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Perturbative structures of finite-temperature quantum field theory are studied at a fundamental level.
It is shown that the real-time formalism based on the Keldysh expansion and the imaginary-time formal-
ism are related by a unitary transformation, and therefore are physically equivalent provided both of
them are expressed in retarded form. On the other hand it is impossible for the thermo field dynamics to
be reformulated in terms of retarded functions in conformity with the imaginary-time formalism due to
the lack of unitary equivalence with the Keldysh and the imaginary-time formalisms which arises from
its choice of path in the complex-time plane.
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It has been the opinion of many authors in studying
finite-temperature quantum field theory that the
imaginary-time formalism (ITF) [1], the thermo field dy-
namics (TFD) [2], and the real-time formalism based on
the Keldysh expansion or the closed-time-path Green's
function (CTPGF) theory [3,4] all belong to one
equivalent class [5,6]. The recent discovery of a qualita-
tive difference in forms of the one-loop P function be-
tween TFD and the ITF [7] has raised the question:
What is the exact relation between TFD and the ITF? It
is argued that the analytical continuation of the ITF re-
sults in a retarded product of fields, while TFD considers
a time-ordered one, and thus there are no fundamental
differences in physics between them and they must have
the same physical content as a whole [8], despite ap-
parent diff'erences in /3 functions and in one-loop self-
energy corrections [9]. Along this line an attempt is
made currently to reformulate TFD in terms of retarded
functions by a summation of graphs or a rearrangement
of the Dyson series [10]. Indeed, for bosonic self-energy,
a retarded expression in agreement with ITF for general
cases does appear. However, the problem of whether or
not such a sum could arise from a first-principles deriva-
tion is still open. On the other hand, the calculation of
self-energy graphs with the CTPGF approach yields ex-
actly the same results as in ITF either for simple models
or for more realistic ones such as QED [11] without
resort to artificial manipulations. The purpose of the
present paper is to show that there exists indeed a unitary
equivalence between the CTPGF method and the ITF,
while TFD lacks the unitary equivalence with ITF and
consequently it cannot be reduced to a retarded represen-
tation in conformity with ITF.

For a general discussion, we start by reexamining the
argument in Ref. [5] on the equivalence problem among
various formalisms of finite-temperature quantum field
theory. The statistical average for a thermal equilibrium

which follows from the definition of the interaction pic-
ture, where the subscripts i and S indicate the interaction
and Schrodinger pictures, respectively, and Hp is the free
part of H. Here we let the interaction picture be deter-
mined by initial conditions to be taken, instead of being
fixed at the beginning as in Ref. [5]. The general solution
of Eq. (3) is

iHto iHO(t —to )
R (t)=e e (4)

implying that the interaction picture and the Heisenberg
picture coincide at t = tp. Introducing the evolution
operator

U(t, , t, )=R(t, )e ' ' R(t, )

which, by use of (3), can be cast into

t2

U(t2, t, )=T exp. i f H—
,'(t)dt . , .

where H'' is the interaction part of H and
H (t)=R(t)H'R '(t). Let the time variable in (1) be
continued to the complex-time plane and rewrite (1) in
the interaction picture to give

system described by Hamiltonian H can be generally ex-
pressed as

G(t„. . . , t„)=TrIe ~ A(t, ) A (t„)I /TrIe

(1)
where A(t) is the Heisenberg operator. The interaction
picture can be introduced by defining

A, (t) =R(t) AsR '(t)=R (t) A (0)R '(t) (2)

with the unitary operator R to be determined by the
equation of motion

G (z&, zz, . . . ,z„)=TrIR(ro)R '(ro —i/3)U(ro i/3, z, ) A, (z, ) U(z, ,zz)—
X A;(z„)U(z„,ro)] /TrIR (wo)R '(wo i/3) U(ro —iP, 7 o—) I
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where ~0 is introduced as the starting point of the time evolution of the system in the interaction picture. Choosing an
appropriate counter c in the complex-time plane starting from ro and ending at ro —i13, (7) is reduced to

G(z&, . . . ,z„)=TrIpT, [ A, (z& ) A, (z„)U(ro i—P, ro)]}/TrI pU(ro i1—3, ro) }

where p is given by

p=R (ro)R '(ro iP—)
and T, is a contour-ordering operator. Mathematically, to in (4) and ro in (9) may be assigned arbitrarily, while physi-
cally, they are to be chosen to ensure that p must be a density operator and the partition function TrIe ~

} remains
unchanged. The familiar one is to choose t =w =0. This initial condition leads to the conventional interaction pic-—PHD

0 0

ture: p&
=e and

!Hpi2 —iH( i2 —ti )
—iHoi i

& t2, t& =e e e

Then the imaginary-time or Matsubara formalism follows after Wick rotation:

(10)

G (r„. . . ,r„)=Tr p, T A;(r, ) . A;(r„)exp — . H (r)drp

0
C

where the subscript c denotes that only the connected
part is retained in the expansion of (11), and
A;(r)=e 'A(0)e '. In Ref. [5] the choice is so= —oo

and t0 =0 with the contour shown in Fig. 1. By applying
the adiabatic hypothesis they arrive at

where the adiabatic relation [12]

HU, (0, —~ ) = U, (0, —~ )Ho (16)

has been employed. Correspondingly, the evolution
operator (5) acquires the form

iHt~
U (2t~, t, )=e 'U, (0, —~)e ' ' U, '(0, —~)

=TrIp, T, [A;(t, ) . A, (t„)S,]}/TrIp, S,}, (12)

where 5, is given by

—iHt
IXe

and the density matrix (9) becomes

(17)

S, =T,exp i f [—H (t) H, '(t io )]d—t . . —(13) (18)

From (12) and (13) a first-principles formulation of TFD
has been derived [5,6]. However, (12) is only a
mathematical object, because the partition function of
the studied system has been changed, i.e.,

Tr I e 'S, }WTr I e

Therefore (11) and (12) are not unitarily equivalent (see
also below), contrary to their conclusion that TFD and
ITF belong to one equivalent class. The alternative
choice of initial condition physically permissible is
tp Tp tx) ~ It can be seen by considering the limit

l'Hto l'Ho( t to ) iHof
lim e e = lim U&(0 to)e

The operators in (17) and (18) just specify the incoming
interaction picture [13]. Since the interaction is switched
off on the path —~ ~ —~ iP on—e finds

U2( —~ i@,—~ ) =—T exp —i f H „(t)dt =S
P

(19)

where p denotes the Schwinger-Keldysh contour with the
understanding that the interaction on the positive time
branch —~~+ ~ is distinguishable from that on the
negative time branch + ~ ~ —~ under the efTect of the
path ordering operator T, and the subscript "in" labels
the in operator. With the help of (19), (8) can be written
as

iHtU (0 (15)

=Tr[pzT [A;„(t, ) . A;„(t„)S ]}/Tr[p2S ], (20)

which has already been formulated in Refs. [4,13]. It is
worth noting that in the CTPCxF method the closed-time
S matrix has the property

S = T [S S ]= ( TS )( TS ) =StS = 1 (21)

FICr. 1. The path chosen in thermo field dynamics.
where T means the anti-time-ordering operator, against
the time-ordering operator T, keeping the partition func-
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tion unchanged. As a matter of fact, just because of uni-
tarity of the 5 matrix, as shown in (21), the causality rela-
tion is satisfied automatically in the CTPGF [4].

From (10), (16), and (17), the CTPGF and the ITF are
related by a unitary transformation

U~ ( t 2, t, ) = U, (0, —co ) U, ( t ~, t, ) U, '
( 0, —ao ) (22)

and therefore are physically equivalent if both of them
are expressed in retarded form. The above-mentioned
coincidence of calculations for individual graphs and
even for a sum of graphs [13] becomes now a natural is-
sue.

Now one can see what happened in Ref. [5]: The au-
thors of Ref. [5] did not realize the fact that the interac-
tion picture should be identified as the incoming one, not
the usual one, when the limit 7O ~ is taken and the
adiabatic hypothesis is assumed. However, this is not the
whole story. The cause leading TFD to the lack of uni-
tarity of the S matrix and hence causality is the choice of
the path of Fig. 1. As a consequence, additional factors
of exp(+13po/2) appear in the off'-diagonal elements of
the TFD propagators, as compared with the CTPGF.
The existence of the additional factors prevents TFD
from being reduced to a retarded representation in agree-
ment with ITF. In fact, without the imposed removal of
these factors, as was done in Ref. [10], not even a single
free retarded Green's function can be constructed with
the four elements of TFD propagators. The disappear-

ance of the additional factors can only be achieved by set-
ting o. =O, and at the same time recognizing the interac-
tion picture as the incoming one. But then we arrive
again at the CTPGF.

There exists also a parallel discussion on causality
based on an extension of the CTPGF to finite tempera-
ture with a two-field notation [14] which has some advan-
tages in evaluating the effective action as compared with
the conventional single-field notation used in the present
paper. It was shown in Ref. [14] that the CTPGF consid-
ers the expectation value with only the initial thermal
equilibrium being assumed, leading to the in-in zero tem-
perature limit. This point was explained in Ref. [4] and
also is justified in the present paper. In fact, Eq. (20) is
just an expectation value with the density matrix p2= p;„.
However, TFD concerns the in-out matrix elements of
operator products with the in-out boundary conditions
being set from the beginning. This difference makes the
CTPGF causal and TFD noncausal, in agreement with
our analysis.

Now we conclude that the choice of the Schwinger-
Keldysh path in the complex-time plane enables the
CTPGF to have the unitary equivalence with the ITF
and, therefore, they are physically equivalent if both of
them are given in a retarded representation. However,
the choice of the time path for TFD makes it unitarily
inequivalent to ITF and, hence, makes it impossible to be
reformulated in terms of retarded functions in agreement
with ITF.
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