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Fermionic determinant of the massive Schwinger model

M. P. Fry
School ofMathematics, Trinity College, Dublin 2, Ireland

{Received 24 September 1992)

A representation for the fermionic determinant of the massive Schwinger model, or two-dimensional

QED (QED2), is obtained that makes a clean separation between the Schwinger model and its massive

counterpart. From this it is shown that the index theorem for QED2 follows from gauge invariance, that
the Schwinger model s contribution to the determinant is canceled in the weak-field limit, and that the
determinant vanishes when the field strength is sufBciently strong to form a zero-energy bound state.

PACS number{s): 11.15.Tk, 12.20.Ds

Quantum electrodynamics in two-dimensional space-
time (QED2), otherwise known as the massive Schwinger
model, is defined in Euclidean space by the action

S[A,%', +]=—,
' f d x B + f d x Il(0+m )+, (1)

where 8 =y (
—iV eA—) and B =Foi =t)oA

&

—t)&AO.

Our designation of Fo& as a magnetic field is consistent
with regarding S as the Hamiltonian for a charged, mas-
sive fermion confined to a plane in the presence of a static
magnetic field perpendicular to the plane. For
definiteness we set yo= —io.

&, y&= —io 2, where o.
& 2 are

the Pauli matrices. The model is superrenormalizable,
requiring no infinite renormalization other than a trivial
renormalization of the zero-point energy. Hence e and I
are finite parameters.

The case when I =0, known as the Schwinger model
[1], is exactly soluble and has become an important tool
for gaining insight into gauge field theories. It continues
to generate enormous interest with some fifty papers per
annum connected with the model and variations of it.
The literature for the case m&0 is sparse, the classic
references remaining those in [2]. It is not thought to be
exactly soluble. As might be suspected by our interpreta-
tion of the massive model s action, its fermionic deter-
minant determines (after integrating over the fermion
mass) the one-loop effective action for QED4 in the pres-
ence of smooth, polynomial-bounded, unidirectional,
static magnetic fields with a fast decrease at infinity [3].
Therefore, QED2 contains information on physics in four
dimensions and should not be regarded as just a model.

In this Brief Report we wish to consider QED2's
gauge-invariant fermionic determinant. It will appear in
the computation of the theory's n-point functions as a re-
sult of integration over the fermionic degrees of freedom.
The first problem is to make sense out of the formal ex-
pressions

det[(p —A) —o.3B +m 2]
det (1 —SA ) =

det[p +m ]

on a Euclidean manifold. Here S is the free (Euclidean)
fermion propagator, and e has been absorbed into A„.
There are several ways to define determinants of Dirac
operators [4], but one of these definitions seems more

suited than others to grasp the known simplifications
presented by QED2, namely, the "propertime regulariza-
tion" definition [5]. It defines the determinant as

ln det(g g +m ) = —f Tr [exp( sg B )—]e
e S

where e is an ultraviolet cutoff which, due to super-
renormalizability, can be set to zero later. Because we
will always assume m &0, we feel assured that potential
infrared divergences due to the zero modes of B II) are re-
gulated.

The above definition of the determinant respects gauge
invariance. Therefore we should be able to calculate in
the Lorentz gauge B„A„=Owhich, in two dimensions, al-
lows us to set A„=e„BP, with B = —t) P and
A =io.3@. The antisymmetric tensor e„ is normalized
as eo, =1. Following Alvarez [5], we consider the opera-
tor

—to 3p
—tcr3$i8 tA = —ie —' 8e—

where t is a real parameter. Differentiating with respect
tot,

(5)

we calculate
2

Indet(g, g, +m )=4f ds Tr(o3gg, e' ')e

= —4Tr(o 3tbe
' )e

+4m f ds Tr(o 3$e' ' )e

Noting that, for small e,

(x ~e
'

~x ) = [1—ettr3t) P+O(e )],
4m'

we obtain our definition of the fermionic determinant:
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ln

1/2
det(g 4+m )

det(p +m )
f d x PB /+2m f dt Tr[[(H'+'+m )

' —(H'"+m ) ')PJ,2' 0

where H'+' =(P—t A) + tB. Note that this definition makes a clean separation between the Schwinger model, the first
term, and its massive counterpart. Its perturbative expansion in powers of e is consistent with known results. Thus, it
reproduces the O(e ) result for the vacuum polarization graph:

Indet= JQB~Q+2m 1 d~x x p 8 xl
2 1 1

2n p + pyz p +m

",~B(q)~
(2~) 0 q z(1 —z)+m (9)

—(H'"'+ m')-'], (10)

where we have temporarily restored the coupling e. We
can get rid of the t integration by setting A, =et and

where B is the Fourier transform of B. In addition,
graphs of O(e ) and higher vanish order by order in the
limit m =0, in accordance with Schwinger's original re-
sult [1].

We have not integrated by parts in the first term of Eq.
(8) as is usually done. In the Lorentz gauge the auxiliary
potential P(x) = —fd y 1n~x —y~B(y)/2n and, assuming
that the fiux @=Jd x BWO, integration by parts is not
justified here.

It is by now evident that we are assuming our poten-
tials and fields are sufficiently smooth with enough falloff
at infinity so that everything we have done makes
mathematical sense. But note: if @WO, 3„ in the
Lorentz gauge behaves like a "winding" field with a
I/~x~ fall off. This will have some consequence below. It
might be objected that since A„ is to be integrated over,
it should be a random field. Our strategy is to first calcu-
late the determinant in an external field in a convenient
gauge, the Lorentz gauge, assuming nice potentials, then
switching to whichever gauge and potentials are best suit-
ed for making sense out of the remaining integration over

Of course, any gauge-invariant constraints imposed
on the determinant required, say, to make it nonvanish-
ing, have to be honored by the functional integral.

Within the Lorentz gauge we still have the freedom to
shift P by a constant: P~P+c. By definition, the deter-
minant depends on A„and so is invariant under this
shift. Referring to Eq. (8), we have consistency provided

1

e N/2vr=2m e dt Tr[(H'+'+m )

dift'erentiating both sides with respect to e. The result is

4/2~=m Tr[(H++m )
' —(H +m ) '],

where we have again absorbed e into A„and B and set
H+ =(P—A) +B But .the right-hand side of Eq. (11) is
independent of m [6]. One way to see this is to rewrite
the right-hand side as

oo 2 —sH +
—sH

m dse ™Tr(e + —e ),
0

and appeal to the supersymmetry of the operator pair 8+
[7] so that only the zero modes of H+ contribute. This
way regulating the trace in Eq. (11) in fact follows from
our definition of the determinant [see last term in Eq. (6)]
and serves as a reminder of how to deal with any doubt
about the trace operation. Thus the gauge invariance
leads to the condition

4/2~= Tr[P+ (0) P(0)]—
1=n+ n+ ——+[5'+(0)—5' (0)],

7T j'

(12)

where P+(0) are projection operators into the subspace
of zero-energy modes of 8+, n+ denote the number of
zero-energy bound states of H+, and 5+(0) are the zero-
energy phase shifts for scattering by the Hamiltonians
0+ in a suitable angular momentum basis I. Equation
(12) is just the index theorem for a two-dimensional Eu-
clidean manifold [8,9]. By the Aharonov-Casher theorem
[7,10] we know that n+(n ) is [~4~/2vrI, all with o~= 1

(vari=
—1) if @)0 (4 (0). Here [x J denotes the largest

integer strictly less than x and [OJ =0. This is our first
result, that the index theorem for QED2 follows from
gauge invariance.

Let us now write Eq. (8) in the form

lndet= — f d x $B+2f dt Tr[[P'+(0)—PI"(0)]/I+2 fmdt Tr'[[(H'++m )
' (H'"+m ) ']P), —

277 0 0

(13)

where P'+'(0) are projection operators into the subspace of zero-energy modes of H'+'. The prime on the second trace
symbol indicates that zero modes are omitted. Now consider magnetic fields such that ~C&~/2' 1 so that there are no
bound states. According to Musto et al. [9] we can write the second term in Eq. (13) as

—f dt Tr [ [5'+'(0) —5'"(0)]PI,
7T 0
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where the trace is over scattering states, in the limit of zero energy, of the free Hamiltonian H0 defined by
H'+' =Ho+ V'+'. The operators 5'+' are calculated from the S matrix S(A, ) =exp[2i5(A, )] as A, JO. Let us assume further
that the magnetic field is sufficiently weak to justify the first Born approximation

5'"(0)—5'"(0)= 775—(H )( v'" —v'" )

=2rrtB5(HO) .

The normalized eigenfunctions of Ho are PE&(r) =J&(kr)e' /&4' T.hen

—f dt Tr[[5'+'(0) —5'"(0)]p]=4f dt t f dE g (Ell5(HO)BplE/)
7T 0 0 0—

(14)

J dE 5(E)f d r g J& (kr)B(r)P(r)
277 0— f= —oo

fd xBQ, (15)

where we used the identify gP J& (x)=1. This result cancels the first term in Eq. (13) and is our second result;
namely that the Schwinger model s contribution to the determinant of QEDz is canceled in first Born approximation by
a contribution from the zero modes in the massive sector. It may be that our weak-field approximation to the second
term in Eq. (13) is exact for l4&

l
/2vr ~ 1, but we have not been able to prove this.

Finally, let us increase the magnetic field to l@l/2m ) 1 so that zero-energy bound states of H'+' begin to appear.
These states are of the form [7,11] P "(x,y) =f+exp(+tP), where f+ are t-independent polynomials in x+iy of degree(

l @lt/2ir 1, and P—is the auxiliary potential defined above. These zero modes are not in general orthonormal. We
define the norm matrix N,"(t)=(PI",P'") and the projection kernel on the zero-mode L subspace [12]:

n

P'"(x,y)= g PI"(x)[N '(t)], (&I")'(y), (16)

with TrP'"=n =
I l4l t/2vr]. As previously noted, the bound states all have the same chirality, depending on the sign

of @. Their contribution to the second term in Eq. (13) is, for l4l /2n) 1,

+2f dt g [N '(t)];.f d x f,f*Pe —'~=+21im f dtN '(t) f d x Pe —'~
e)0 2'(1+a)/~W~

2

+ f dt g [N '(t)];Jf d x f; fr*Pe —'~+
4~(1+~&/ ~e~

(17)

The above integrals can be expressed in terms of the norms N, . and their derivatives with respect to t after an integra-
tion by parts in t. The result is the following zero-energy bound state contribution to the second term in Eq. (13):

2

4m. 6m
et

lim. ln
e&0

J
r

2ir(1+e) 4ir(1+e)

detN, . (1)

.( I+e)/l &
I

277

The norm of the first bound state, occurring when 2 & l4l /2' ) 1, diverges as elO:

N[2~(1 e+)/lNl ]=fd'x exp[+4ir(1+e)P/I@I]

=2m f dr r exp[ —2(1+e)lnr]+finite at e=O,
R

(18)

where R is large compared to the range of B. Hence the
logarithm in the expression displayed between Eqs. (17)
and (18) becomes minus infinity, thereby causing a zero to
appear in the fermionic determinant of QEDz, as seen
from Eq. (13). This is our third result. Including more
bound states does not improve matters. The problem
seems to lie with the slow 1/lxl falloff of 3„ in the

Lorentz gauge when C&WO.

We have always kept m &0. If we take the limit
m =0, it appears from the foregoing that the zero-mass
limit of the fermionic determinant of QEDz does not con-
verge uniformly to that of the Schwinger model, which
was calculated with m =0 ab initio. This statement is
made subject to the proviso that the m =0 limit is taken
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before an expansion in powers of e is made; otherwise, as
previously noted, we do indeed regain the Schwinger
model's determinant if we take the m =0 limit order by
order.

More questions have been raised here than answered,

but our results do indicate that QED2 remains a rich and
relatively unexplored source of physics.

The author wishes to thank L. O'Raifeartaigh, S. Sen,
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