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Threshold effects on the mass-scale predictions in SO(10) models and solar-neutrino puzzle
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We compute the threshold uncertainties due to unknown masses of the Higgs bosons on the predic-
tions for the intermediate and unification scales, Ml and MU, respectively, in SO(10) models. We focus
on models with separate breaking scales for parity and SU(2)z symmetries since they provide a natural
realization of the seesaw mechanism for neutrino masses. For the two-step symmetry-breaking chains,
where left-right-symmetric gauge groups appear at the intermediate scale, we find that parity invariance
of the theory at the unification scale drastically reduces the grand-unification-theory (GUT) threshold
effects in some cases. Including the effects of the intermediate-scale thresholds, we compute the uncer-
tainty in the above mass scales and study their implications for proton lifetime and neutrino masses. An
important outcome of our analysis is that if the Mikheyev-Smirnov-Wolfenstein (MSW) solution to the
solar-neutrino puzzle is accepted at the lo. level, it rules out SU(2)1 XSU(2)& XU(1)~ L X SU(3), as an
intermediate symmetry for SO(10) breaking whereas the intermediate symmetry
SU(2)L X SU(2)& X SU(4), is quite consistent with it.

PACS number(s): 12.10.Dm, 11.15.Ex, 12.15.Ff

I. INTRODUCTION

The grand unified theories [1] (GUTs) provide an
elegant extension of physics beyond the standard model.
The requirement that the gauge couplings constants in
these theories become equal at the GUT scale (MU ) lends
them a predictive power which makes it possible to test
them in experiments such as those looking for the decay
of the proton. The most predictive such theory is the
minimal SU(5) model of Georgi and Glashow [1], where
the SU(5) symmetry breaks in one step to the standard
model. The only new mass scale in this model is MU
which can be determined by the unification requirement
using the low-energy values of any two gauge couplings
from the standard model. One then predicts not only
MU, but also the remaining low-energy gauge coupling
constant (for example, sin Hii, ). It is well known that for
the minimal SU(5) model they lead to predictions for the
proton lifetime as well as sin 0~, both of which are in-
consistent with experiments.

This, however, does not invalidate the idea of grand
unification and attention has rightly been focussed on
SO(10) [2] GUT models which can accommodate more
than one new mass scale. Supersymmetric SU(5) [3] mod-
els also belong to this class. In this class of two-mass-
scale theories, the values of low-energy gauge coupling
constants can determine both the mass scales again mak-
ing these theories experimentally testable. The deter-
mination of the values of the new mass scales become
more precise as the low-energy values of the gauge cou-
pling constants become better known. It is therefore not
surprising that the recent high precision measurement of
a„„„and sin gii, at the CERN e+e collider LEP [4]
once again revived interest in grand unified theories [5].
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Supersymmetric SU(5) theories have been studied with
the goal of predicting the scale of supersymmetry break-
ing [5]. These models, however, do not have any room
for a nonzero neutrino mass nor natural generation of
adequate baryon asymmetry, whereas, the SO(10) model
is the minimal GUT scheme that provides a framework
for a proper understanding of both these problems. In
this paper, we concentrate on the SO(10) models with a
two-step breaking to the standard model and study the
threshold eff'ects on the predictions for the two new mass
scales, i.e., MU and MI. In order to appreciate the
significance of our work, it is worth pointing out that in
SO(10) models the scale Mtt as usual is related to proton
decay whereas the intermediate scale is related to neutri-
no masses if the intermediate symmetry is either of the
left-right symmetric [6] groups SU(2) L X SU(2)z X G„
where G, is SU(4)c or SU(3), XU(l)tt L. If the neutrino
mass is determined independently [for example, from the
Mikheyev-Smirnov-Wolfenstein (MSW) solution to the
solar neutrino puzzle], .then the seesaw mechanism deter-
mines the range of the required intermediate mass scale.
The viability of a given SO(10) model will then depend on
both the value of MI obtained from renormalization-
group analysis as well as the uncertainties in this value
arising from threshold corrections.

Let us discuss the kind of SO(10) models we will study
here. As is well known, the SO(10) group contains the
maximal subgroup SU(2)L X SU(2)z X SU(4), XD, D being
a Z2 symmetry which implements the parity transforma-
tion (as well as particle-antiparticle transformation). We
will refer to this symmetry as D parity. The actual nature
of the SO(10) model depends on what symmetry appears
at the intermediate scales (i.e., between the GUT scale
and Mii, ). The most interesting SO(10) models are the
ones where the symmetry breaking to the standard model
occurs in two steps, with either of the left-right sym-
metric groups SU(2)L X SU(2)~ X SU(4), or
SU(2)L X SU(2)ti X U(1)z I X SU(3), (denoted henceforth
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by G22~ and G22» respectively) as the only intermediate
symmetry. These are also the theories for which definite
predictions can be made. Our work will focus on them.
Note the absence of D parity at the intermediate scales.
Use of Higgs multiplets belonging to 45 and 210 repre-
sentations to break SO(10) can lead to such a scenerio, as
was pointed out in a series of papers in 1984 by us in col-
laboration with D. Chang [7]. Let us briefly recapitulate
some other motivation for considering such models.

One of the attractive features of the SO(10) models is
that they provide a natural understanding of the neutrino
masses via the seesaw mechanism [8]. It has, however,
been noted that the seesaw mass matrix does not follow
naturally in models where D-parity and SU(2)z breaking
scales (M„) are the same. On the other hand, if the D
parity breaking scale Mp is such that Mp &&Mg then the
seesaw formula emerges naturally [9]. This is perhaps the
most compelling motivation for requiring the D-parity
breaking scale to be significantly larger than Mz. There
are, however, other motivations from cosmology. If
Mp =M+, there arise domain walls bounded by strings at
the epoch when SU(2)z X D symmetry breaks down.
They dominate the mass density of the universe making it
hard to understand the successes of the big bang picture.
Such problems do not arise in SO(10) models with
separate D-parity breaking scenarios. Furthermore, ex-
act D parity leads to n~=n~ In S.O(10) models where
the baryon asymmetry of the universe arises from Higgs
boson decays, the ratio n~lnz receives an additional
suppression (M~/MU) on top of its small value predict-
ed in generic GUT models. This mechanism would
prefer scenerios with the D-parity breaking above that of
SU(2)z and at the GUT scale. We are of course fully
aware that, if baryon asymmetry arises from the decay of
heavy Majorana neutrinos, the above constraint does not
appl .

A complete two-loop analysis of the predictions for
sin 9~ and proton lifetime in this class of SO(10) models
was carried out in Ref. [10]. Depending on the nature of
the Higgs boson spectrum used to implement the symme-
try breaking and the nature of the intermediate symmetry
groups, the intermediate scales and the associated physi-
cal implications were discussed. The mean values of the
mass scales will be taken from this paper.

A basic limitation of all grand unified theories is that
all mass-scale predictions are subject to uncertainties
arising from Higgs boson thresholds [11]. It has there-
fore been argued [12] that since the Higgs bosons in ques-
tion belong to large representations in SO(10) theories,
one might worry that the mass-scale predictions derived
from two-loop calculations are completely unreliable. In
other words, even if sin 0~ and o;„„„arevery precisely
known, the unification scale MU and the intermediate
scale MI will have large uncertainties. It was, however,
subsequently pointed out that this need not always be
true; for instance, if an SO(10) model has an intermediate
symmetry group SU(2)I XSU(2)~ XSU(4), XD, (G224D)
the GUT threshold uncertainties in sin 0+ exactly cancel
out [13]. This result of course holds only if the inter-
mediate symmetry is 6224D and does not apply to the

more interesting models with separate D-parity breaking;
it also does not say anything about the uncertainties due
to intermediate-scale thresholds. It does, however, give
rise to the hope that existence of symmetries may reduce
the net impact of threshold uncertainties. In any case, if
the grand unified theories are to be useful, threshold
efFects [14] must be calculated. In this paper, we begin
this program for the two SO(10) theories and hope to ex-
tend it to other models later on. The main results of this
paper have already been reported earlier [15].

In Ref. [15] and in the present paper, we adopt the fol-
lowing approach. Using the evolution equation for the
coupling constants, we express the MU and MI in terms
of the known low-energy parameters o,st„„,sin 0~, and
a, and the threshold corrections due to Higgs bosons.
Since the LEP results have considerably reduced the ex-
perimental uncertainty in sin 0~ as well as cx„ the main
uncertainty comes from the arbitrariness associated with
the Higgs boson masses and the theoretical uncertainties
in the scales MU and MI can be computed. The final
magnitude of the uncertainty depends on how far the sca-
lar masses are split from the symmetry-breaking scale.
Using the standard model as a guide, we assume that con-
straints of one-loop radiative corrections and unitarity
bound on tree-level amplitudes would allow the scalar bo-
son masses to be a factor of 10 on either side of the
symmetry-breaking scale. We also present results for a
wider splitting of (30)—' for illustration even though we
believe this to be rather unlikely.

We consider the symmetry-breaking chains:
(A) SO(10)~G224 ~G„d;
(B) SO( 10)~G22~3 ~G

We compute the Higgs boson threshold effects on the un-
certainty in the intermediate scale (Mc/Mc) in case (A)

+2.7

to be 10 ' and that in the value of the grand unification
+0.8

scale, i.e., in (MU/MU) to be 10 ' . This corresponds to
a maximum value for r in case (A) to be 10" years for
a, =0. 11 and 10 years for a, =0.1. For case (B), we

+0.6

find the uncertainty in (Mz /M~ ) to be 10 ' and that in
(MU/MU) to be at most 10— . Note that the threshold
uncertainties are much less than the estimates of Ref.
[12]. For a, =0.11, we obtain an upper limit on r in this
case to be 5 X 10 years.

Using our results in combination with the seesaw for-
mula for neutrino masses, we find that the presently
favored nonadiabatic MSW solution to the solar-neutrino
puzzle rules out the SO(10) model (B) which has
SU(2)l XSU(2)z XU(l)z L XSU(3), as an intermediate
symmetry. In our opinion this is an important result
since this will be the second GUT model that is being
definitively ruled out by experiment. The syrnmetry-
breaking chain [model (A)] is, however, quite consistent
with data. This paper is organized as follows: in Sec. II,
we present a derivation of the formulas for the threshold
uncertainties for the model (A); in Sec III, we derive the
contribution of the various Higgs multiplets to these un-
certainties and give our estimate of these effects. Section
IV uses the results of Secs. II and III to derive the same
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result for the model (B); in Sec. V, we derive the implica-
tions of our results for the solar-neutrino puzzle and in
Sec. VI, we discuss the implications of our results for
proton decay and the effect of adding extra Higgs multi-
plets on our result. In Sec. VII, we close with some con-
cluding remarks.

II. THE FORMULA FOR THE THRESHOLD
CORRECTIONS: MODEL (A)

Let us now proceed to derive the equations for the
threshold uncertainties. We will illustrate the technique
for the model (A). We start with the standard
renormalization-group equations for the evolution of the
gauge coupling constants:

M, MU
sin 0~ ——=B ln +BU ln

a, 8 ' Mz Mz

where

+G, +GO+I g,

where

A, = ( 8a 3
—3a 2L

—Sa Y
—6a 4 +3a

zing
+ 3a 2L ),

AU=(6a4 —3azi, —3azL),

F, =3 lnP( a 2L
—a 2L +a 2' —a 2'ii —2a 4, +a 4', ),

3(~3c 8~2L 8~Y+ 4~4c g~zL 77~28 ) (4)

2a;a, + gb;a;2~ 8

d
cubi

p dp

In Eq. (1), a; =g; /4m and the one-loop coefficient

a = —"~+4n + 'T(s)—
3 3 g 3

where n is the number of fermion generations and T(s)
is the contribution of the Higgs bosons. The b; are the
two-loop coefficients, which are not needed here. At each
symmetry-breaking threshold, we use the following
matching conditions [14] (we assume that the group Gl
breaks to the group G; at the scale MI):

1

a, (MI )
(2)

M,
16m a, ' ——

+em Acln + AUln
Mz

+F,+F +I", , (3)

In Eq. (2), k;=Tr(8; ) +Tr(9; ) ln(MH/MI); 8; are
the generators of the lower symmetry G; for the represen-
tations in which the heavy gauge bosons appear; 0; is the
same for the superheavy Higgs bosons.

Let us now apply the formulas in Eqs. (1) and (2) to the
SO(10) models described earlier as (A). Note that since D
parity has been broken in both cases at the GUT scale,
the Higgs multiplets needed to implement the symmetry
breaking in model (A) are in 210-, 126- and 10-
dimensional representations of the SO(10) group. We
denote by MU, M&, and Mz the three symmetry-breaking
scales and they arise from the vacuum expectation values
(VEV's) of the above three Higgs multiplets, respectively.
The D-parity breaking manifests itself in the mass of the
submultiplet of the 126 representation hL [transforming
as (3,1,10) under Gzz4] being different from the submul-
tiplet b,z transforming as (1,3, 10) under the same group.
We postpone any further discussion of the Higgs bosons
to the next section. Let us now derive the formula for the
threshold corrections.

Using Eqs. (1) and (2) and the standard Georgi-Quinn-
Weinberg —type analysis, we find the following expres-
sions for sin 0~ and a, :

Denoting by Co =(16~/a, )(a, /a, ——,')
C, =(16~/a, )(sin gii, ——', ), we get

and

Mc
Aln

M,

MU
Aln

M,

CoBU —Ci AU

A, BU —AUB,

CoB, —Ci A,

BUA, —AUB,

(6)

Using Eqs. (3) and (4), and the values of various a, 's

given above to evaluate the A's and B's, we can now esti-
mate the uncertainty in the quantities M& /M& and
MU/MU where the quantities with subscripts denote the
values corresponding to the mean values of sin 0~ and

B,=5(a 2L
—a Y )

—(sa 2L
—2a 4,

—3a 2~ ),
2a4

G, =lnP(5azL —3azii —2a4', —5azI +3azii +2a4, ),
6(~Y ~2L + 5~2R + 5~4c ~2L )

In the above expressions, a, , a and a;" denote the evo-
lution coefficient for the gauge couplings between M~
and Mc Mc and MJ and Ma and MU, respectively. M~
is the scale of D-parity breaking. The I"s denote the
two-loop contributions, which do not contribute to
threshold uncertainties to the leading order and will
therefore be omitted henceforth. The values of the a s
for model (A) are azL =az'z, =az~ = —", , azL = —3,
a' ——— a" = —'~ a =~' a ———7.4c 3 & 4c 3 & Y ~p& 3c

They will be used in the numerical estimates of the
various effects. Using Eqs. (3) and (4), we can express the
mass scales M& and MU in terms of the low-energy pa-
rameters and the threshold contributions. The uncertain-
ties in the low-energy parameters are experimental and
can be estimated to be small as we show. The threshold
contributions buried in the k's introduce the theoretical
uncertainty having to do with the fact that the heavy
Higgs masses are unknown.

Let us first address the uncertainties due to the experi-
mental errors in sin Hid, and a, which we take [16] as

sjn20~ =0.2334+0.0008,

a, =0.115+0.007 .
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C +p pp5=10-
McP

U +p=10—
U

We will find that these uncertainties are small com-
pared to those arising from unknown masses of heavy

Higgs bosons, thanks to precision experiments at the
LEP e +e collider.

Again using Eqs. (3) and (4) and the expressions for A,
B, F, and G, we can derive the following expressions for
the uncertainties in MU and Mc arising from threshold
effects only:

Aln
z

=fM+f~+ fM —(&M/At3)(f &+f8 +f& )+(b InMc),„,(a„sin 8~),

Mc
Aln

z
(f~ +fs +fR )+(61nMU ),„,(a„sin 8~),

where

and

QpL +ape 2Q4
M

Q pg +Q pg 2Q 4

~2L ~4cU

3(a 2L +a 2R
—2a 4, )

5A, +3k —8A, ,
18(a 2L +a 2R 2a 4

lnP, (loa)

(lob)

(10c)

(a 4', —a 2L )(a 2R
—a 2L )lnpfP—

(a 2I. +a 2R
—2a 4, )

(~4C ~2L )( 2R 2L )fU—
6(a 2L +a 2R

—2a 4, )

A2L(a4, —a2R )+ —', A, Y(azL —a4, )+A3, (a2R+ —',a4, —
—',a2L )fC

6 QpL, +Qpg 2Q4

—,a&+QUAL
—

—,a3,5 ~ 8

QpL+Qpg

(10d)

(10e)

(10f)

(10g)

5 1

Q pl +Q pR 2Q4c
B, (10h)

where

B = ( —,
' a 2R + —,

' a 4c
—a 2L ) ( —,

' a Y +a 2L
—

—,
' a 3 )

( a 2L +a 2R 2a 4C ) ( a Y a 2L )

In Eq. (10), p=MU/MP. If the intermediate symmetry
is Gzz4D, one can still use the above general expressions,
after dropping the f s and fM terms in Eqs. (8) and (9).
(In this case of course, all a'=a". ) Note that in this case
fz and f0 vanish. To see that this is what one expects
from the results of Parida and Patra (Ref. [13]),we note
that in their work (Ref. [13]), the uncertainty in Mc was
assumed to be zero. Using this and bringing back the
sin 8~ and a, terms to the equation (9), fs and fs terms
can be identified as the GUT threshold uncertainty in
sin 0~ and therefore their vanishing in the Gzz4D limit
was what was established in Ref. [12].

III. SURVIVAL HYPOTHESIS AND ESTIMATION
OF THE THRESHOLD UNCERTAINTIES

In order to give a numerical estimate of these uncer-
tainties, we need to know the masses of the physical
Higgs bosons; more specifically, what submultiplets are at
what mass scale. This can be done using the survival hy-
pothesis for the Higgs bosons [17]. The basic assumption
of the survival hypothesis is that only a minimal number
of fine tunings of the parameters in the Higgs potential
are done as required to ensure the hierarchy of the vari-
ous gauge boson masses. In the case at hand we need to
fine tune only two parameters since we have only a two-
step breaking. The survival hypothesis then says [17]
that a submultiplet of the Higgs multiplet of the GUT
group, which acquires a VEV to break a given subgroup
G, , is stuck at the symmetry-breaking scale. The other
submultiplets which transform as complete irreducible
representations under G, get pushed to the next higher
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Repeating the similar procedure for the intermediate
scale, we find the contribution to A. 's to be as follows:

——
5 (jr)~+ 2rIR

~
+4rlRi+ 16&)it 3+ 32gR

+64r)~ +24il~ +14), (13)

scale. Using this, we find the scales for the Higgs boson
masses.

For the case of model (A), the Higgs multiplets needed
are 210, 126, and two ten-dimensional multiplets. They
are responsible for the three symmetry-breaking scales
MU, MI=M~, and M~, respectively. As is well known,
the 210 multiplet also breaks the D-parity symmetry. Us-
ing the survival hypothesis, the scales of the different
Higgs multiplets can be obtained and they are listed in
Tables I and II. In Table I, we list the Higgs bosons with
masses around MU; in Table II, the Higgs bosons with
masses near MI are listed.

The U submultiplet is the Goldstone mode correspond-
ing to the superheavy gauge bosons and is omitted in
computing the threshold uncertainties.

Let us now give their contributions to the various A, 's

and to final uncertainties. Defining g;=lnM, /MU, we
find

2L
—kq~ —6+30'( +30'~+ 20'( . (11)

Here, we have assumed that Mz =Mz by left-right

symmetry. Similarly, g, and g2 effects are combined and
denoted by g. The coefficients in front of the difFerent r)'s
are simply the Dynkin indices of the different multiplets
under the different gauge groups. For instance, for g2L,
the Dynkin index is that of the gauge group SU(2), etc:

4c =4+2nH+2ns+ 323~ +24~x+24n~+4

TABLE II. The Higgs bosons with masses at Mc. The num-
bers within the parentheses refer to the representation content
under SU(2)L X U(1) r X SU(3)c. The multiplet P arises from the
P(2, 2,0) and the R multiplets arise from the multiplet

(1,3, 10).

SO(10) representation

10

G»3 submultiplet at M&

P(2, —Q i
—,', 1)

126

R, (1,—Q-', -,',6)

R~(1,2+—,', 1)

In deriving Eqs. (16) and (17), we have assumed that
the Higgs multiplets belonging to a single SO(10) super-
multiplet have the same mass at a given- scale [18). This
implies that g& =gz=g&2&, gz=q&, and all g~ are equal.
While there can be deviations from this degeneracy as-
sumption, their contributions will not change our results
noticeably. Secondly, we allow the e"'s to be between —,

'

and 10 as well as —,
' and 30. The first case corresponds to

allowing the Higgs self-scalar couplings to range from
10 to 10 times the gauge coupling and is better
motivated by the analogy to the standard model than the
second choice, although we present the results for both
cases. As mentioned above, the value of M& is always

L

kept lower than MU, which corresponds to taking P less

(14)

(15)

b ln(Mc/Mz ) = 1.29 lnP

C
gf

1+~~ +5~~ +5~~ +~~ +5TI

The threshold contributions to b, ln(Mc /Mz ) and
b, ln(MU/Mz ) can now be written as

TABLE III. In this table, we present our results for the
threshold uncertainties in the intermediate scale and the
unification scale for dift'erent values of e". The first four lines
correspond to the case where the uncertainty in MI is maxim-
ized whereas the last four lines correspond to the case where the
uncertainty in MU is maximized.

+0.0259( —2+2' &o+ 4rI iz&+

2&bio�)

Symmetry-breaking
chain MH /MU H /MI I // I MU/ MU

+0.0017(65—
15'~+ 769rI~ ),

b, ln(MU /Mz ) = —0.92 1nP —0.0621rj,o
—0. 124r), 2s

0.062 92,o+ 0.0319y—0.496

TABLE I. The Higgs bosons at mass scale MU.

(16)

(17)

G224

G224

to 30

10 to 10

+4

10
—2. 1

+0, 9

1O-'4

+2.7

1O-'4
+0.6

1O-"

+1.2
lp

—2. 5

+0. 1

1p
—0.2

+0.8

1O-"

1O+"

SO(10) representation

10

126

210

G224 submultiplet

H(1, 1,6)

go(2, 2, 15), S(1,1,6), AL (3, 1, 10)

X (3, 1, 15), X (1,3, 15),
g, (2, 2, 10), g,(2, 2, 10)
$3(1,1, 15), S'l l, 1, 1, ), U(2, 2, 6)

G224

G2213

G224

30 to 30

—to 10

+4.2

]0 2. 2

+0.5

1p
—0.2

+2.8

1O-"
+0.3

1O-'

+1.2
1O-"

10+0.2

+0.8

1p
—1.7

1p+0.2
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than one. Using Eqs. (16) and (17), we compute the un-
certainties in the intermediate mass scales as well as the
MU. We present these results in Table III. There are
two possibilities; one when the uncertainty in Mc( =Mr )

is maximized and another when the uncertainty in MU is
maximized. We find the maximal uncertainty in MU/MU

+O. 8 +2.8

to be 10 ' whereas that in Mc/Mc to be 10—I ~ from
Higgs boson threshold effects alone. We will study the
impact of our results on the predictions of the SO(10)
model in Sec. V.

IV. THRESHOLD CORRECTIONS
FOR MODEL (B)

Let us now turn our attention to discussing model (8),
where the SO(10) symmetry first breaks down at the scale
MU to SU(2)l X SU(2)~ XU(1)~ I X SU(3), which subse-
quently breaks down at scale MR to the standard model.
Again as before the D-parity symmetry is broken at the
GUT scale. The Higgs multiplets necessary to implement
this chain are 45-, 54-, 126- and 10-dimensional ones.
The D-odd component of the 45-dimensional Higgs mul-
tiplet breaks the GUT symmetry. It has been pointed out
that I19], without the presence of the 54, the 45 will
break SO(10) down to SU(5) XU(1) rather than Gzz3, .
However, as far as the threshold corrections are con-
cerned, in the limit of exact degeneracy the contribution
of the submultiplets of the 54 exactly cancel. Let us now
present the equations for the threshold corrections to MU
and M~ in this case. Using the same notation as in Eqs.
(8) and (9) [except that we replace Mc by M~ in Eq. (9)],
we give the expressions for the various f's and A' s
below. Defining A U

=Sa 3,
—3a zi

—3a zz
—2a~z and

BU =5a zi.
—3a z~

—2a~i, we get

1 5Ag= Sa3, —3a~i —sar — (a~i —ay), (18a)
BU

A,~i (126)=24gH + 12rlH +6rIH

+6gH +16gH +2gH (19a)

A,~~(126)=A,~i(126),

X3~ ( 126)=30gH +6r)H +4gH +4gH

+24nH, +nH, +nII, (19b)

A,~i (126)=12gH +6gH +16gH +16gH +rIH +BOIH

A~i(10) =A~„(10)=0,
(i10)=k (310)=—,'(gT +gT ),

A,~i(45) =2rjs

A,~~(45)=2gs

(19c)

(19d)

(19e)

(19fl

(19g)

In order to evaluate the threshold corrections, we need
the values of gauge coupling evolution coefficients a,.'s as
well the mass scales of the physical Higgs bosons. We
have a~I =aq~ =aq~ = —

—,, A~'I =7, a3, =a3', = —7,—11 19 —41

Next we will use the survival hypothesis to determine
the mass scales of the various Higgs bosons. In Table IV,
we give the Higgs bosons with masses of order MU. We
do not include the components of the 54-dimensional
multiplet since in the degenerate multiplet approximation
their effects cancel out exactly. The Higgs fields with
masses of order Mz are only two in number and are
therefore listed in the text.

There are only two Higgs multiplets at scale Mz,' they
are h~+(1, 2+—', , 1) and P(2, —

—,'Q —,', 1) where the num-
bers within the parentheses refer to their transformation
property under the standard model. Their contribution
to the various A, 's are given below:

1
A~ = 1 — (8a3, —3a~i —Sar) (18b)

TABLE IV. Higgs bosons with masses of order MU.

f g =lnl3 (8a3', —6aq'I 2ag'I ) — (aq'I —ag—'I )
BU

(18c)

SO(10) representation G»» content of the heavy boson

T, (1, 1, —,
' Q —,', 3)

T~(1, 1, ——,'Q —', 3)

fg
= (SX3,—3k~( —5X), )+ (k~i —

A, r), (18e)

1f~ = lnP 1 —
( Sa 3', —6a q'I —2a g'I ) (18fl

1
fw = (SA,~,

—6i,~i
—2A, ~I ),

6AU
(18g)

—1 2
fg = (Sk~, —6A, ~z

—2A, gr )+ (A~i X~I ) )—
6AU 6BU

(18d)

126 Hip(3, 1, ——,
' Q —,', 6)

Hpl (3, 1, ——,
' Q —', 3)

H4(2, 2, + —,'Q —', 3)

Hs(2~2~0~8)~ H6(2~2~0~ 1

Hg(1, 1, ——,
' Q —', , 3)

1
fm = (SA,&,

—3k~i —5A, ) ) .
C 6AU

(18h) 45 Sl (1108)S~(3&1~01)S3(1301)
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X3,(45)=3gs

A~i (45)=0,

R
~2L Ip ~

a' =0

(19h)

(19i)

(19j)

(19k)

(191)

that due to the presence of couplings of Higgs bosons of
type 126X126X IOX 10, a VEV of Az induces a VEV of
the 126 submultiplet AL of order m~/Uz. This leads to a
direct mass for a11 left-handed neutrinos of the same or-
der invalidating the conventional seesaw mechanism for-
mulas. If, however, D parity is broken at the GUT scale,
the b,L VEV becomes only of order [9] m~v~ /M~ which
is smaller than the seesaw contribution to the neutrino

Using Eqs. (18) and (19) and the values of a, 's we get
for the threshold contribution to the uncertainties in MU
and Mz the following expressions:

masses.
After the radiative corrections are taken into account

[25], the formulas for neutrino masses are (assuming gen-
eration mixings to be small)

b, ln(MU/Mz ) =0.06851nP —0. 171'&~6—0.049g4~

—0.039' )o
—0. 177'~—0. 146'~, (20)

1

m„
m =0.5

M~
(23a)

b, In(M& /Mz) =0.095 inP —0.083rI&26+0.033g4~

+0.062' )o
—0.06g~+0. 22'~ (21)

m,
m =0.7

M~
(23b)

In order to evaluate the possible uncertainties, as be-
fore we keep j3 less than one and allow e" to vary between

and 10 in one case and —,', and 30 in the second case.
The results are given in Table III. We see that in this
case the threshold uncertainties are much less than in
model (A). The maximal uncertainity in Mz /M~ is+0.6

10 whereas that in MU/MU is 10—
We also wish to note at this point the uncertainties in

MU and Mz arising from the errors in a, and sin 0~:
Using the same formula as in Eqs. (6) and (7), we find for
model (B)

MU /MU = 10—,M~ /M~ = 10— (22)

V. SOLAR NEUTRINO PUZZLE AND SO(10)

In this section, we study the implications of the results
derived in this paper for the solar neutrino puzzle. As is
well known, one of the most interesting resolutions of the
solar neutrino deficit is the so-called MSW matter oscilla-
tion mechanism [20]. In this mechanism, resonant
enhancement of the oscillation v, to either v„or v, takes
place in the solar core for a range of values of the Am
and the mixing angle 6. In the so-called high-mass (adia-
batic) solution, the value of hm is of order 10 eV
with sin 0=0.02 —0.6 whereas in the nonadiabatic solu-
tion, we jnstead have Am sjn 20=4X 10 eV wjth
Am = 10 eV —8 X 10 eV . The combjnatjon of
chlorine [21], kamiokande [22], and initial gallium data
[23] seems to point towards the nonadiabatic solution
[20]. Furthermore, in SO(10) models, it is not easy
without unnatural choice of parameters to get v, —v„
mixing angles larger than the Cabibbo angle. In this
case, the nonadiabatic branch is automatically picked,
which we assume below. This case seems to fit quite well
with the seesaw picture for the neutrino masses in the
SO(10) model [24] provided one assumes D-parity break-
ing [9]. In the presence of D-parity breaking, the
hierarchical quadratic mass formula for neutrino masses
follows naturally (a fact, which appears not to have been
well appreciated by many theorists). The point, briefiy, is

m,
m =0.18

Mg
(23c)

m =0.006 eV —180 eV .

Model (B): m„=10 eV —10 eV;
e

m =10 eV —10 ' eV,
P

m =100 eV —1'keV .

We see that if the adiabatic solution is ruled out as is
currently believed, then model (B) will be ruled out by the
solar-neutrino experiments and only model (A) will be ac-
ceptable. This is an important result in our opinion since
there are no other uncertainties one can hide behind to
save this model.

Two remarks are now in order:
In the framework of general SO(10) models, the rela-

tions in Eq. (23) can be turned into lower bounds when
the same maximum value is chosen for the heavy neutri-
no masses and our conclusions remain unchanged. To
see this note that the general seesaw formula leads to
m =m„(M~) 'm„. When all eigenvalues of Mz ac-
quire their maximum values, j.e., M&=Mr, we have the
inequality m ( m „m„)/MI . On diagonali zing both

In order to find the neutrino masses, we need to know
M~ which is given by M~=(f/g)Mz. It can be argued
on the basis of vacuum stability [26] that f ~g. The
mean value of M~ has been obtained from two-loop
analysis of the two SO(10) models in Refs. [10,27]. For
case (A) we have Mc = 10" GeV, whereas for model (B),
we have M„=10 GeV. The uncertainty in the exponent
due to the error in a, and sin 0~ is about 0.025 in
model (A) and +0. 18 in model (B). Including this and
the threshold uncertainties, we find the minimum value
of neutrino masses (corresponding to f =g) to range be-
tween the following values:

Model (A): m =6X 10 ' eV —2X 10 eV;
e

m =4X 10 eV —10 eV;
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sides, we get m ~m, /Ml at the GUT scale. This only

strengthens our conclusion.
In deriving our conclusion in case (B), we assumed all

components of the 54-dimensional Higgs boson to have
the same mass. Let us see what uncertainties are
introduced if this assumption is relaxed. Under G22]3,
the 54-dimensional representation breaks up as
S', (2, 2, —Q—', —,', 3); S', ; S3(1,1,—2Q —'„6);S~; S5(1,1,0, 8);
S6(3,3,0, 1). Their contribution to the uncertainity in
Mz is given by

MU5 ln = —0.73', +0.25',
S6

'
S5

Let us now turn to the question of the stability of our
results. It is sometimes stated that any additional Higgs
multiplet added to a GUT model will add to the already
existing uncertainty. However, in a recent paper [28], it
has been shown by one of the authors that if the addition-
al Higgs multiplet does have a VEV or has VEV in a
gauge direction which has been broken by a Higgs field
with the same representation content, then threshold
effects from such multiplets always cancel in sin t9~ or
the intermediate scales. This lends a degree of stability to
the above calculations.

VII. CONCLUSIONS

+0.73gg —0.25',S3
(24)

VI. HIGGS BOSON RELATED UNCERTAINTY
IN PROTON DECAY AND STABILITY

OF THE THRESHOLD CALCULATIONS

In this section, we discuss two questions: (i) the uncer-
tainty in the predictions for proton decay and (ii) the
effect of adding extra Higgs bosons to a GUT theory on
the above calculations. First, we discuss the predictions
for proton in the two SO(10) models under discussion.
Again using the results of Refs. [10,27] we find that for
e, =0.11, the value of MU = 10' GeV. The uncertainty
in a, leads to an uncertainty of order 10—+ ' [see Eqs. (8)
and (22)] multiplying the above value. We predict the
proton lifetime for the model (A) to be

35+0.7+0.9r =1.6X10 "years. For the model (B), we
find ~ =1.6X10 * —' — years.

p + +
p

In order to see how big this effect is, we have analyzed
the most general SO(10) invariant Higgs potential involv-
ing the 45- and 54-dimensional Higgs multiplets. For
reasonable values of the self-scalar couplings (i.e., A, ~ 1 or
so), the various masses are within a factor of 2 —4 of each
other. Allowing therefore a liberal spread of value for e"
between —,', and 1, we find the maximum uncertainity in

Mz induced by a nondegenerate 54 to be at most a factor
of 10. This would put a lower bound on m of 5 X 10

eV which is bigger than the required upper limit of
3X10 eV. The splitting of the 45 multiplets does not
aff'ect the results as can be seen from Eq. (21) due to their
small coefficients. We note that in deriving our con-
clusion, we have taken the data at the 1o. level.

In conclusion, we have presented a detailed analysis of
the threshold effects due to the unknown masses of the
Higgs bosons 'and shown their effect on the numerical
predictions for the values of the unification and the inter-
mediate scales in two SO(10) models with a two-step
breaking. To the best of our knowledge, this is the first
time such an analysis has been carried out for the SO(10)
models. An interesting outcome of this analysis is that
the nonadiabatic MSW solution to the solar-neutrino
puzzle is inconsistent at the 1o. level with the predictions
of model (B) which has an intermediate symmetry
SU(2)L X SU(2)z X U(l)z I X SU(3), . We wish to em-
phasize that a key assumption in our analysis is the sur-
vival hypothesis used to estimate the rough order of mag-
nitude of the superheavy Higgs boson masses. This hy-
pothesis is valid as long as one sticks to the minimal fine-
tuning hypothesis according to which we fine-tune pa-
rameters only as many times as needed to obtain the
gauge hierarchies (in our case two). Our results will
therefore be modified if extra fine-tunings are made.
However, our formulas [Eqs. (8) and (9)] can be used for
estimating those changes. The extension of our discus-
sions to the supersymmetric SO(10) models, which are
less open to the charge of unnaturalness, are presently
under consideration.
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