)

where Cabibbo angle is set to zero, o. ~ means the total
cross section of the mp scattering at q =0, v=p. q, and
vo=m&m +m /2. Corresponding to the Adler sum
rule, we obtain

P 2 +F P 2

da 2&6

(2.22)

where q = —Q and x =Q /(2v). From (2.21) and
(2.22), we obtain the relation

2f dv +
2

gg(0)+ f [o ~(v)+o" ~(v)]
0

F2' X '+F2' X 2

0 2x
(2.23)

All the sum rules (2.21)—(2.23) diverge logarithmically if
the leading high-energy behavior is given by the Pomeron
with its intercept a~(0) = l. This fact is very important
as we explain in the following. The sum rule (2.21) is de
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v) ~/(v, g')+ Wp(v, g')]
ap(0) —)

0
ap(0) —1

P )v(Q', I —~p(0))
a

rived by the anticommutator of the lightlike axial charge
where we take m„&0. Since this charge is not conserved
as a result of spontaneous chiral-symmetry breaking [14],
states with different four-momenta are connected, and
high-mass states can contribute to the intermediate states
in the sum rule. Thus all the intermediate states transmit
information of the spontaneous chiral-symmetry breaking
of the vacuum, and this makes the sum rule divergent. In
this sense we take the view that the Pomeron is closely
related to spontaneous chiral-symmetry breaking of the
vacuum. This thought was already discussed many years
ago by Weinberg in the context of chiral dynamics [15]
and also by Pagels [16]. It seems there were many people
who considered it. Recently, Bjorken took again the
Manohar-Georgi viewpoint [17] to give a physical back-
ground of the soft Pomeron and indicated it might give
us a good reason for the badly broken Gottfried sum rule
[18]. In fact, the sum rule (2.23) relates the behavior due
to spontaneous chiral-symmetry breaking to the small-x
behavior of the structure function, and it gives us good
evidence that the Gottfried sum rule may be related to
this symmetry breaking.

Now to get a meaningful result we should start from a
finite quantity. At first, az(0) =1—c, , where E is an arbi-
trary positive number, was assumed [7]. Then the discus-
sion was generalized to the nonforward matrix element to
treat the case az(0) ~ 1 [8]. By an analytical continua-
tion from the nonforward matrix element to the forward
one, it was found that the sum rule had a finite ambigu-
ous term due to the regularization. This part plays an
important role in reaching the modified Gottfried sum
rule. However, to arrange all the kinematical prelim-
inaries for this argument is very complex and long. Be-
cause of this fact, we reproduce it here by assuming
ap(0)=1 —s for the forward matrix element. The essen-
tial steps for reaching the modified Gottfried sum rule
cannot be lost in this simplified version. We assumed the
leading high-energy behavior of o. ~ and I'2 =v8'2 as

ap(0) —1

[o. ~(v)+o. ~(v)] -p )v

f dV V

Q/2 V a
—p,)v(Q, E)
1 2 1

=1 [P,)v+E[P'~+In(2a)]]+0(s) . (2.28)

Using (2.27) and (2.28), we obtain from (2.23),

4f'P.x =~K)v (2.29)

g&(0)+ f [o ~(v)+(7 ~(v) P~—]
2frr ~ dv +

~ rr

2f'P ~
ln

1

2V0

2 & 2 & vN 2 vN

(2.30)

III. RELATING THE GOTTFRIED SUM RULE
TO KAON-NUCLEON SCATTERING

From (2.14) we obtain the sum rule for the sp scatter-
ing as

f, dv W2~(v, g )
Q /2

We assume the smooth extrapolation of the off-shell
pion-nucleon total cross section to the on-shell one. Then
(2.20) together with the experimental values f -0.094
GeV and P )v

—109 determines P & as 1.22 [19],and this
value corresponds to the small-x behavior of the sea-
quark distributions. We will discuss this point in Sec. IV.
The sum rule (2.30) has an ambiguous Part P')v. This
part was missed in Ref. [7] and found in Ref. [8] by an
analytical continuation from the nonforward matrix ele-
ment. In the case of the method in Ref. [8], the part cor-
responding to p,'& was not necessarily related to the in-
tercept of the Pomeron, and it entered naturally through
the t dependence of the residue of the Pomeron. In the
following section we explain how this p'z can be deter-
mined, and in so doing, we show that the value of the
Gottfried sum rule can be obtained.

(2.25)

where Q0 = 1 GeV . By expanding P )v(g, E) as

P )v(g, s)=P )v(Q )+sP,')v(Q )+O(s ), (2.26)
+ As(a, 0)

v'3
(3.1)

we obtain
2 E2f rrPrrN f ~ dV V

~0~ v a

2f 'P.x —+ln a
v 7T

0
+0 (s), (2.27)

VW~(v, g )
' ap(0) —)

0
2

ap(0) —1

P,~(Q, 1 —ap(0) )

(3.2)

As in Sec. EI, we take the leading high-energy behavior of
v8'2~ as
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Since the right-hand side of the sum rule (3.1) is Q in-
dependent, we obtain

f IF~~(x, g )
—p, (Q )]+p,' (Q2)

2 2 2 inI =gq(0)+ f [(v —m m~)'~
7T VO V

X [o ~(v)+o "(v)]—p„~]

= f IF2"(x, go) —p,~(go)[ +/3,'~(g 0)
1

2V0
(3.7)

and

where

(3.3)

(3.4)

where we assumed here the smooth extrapolation to the
on-shell pion-nucleon scattering amplitude. For the neu-
tron target, since we take the Cabibbo angle as zero, we
obtain

&dX 2

I —3C = Fq~x,
0 2x

+FP'(x, g ) —6F~~(x, g )], (3.6)

/3,~(g, c.)=p, (Q )+Ep,' (Q )+O(E ) .

Now we assume that the residue of the Pomeron p,~ and

p & comes only from the singlet piece. By comparing the
coeflicient of Ao(a, 0) in the sum rules (2.22) and (3.1), we
find the relation p & =6p, and obtain

p =6pq„p,'~ =6p,'~ . (3.5)

Then the regularization-dependent term p'z in the sum
rule (2.30) can be related to the p,' in the sum rule (3.3),
and we obtain

+Fz~(x, g ) —6F2"(x, g )], (3.8)

where C„ is defined similarly as C . The sum rules (3.7)
and (3.8) give us

F'~ x, —F'" x, =C —C„. (3.9)

The sum rule (3.9) takes the form of the Gottfried sum
rule, but in our case it does not necessarily take the value

3
From the derivation we see the value of the Gottfried

sum rule (C„—C„)depends heavily on the small-x behav-
ior of the structure function.

Let us now extend the argument to the kaon to get the
explicit value of C and C„. In this case we obtain two
other new sum rules as

Ig —3C = f [3IFP'(x, g )+F2"(x, g )] —[FP'(x, g )+F2''(x, g )j], (3.10)

I~ —3C„= 3 F2 x, +F2" x, —F2 x, +F2 x,
0 x

where
2 2

Ig =[g~~ (0)] +[g~~ (0)] + f 2 I(v m~mx)' —[o "(v)+o ~(v)] Px~]+ — ln
7T 0 V

(3.11)

1 +U.
2Vp

(3.12)

I"= [g" (0)]'+ f, I(v' —m'm')'~'[o. "(v)+o "(v)]—p ~]+ ln + U„,
7T 0 V 2Vp

and the symmetry relation as

f '.P.x =fx PKx

(3.13)

(3.14)

Here U and U„are contributions below the KN threshold. The sum rules (3.8), (3.10), and (3.11) give us the relations

C =—(2' Ig+2I ), — .1 (3.15}

C„=—
( Ig+2Ig+2I ), —1 (3.16)

C —C„=,'(Ig I~) . —— (3.17)

The last relation (3.17} relates the Gottfried sum rule to the kaon-nucleon scatterings. Now in the Ig and I/Born.
terms, U and U„originate in the KN reactions; hence, we can express them as [20]
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2 2

[g~ (0)]'+[gq (0)] +U =2— J (v —m~mx)' [cr ~(v) —c7 ~(v)],
7T 0 V

2 2

[gnx (())]2+U —
1 y (P m2 m2 )1/ 2I~E n(v) ~K n( ) j

0 V

From (3.12), (3.13), and (3.17)—(3.19), we obtain

4 2

7T 0

(3.18)

(3.19)

(3.20)

The deviation from —, is clearly expressed in this expres-
sion, and the experimental fact convinces us
(C„—C„)& —,'. Further, it should be noted that this ex-

pression does not depend on a particular parameter to
reach it. Let us try to estimate this magnitude of the de-
viation. We use the recent parameters given in Ref. [21]
in the region 4 &pz & 300 GeV/c, where pz is the
momentum of the kaon in the laboratory frame. In the
region 0.6&pK &4 GeV/c, we estimate its contribution
directly from cross-section data [21,22] with neutron data
extrapolation down to pz =0.6 GeV/c, and in the region
below 0.6 GeV/c we estimate it by setting

K+ K+
(cT "—cr )-1.8 mb, where this value is the extrapo-
lated one at pz =0.6 GeV/c. Then, by using the experi-
mental value of fz -0.11356 GeV, we obtain
(C~ —C„)=0.26, where from the region 4 &pz & 300
GeV/c we get the contribution —0.028, from
0.6&pK &4 GeV/c, —0.039, and from 0&pK &0.6
GeV/c, —0.006. In this estimate we neglected the con-
tribution above pz )300 GeV/c, which might be a small
negative quantity. Let us now consider the systematic er-
ror of this estimate. The error due to the extrapolation to
the on-shell quantity for the Adler-Weisberger sum rule
for the pion is about 5 —10%. For the kaon this kind of
error may be large, in general. However, in the case of
the Adler-Weisberger-type sum rule, a particular cancel-
lation of the extrapolation factors exist [23]; hence, we
can expect that the error will be reduced. Thus we take
here this kind of the error as 20%. As to the error from
the fit to data, we consider it as follows. We estimated
contributions above pK =4 GeV/c by using the parameter
in Ref. [19] and found that its contribution to (C~ —C„)
was —0.016. Compared with the fit by the parameter in
Ref. [21], this pushed up the value of the Gottfried sum
rule by 0.012. Now the parameters in Ref. [19] are old

K n Kand the fact o. n) cr ~ at high energy is not rejected
well in them. Hence this value will be reduced. Thus we
take that the error above pz )4 GeV/c is +0.008. Con-
cerning the error from the extrapolated region, we con-
sider it to be small, because the EX reactions behave
smoothly in this energy region as opposed to KX reac-
tions. However, considering the crude estimate in this re-
gion we take the error as +0.003. Then, since the error
from the region 0.6 &pK & 4 GeV/c can be expected to be
about 10%, i.e., +0.004, we can estimate that the net er-
ror from the fit to the data is about 20%. Then the total
systematical error can be less than 40% at most. There-
fore we obtain (C —C„)=0.26+0.03.

IV. SYMMETRY RELATIONS AT HIGH ENERGY
AND FLAVOR ASYMMETRY OF THE SEA QUARKS

= lim xA,,(x, Q )=a-0.15,
x —+0

(4.1)

where A,; denotes the sea-quark distribution in the proton.
It is important to note this constraint is Q independent.
The value 0.15 is consistent with the old estimate based
on low-Q data. However, in almost all the recent phe-
nomenological sea-quark distributions, this constraint is
not maintained at high Q . This may be no problem if
the small-x region which we discuss here is far from the
experimentally accessible region. However, considering
the role played by this constraint in the derivation of the
Gottfried sum rule, it may have phenomenological
significance at ongoing experiments at the DESY ep col-
lider HERA and future CERN and Superconducting
Super Collider (SSC) experiments. Now we can represent
the constraint (4.1) as the one on the Pomeron-meson
couplings. By denoting them as y; where the superscript
0 meant the off-shell (q =0) quantity, we obtained [7]

2yo f2yo f2 0 f2 0 f2yo (4.2)

where in this case the discussion was generated to SU(4).
This means that the scale of these couplings is deter-
mined by the decay constants of pseudoscalar mesons,
which is a signal of spontaneous chiral-symmetry break-
ing of the vacuum at high energy. It is interesting to note
that Pagels already obtained a similar relation to (4.2) by
a completely difFerent method many years ago [16]. His
result was f y =const, where y„ is the on-shell
Pomeron-pion coupling. We can have another represen-
tation of the constraint (4.1) or (4.2). We denote the
structure function of the sea quark in the Pomeron as
P;(x). Then, according to the method in Ref. [24], we
obtain, from (4.1),

lim xP„= lim xPd = lim xP, -0.0087 .
x —+0 x~0 x~O

(4.3)

Let us turn now to the fiavor asymmetry of the sea
quark. By the same kind of reasoning as in Sec. III, we
find C —1.32 and C„—1.06 from the relations (3.15) and
(3.16). Then the sum rule (3.6) becomes

Here we first discuss the symmetry relations at high en-
ergy. From (2.29) and (3.4) together with the fact that
the Pomeron is flavor singlet, we obtained [7]

lim xA, d(x, Q )= lim xA, „(x,Q )
x —+0 x~O
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—,
' f dx(A, d

—A,„)+,
' —fdx(A. d

—A,, )-0.51

From the Gottfried sum rule, we obtain

A —= f dx(Ad —
A,„)-0.11 .

0

Then the sum rules (4.4) and (4.5) give us

B = f dx ( A, z
—

A,, )-0.66 .
0

(4.4)

(4.5)

(4.6)

Thus the ratio of the SU(2) symmetry breaking to the
SU(3) one, A /B, is about 0.17. Since the distribution of
the sea quarks are flavor symmetric near x =0, this ratio
means the strange sea quark is suppressed very steeply as
we go to large x compared with the up and down sea
quarks. Although it may be a mere coincidence, this ra-
tio is about the same order as the Cabibbo angle singe.

V. CONCLUSIONS

The experimental value of the Gottfried sum rule was
explained by the sum rules based on the current anticom-
mutator on the null plane. It was stressed that the sym-
metry constraints at high energy played an important

role in obtaining this value and that these relations
rejected the spontaneous chiral-symmetry breaking of
the vacuum. Thus this approach may have some
relevance to the current popular approach at relatively
low energy, which is also based on this symmetry break-
ing [4—6]. Using another sum rule derived by the current
anticommutator on the null plane, we showed that Aavor
asymmetry of the sea quarks could be explained natural-
ly. We gave this as the ratio of the SU(2) symmetry
breaking to the SU(3) one and showed that its value was
about 0.17.
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