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Analytic continuation of quantum systems and their temporal evolution
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The generalized vector space of quantum states is used to study the correspondence between the physi-
cal state space & and its continuation Q. Consider the integral representation defined by the scalar
product between an arbitrary vector in the dense subset of analytic vectors in & and its dual vector,
where the integration is along the real axis. Keeping the scalar product fixed, the analytic vectors may
be continued through the deformation of the integration contour. The deformed contour defines the
generalized spectrum of the operator in the continued theory, which typically consists of a deformed
contour in the fourth quadrant and the exposed singularities, if any, between the real axis and the de-
formed contour. Several models are studied with special attention to the unfolding of the generalized
spectrum. The two-body models studied are the Lee model in the lowest sector and the Yamaguchi po-
tential model, where the exposed singularities, if present, are simple poles. The three-body model stud-
ied is the cascade model, where the exposed singularities may be poles and the branch cuts associated
with the quasi-two-body states. We demonstrate that the generalized spectrum obtained leads to the
correct extended unitarity relation for the scattering amplitudes. The possibility of having mismatches
between poles in the 5 matrix and the discrete states in the Hamiltonian, which exists in the & space, ob-
tains also in the generalized 0 space. Finally, two distinct views on what constitutes an unstable particle
are contrasted. One view is to identify it as a physical state of the system which ceases to exist as a
discrete eigenstate in &. Here the survival amplitude of the unstable particle cannot be ever strictly ex-
ponential in time. The other view is to identify the unstable particle as a discrete state in the generalized
space. It has a pure exponential time dependence. So the corresponding time evolution is realized by a
semigroup. While the latter approach appears to be elegant, it is obtained at the expense of giving up the
very starting premise of the lower boundedness of the energy spectrum and therefore we consider it to be
the less desirable choice.

PACS number(s): 03.65.Db, 11.80.Cr

I. INTRODUCTION

Orthodox quantum mechanics is formulated in a vec-
tor space over complex numbers with a sesquilinear inner
product [1]. In most applications the vector space is a se-
parable complete space and often taken to be a Hilbert
space [2]. The vector space, except in cases of "spin" sys-
tems with a finite basis, is made up of L functions of
one or more variables or a vector of such functions. The
dynamical variables are taken to be linear operators of
finite norm. Among them the self-adjoint operators form
a preferred class and the observables are usually
identified with them.

But it is convenient to deal with unbounded operators
such as the canonical coordinate or momentum or the
Hamiltonian. Such operators do not have an action on
the whole vector space since they could make the length
of the image vector unbounded and thus not in the space;
so we have to restrict the "domain" of the unbounded
operator.

Even a further departure is often needed: when we deal
with an operator with a continuous spectrum it is useful
to introduce ideal vectors [1] with distribution-valued
scalar products.

In the cases where the vector space is realized by func-
tions of a certain class it may be possible to consider ana-
lytic continuation of such function spaces with an associ-

ated bilinear form but with two analytic vector spaces
being defined: the basic vector space and the space of
linear functionals on this space. Of course, this generali-
zation could have been considered without analytic con-
tinuation. If the base space topology becomes stronger
the dual space topology becomes weaker and vice versa.
In a Hilbert space the two topologies are the same (com-
pleteness of all Cauchy sequences) with a reflexive antilin-
ear transformation connecting the base space (ket) vec-
tors and the dual space (bra) vectors [1]. In the context
of density operators this has been emphasized by Segal
[3]. In the context of vectors in a Hilbert space this for-
malism due to Gelfand [4] and amplified by Bohm [5] is
called the rigged Hilbert space. While such a generaliza-
tion is by choice for Hilbert spaces, both in the Segal con-
text and in the course of analytic continuation the dicho-
tomy between the base space and the dual enters au-
tomatically.

Nakanishi [6] has employed the notion of an analyti-
cally continued set of "wave functions" in the context of
a treatment of unstable particles in quantum mechanics.
It has also been employed in the context of master analyt-
ic representations of noncompact groups[7]. The first
systematic generalization of the quantum vector space by
analytic continuation was formulated by Sudar shan,
Chiu, and Gorini [8]. Rigorous treatment of the problem
with careful attention to functional analytic details have
since been given [9].
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The problem of decaying particles, scattering reso-
nances, and generic metastable states in quantum physics
continues to be of current interest. The long-time behav-
ior departing from exponential decay exhibited by
Khalfin [10], the short-time Zeno behavior [11],and the
detailed transition behavior of quantum metastable exci-
tations constitute a complex of rich phenomenology [12].
It has been further enriched by the multitude of features
in the neutral kaon decay and that of other such particles
[13] and in the cascade decay phenomena. Recently
Yamaguchi [14] has raised important questions about the
behavior of decay amplitudes and the possibility that
short- and long-lived kaons are orthogonal whether or
not CP is conserved. From a somewhat dial'erent point of
view Tasaki, Petrosky, and Prigogine [15] have con-
sidered this question with special attention about the
breaking of time symmetry in decay.

Apart from these questions there has been some lack of
precision about analytic continuations, and about scatter-
ing amplitude singularities: not enough attention has
been paid to redundant zeros and discrete states buried in
the continuum.

Complex variables, analytic functions, and topology
are only aids to the mathematical discussion of physical
phenomena; an essential part of the task is the proper
identification and proper interpretation of mathematical
results. Not all quantum theories involving analytic con-
tinuations are alike nor are their scope the same. We
have found several treatments that are lacking in one as-
pect or the other. For example many authors act as if
poles in the analytic continuation are the only relevant
singularities [16]. We show, on the contrary, that the
treatment of scattering amplitudes involving unstable
particles requires complex branch points. We have there-
fore paid particular attention to spell out the theory that
we introduce. The use of solvable models enables us to il-
lustrate many relevant features of the theory.

The most important point that we emphasize is that
suitable dense sets in the analytically continued spaces
have corresponding dense set of states in the space with
which we start the analytic continuation. Individual
states in one space may or may not have analytical
partners in the generalized spaces. The analytic con-
tinuation is therefore basis dependent.

The outline of our presentations below are as follows.
In Secs. II and III, the generalized vector space of quan-
turn states is used to study the correspondence between
the physical state space & and its continuation Q. We
begin with the observation that the scalar product be-
tween an arbitrary vector in the dense subset of analytic
vectors in & and its dual vector has an integral represen-
tation. While keeping the scalar product fixed, the ana-
lytic vectors may be "analytically continued" through the
deformation of the integration contour. A typical analyt-
ically continued integral representation of present in-
terest integrates along a deformed contour in the fourth
quadrant of the complex energy plane. And it encircles
those "exposed" singularities on the second sheet, if any,
i.e., those between the real-axis and the deformed con-
tour. The deformed contour together with the exposed
singularities constitutes the generalized spectrum of the

operator in the continued theory.
Several models are studied with special attention to the

unfolding of the generalized spectrum. The two-body
systems are studied in Secs. IV and V. There we consid-
er the Lee model and the Yamaguchi potential model.
The exposed second sheet singularities, if present at all,
are simple poles. The cascade model of a three-body sys-
tem is studied in Secs. VI and VII, where the exposed
second sheet singularities may be poles and branch cuts,
with the branch cuts being associated with quasi-two-
body states. For the cascade model case, we also show
that the generalized spectrum obtained leads to the
correct extended unitarity relation for the scattering am-
plitudes.

In Sec. VIII, we observe that the predictions based on
& and that based on 0 are expected to be the same.
Since a pure exponential time dependence is not possible
for states in &, this then should not be possible for states
in g. On the other hand, the Breit-Wigner resonance
does correspond to a pure exponential decay and it real-
izes the semigroups of time evolution. However, here one
needs to give up the positivity of energy and define states
with all possible values of energy.

In Sec. IX we recall the two possible disparities be-
tween poles in the S matrix and the discrete states in the
Hamiltonian. In particular, there can be a pole in the S
matrix without the corresponding state in the complete
states of the Hamiltonian. Conversely there may be a
discrete state of the Hamiltonian, which does not have
the corresponding pole in the 5 matrix. We show that
these disparities continue to be admissible in the general-
ized vector space.

Our concluding remarks are given in Sec. X. Two dis-
tinct views on what constitutes an unstable particle are
contrasted. One view is to identify an unstable particle as
a physical state of the system which ceases to exist as a
discrete eigenstate of the total Hamiltonian. The survival
amplitude of the unstable particle cannot be ever strictly
exponential in time. There is no autonomy in its time de-
velopment. It ages. So the unstable particle does not fur-
nish a representation of the time translation group. The
other view is to identify the unstable particle as a discrete
state in the generalized space Q. It has a pure exponen-
tial time dependence. The time evolutions form a semi-
group. While the latter appears to be elegant, it is de-
duced at the expense of giving up the very starting prem-
ise of the lower boundedness of the energy spectrum. In
this section, based on the generalized vector space frame-
work, we also comment on the neutral keon system of K
and K and the interpretation of "(KL ~Ks )." We end
with a discussion on the formal construction of the in-
tertwining operators which maps & and 9 and vice versa.

II. VECTOR SPACES
AND THEIR ANALYTIC CONTINUATION

Consider an infinite-dimensional vector space A over
the field of complex numbers [1] with vectors g, P, . . .
Then, if a, b are complex numbers a/+be is also a vec-
tor, as are finite linear combinations. If ] ~e'"') ] is a
countable basis then any vector 1tj can be approximated to
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Thus we can put the basis vectors into one-to-one
correspondence, but the correspondence is antilinear:

The linear functional can be thought of as the scalar
product of vectors in &,&' bilinear in them:

(3)

or as a sesquilinear form in & by making use of the anti-
linear correspondence (2) between bra and ket vectors.

Given the basis vectors and the notion of scalar prod-
ucts we can introduce the completeness identity. If we
have a bra (gl and a ket IP), we can define a linear
operator by the vector-valued linear functional,

Ix&-&elm&le&,

and identify it with the linear operator

(4)

In particular we can introduce the linear operator

g Ie'"'&&e'"'I

which acting on any vector
I P ) reproduces itself:

y le( ))(e( )Iy) —y le( ))(e( )la le( ))
r=1 r&s

r& s

Hence it is the unit operator:

y Ie'"') (O'"'I =I
r=1

This is the completeness ident&'ty and provides a resolution
of the identity Alinear opera. tor Vis isometric [17] if, for
every vector P,

(I yll y&=&ply) . (7)

Given an operator 2 its adjoint operator 2 is defined by

any desired limit by linear combinations of the form
ga„'"'le'"') = I/„) where the sequence [li)'j„) ] converges
to t/i. A linear operator is a linear map from vectors in &
to vectors in &. The linear functional mapping each
vector in & to a complex number constitute the dual vec-
tor space &' to &. A basis [(f"I] in the dual vector
space &' may be obtained by considering the linear func-
tional

y(S)
le(&)) g . Ie(~) ) (f(&)l

An isometric operator is unitary if in addition to (9) it
satisfies

VV =I.
If a normal linear operator C has the form

C=g c„le'"'&(e'"'I (12)

with

(14)

The expressions (12) and (13) also give the spectral decom
position of a completely continuous operator [17]:

Cle'"') =c Ie'"')

For any operator A we can consider the resolvent as the
analytic operator-valued function

R (z; A)=(A —zI)
R (z) is regular acting on & everywhere except for the
values

which constitute the spectrum of A. More generally the
set of points (discrete or continuous, finite or infinite)
where the resolvent operator fails to be regular in & [i.e.,
the action of R (z) considered as an analytic function of z
is not regular for any vector in &] is called the spectrum
of A.

For a self-adjoint operator with a continuous spectrum
there may be no normalizable eigenvectors in &. In all
the explicit examples we have considered that the con-
tinuous spectrum has no normalizable eigenvectors. One
can either introduce ideal eigenvectors (of infinite length)
following Dirac, or consider a continuous family of spec-
tral projections II(A, ) for eigenvalues "less than" I, by in-
troducing a notion of ordering in the continuous spec-
trum (when it is possible) and writing a Stieltjes
operator-valued integral generalizing the spectral decom-
position and completeness identity (12), (13), (14):

(13')

for some convergent sequence [c„I and some basis,
[ Ie'"') ] is said to be completely continuous A.complete-
ly continuous operator is the discrete (possibly infinite)
sum ofprojections:

(13)

An isometric operator V satisfies the relation

(9)

The adjoint is an antilinear operator valued function of
operators. An operator whose adjoint coincides with it-
self is called self adjoint:-

(14')

So far we have considered the generic form A, the Hil-
bert space &, and the vectors in &. In the study of quan-
tum systems the space & is realized in terms of the states
of the system and the generic form of the state vectors is
in terms of square integrable functions of one or more
real variables. A dense subset of such L functions is the
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class of analytic functions (restricted to real values of the
arguments). This dense subset of & there can be analyti-
cally continued. But there are many choices of analytic
L functions with varying domains of analyticity and cor-
respondingly many choices of 9 and O'. The dense sets of
analytic functions form a partially ordered set: continua-
tions using functions analytic in a domain which coincide
with the analytic continuation using functions analytic in
another domain, and wi11 coincide within their common
domain of convergence. Linear relationships are
preserved; we can define analytic linear operators to be
those which acting on an analytic function produces
another analytic function. Needless to say the notion of
analytic continuation is in terms of the specific L func-
tion realization of the space &, and the domain in which
0 is defined depends on the dense subset chosen. Since
the correspondence between vectors in & and &' is anti-
linear we must analytically continue these spaces sepa-
rately to produce a family of generalized spaces 9' and 0".

The notion of resolvent and spectrum applies to the
generalized family of spaces O', O'. The eigenvectors are
now right eigenvectors in g and left eigenvectors in 0'.
For every vector in & we have its dual vector in &'. The
product of the analytic continuations of a dense set of
vectors in & (and hence &') are in Q, Q' and it may be
called the norm of the vector in Q. With respect to this
norm we can define Cauchy sequences.

Since the analytic continuation is for both & and &' to
9 and 0' scalar products and matrix elements of analytic
linear operators are preserved. To this extent, the analyt-
ic vectors and operators can be thought of as having
different representations in the family of spaces 9', 0" and
these could be put in correspondence with the analytic
vectors and linear operators in &. However, the analytic
continuation is not of the entire space & into the com-
pletion of 9' with the norm as defined as the product of
vector in Q, Q' associated with the vectors in &,gf'. In
particular there are vectors in 0 which may not have a
counterpart in & and vice versa. We shall find that there
are discrete states in 0 which have no counterpart in &.

Finally, since the analytic continuation depends on the
functional form for the state vectors as a function of its
arguments, there is a choice to be made of the re1evant
dynamical labels. In the study of Hamiltonian systems
we often have a "total energy" label as well as the values
of a comparison Kamiltonian energy. On writing the
ideal eigenstates of the total Hamiltonian as a function of
the comparison Hamiltonian energy we look for analytic
vectors; this can be done if the total Hamiltonian-
represented terms of the functions of comparison Hamil-
tonian energies is analytic. The existence of the compar-
ison ("free") Hamiltonian and its essential role in scatter-
ing theory where the "in" and "out" states are defined
has been known for some time [18]. Formal theory of
scattering does make use of this representation to go
"slightly off" the real axis as far as the scattering ampli-
tude is concerned. The analytic continuation of scatter-
ing amplitude was extended to its various sheets by many
authors [19]. However except for the work of Nakanishi
[6] and of Sudarshan, Chiu, and Gorini [8] (see also
Bohm [20]) there was no intention to consider the analyt-

ic continuation of suitable dense sets in the state space &
to the family Q.

III. COMPLETE SET OF STATES

ly) =j y(x)lx)dx

is a vector in & if

j lP(A, )l'dA. ( ~ .

(18)

(19)

Provided P(A, ) is analytic in X in a suitable domain in the
complex plane we could deform the contour to write the
vector as a vector in 0 (see Fig. 1):

ly)= f P(z)lz)dz . (20)

The analytic continuation includes a simultaneous con-
tinuation of the bra vectors

( 1/l l

= f 1/J( A, ) ( A,
l
d A,

into a vector in 9":

(21)

(22)

The additional closed contours C, and C2 encountered
in the continuation (see Fig. 2) are typical of poles and
branch cuts. For resonance in scattering we expect to
find poles but for multiparticle states involving unstable
particles we expect to have branch cuts. While Fig. 2
shows only one pole and one pair of branch points in the
finite complex plane we may have more than one; branch
points may move to infinity. The completeness identity
(6) gets modified to

I= f dzlz&&zl+ y lz, &&z, l+ f, dylan&&gl .
poles 2

(23)

Further, the scalar product remains unchanged in value:

& PlP &
= f P(z)P(z)dz +g P(z„)P(z„)

CI

+ f, W(0)W(0)dk .

Here and in (22), g(z) is the analytic continuation of the
function it *(z* ):

FIG. 1. The z-plane contours defining vectors in 5'.

If I l&&] is the set of ideal eigenvectors for a self-
adjoint non-negative (total Hamiltonian) operator so that

II(A, ) = f "lA, ) (Aldus, , (17)
0

the vector
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Define the function

a(A, ) =A, —mo—,dpi' .g *(oi')g (oi')
0 A, CO

(31)

If a(A, ) has a real zero it is for a negative value m [unless
g(co) vanishes some place in the interval 0&to& oo]. If
there is such a zero there is a discrete eigenvalue m for
the Hamiltonian H:

P(z) =g*(z' ); (25)

FIG. 2. Possible singularities encountered and the modi6ed
contours.

g(~o) dcx
&o(~)= no no=

m —co
A, =m

a(go yo(~))'=m(bio yo(ro))r .

—1/2

(32)

and the norm is given by (1ijlp&. If we have a definite
state g(A, ) (which may be thought of as the created unsta-
ble particle state) then the survival amplitude for the
state is given by [11,12]

(26)

where H is the (total) Hamiltonian and can be expressed
in the form of a Fourier integral:

A (t)= f P(A)l e ' 'dA, . (27)
0

This same survival amplitude can be computed in 9', 0'
provided g & is an analytic vector:

A (t) = f dz g(z)Q(z)e (28)

If the analytically continued bilinear quantity is explicitly
known the pole contributions and the branch cut contri-
butions can be calculated. This we shall do when we con-
sider solvable models like the Lee model [21] and the
Cascade model [22]. Suffice it to say that the survival
amplitude can be defined for evolutions both forwards
and backwards in time; for all times the absolute value of
the amplitude is bounded by unity.

For the generic case the poles of the S matrix coincide
with the discrete states in the generalized completeness
identity (23). However, the existence of a pole in the S
matrix is neither sufficient nor necessary to have such ad-
ditional discrete states in Q. This is due to possible ex-
istence of redundant poles and of discrete states buried in
the continuum. We shall illustrate this in a later section
of this paper.

IV. THE LEE MODEL STATES

A simple solvable model [21] is provided by a system
with a discrete state and a one-dimensional continuum so
that the vectors are of the form

There can at most be one value. No such discrete state
exists if

f g*(ro')g(oi')de'
a 0 — mo+g I (33)

g (M) =0, a(M) =0 (34)

then we can have a discrete state overlapped by the con-
tinuum.

There is a continuous spectrum 0( A, ( ac and a corre-
sponding continuum of scattering states which are ideal
states with continuum normalization [18,23]:

I& &=(g,y (~))'—= I&&,

where

g*(A, )

a(A, +ie)

Pi(ei) =5(A, —ro)+ g *(&)g(~o )

oi+ie a A. +—ie

(35)

These states satisfy the orthonormality and completeness
relations

(36)

lm &(ml+ f d&l&&(&I=I .

Here

(37)

(38)

On the other hand if for some value A, =M we have the
twin conditions

(~),$(oi)) =@
with

(WIN & =i)*i)+fde P*(co)P(co) .

We choose a total Hamiltonian of the form

(29)

(30)

These calculations are already available in the literature
and involve straightforward contour integration. If
there is a discrete state buried in the continuum [24], (34)
and (35) show that there are two solutions at this value
M: a discrete state of the form (32) with m replaced by M,
and an ideal state with A, =M which is a pure plane wave:

H(q, P(~)) =&(i),P(o~))

A, il =moi)+ f g "(co')P(co')den',

XP(co) =cog(ro)+ g(co)g .

—1/2
g(o~)

1

I
M &

' =(0,5( A,
—M ) +nonsingular terms)

(39)

(40)
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The state (39) would enter the completeness relation (37)
and the orthonormality relations (36).

The S matrix for the ideal scattering states reduces to a
phase

g*(A,*)
Ylk,

=
a(A, +ie)

( ) $(g )+ g (~ )g (z)
(A, —z+i e)a(A, +i e)

(48)

S(A)=a(A, —ie)/a(A, +ie), 0&A. & ~ .

If g (co) is analytic in co so is

(41)
a(z) =z —mo- g "(z'*)g(z')dz'

r z —z'

g(~) =g*(co*) . (42)

Then the continuum ideal states IA, ) can be replaced by
complex eigenvalue ideal states denoted by the same sym-
bol

I
A, ) which have branch cuts along a different contour

I beginning at 0 and ending at infinity. For seeing this
we consider the space of analytic functions in the region
6 bounded by I and the positive real axis for which the
integral

f P*(z*)P(z)dz & oo .
r (43)

H(q, g(z)) =k(g, P(z))

with z along the contour I . Equation (46) implies

(46)

The spaces Q, Q' consists of vectors (g, P(z)), (ri', P'(z))
with such functions P(z). We further require that these
functions P(z) vanish sufficiently fast at infinity so that

f IP(co)I dc@=f P*(z*)P(z)dz . (44)

Note that the scalar product is between a vector in 0' and
one in the dual space 0".

Along the contour I we can introduce a delta function
6(A, —z) defined by [6,8]

f P(z)5(A, —z)dz=g(A, ) .
r

With this definition we can reinvestigate the eigenvalue
problem

These are orthonormal; the computation follows the usu-
al route. They are, together with the possible discrete
state

bio = [a'( m ) ]

g «)no
$0(z) =

also complete, provided a(m) =0 for some m &0.
In case Io ))0, there would be no discrete state

(go, go(z)) . But if the contour I proceeds sufficiently far
in the fourth quadrant there would be a complex zero z,
for a(z) and a discrete state with

ni = [a'(zi )]

(z)vl,
,(z) =

Z
$

Z

(49)

This state is orthogonal to the continuum states in 0' and
enters as a discrete contribution to the completeness rela-
tion. Since a(z) is real analytic, if the contour I was in
the upper half plane there would be a zero z&* for a(z)
and a corresponding state. In both cases, the discrete
state remains fixed and contributes to the complete set of
states or not according to whether I crosses z, (or z,* ).

The demonstration of the completeness is the resolu-
tion of the identity in the form

fd~l~ &'&&I+Im &&ml,

(A, —mo)g= f g*(z'*)P(z')dz',

(k —z)P(z) =g(z)ri .

The continuum ideal vectors have

(47)

m*=m &0, a(m)=0, (50)

f dklk)(XI+ Iz, )(z, I, a(z, )=0 .

In doing the I or I ' integrations we have to compute, for
example,

fP*,(z*)Pq(z')dA, =6(z —z')+ g *(z* )g (z')
(z' —z —ie)a(z' i e)—

g (z')g*(z" ) + g*(A,*)g(A, )dA,

(z —z'+ie)a(z +ie) r (k —z i e)(A—z'—+i e)a(, A+i e)a(A. ie)— (51)

The last term can be rewritten as a contour integral en-
casing the contour I (Fig. 3) since

g*(A,*)g(A, ) = [a(iL) —a*(A.*)j
1

2&l

so that the last term becomes

1
g *(z*)g(z)

2rri fr (A, z'+i e)(A—z —ie)a(A, ),—

(52)

(53)

The poles at k =z' —i e, z+i e cancel the third and second
terms respectively while the remaining contribution
would be proportional to the residue at any pole of

,z, g *(k*)g (A. ) d &
r a*(k*)a(k)

—i Atda

2m.i fr a(k) (55)

I

I/a(A, ). Note that it is the zeros of a(z) that count, not
the blow up of g*(z*)g (z).

This conclusion is further demonstrated in the compu-
tation of the survival amplitude of the "unstable particle"
state (1,0) . Quite generally,

((1,0),e ' '(1,0) )=f g*~ri&e ' 'dA, (54)
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The S matrix for the ideal scattering states reduce to a
phase

S (A, ) =p(A, —i e)/p(k+i e), 0 (A, & ~ . (61)

If h (co) is analytic in co so is h *(co*), then we can con-
tinue the vector space & into g and get a spectrum along
another contour I starting from the origin and going to
infinity.

The dimensionless scattering amplitude (in &) is given
by

FIG. 3. Contours I,I",I for demonstrating completeness. T(co)= ~h(co)h *(co) =exp[i O(co) ]sinO(co ),
p(co+i e)

(62)

Again only the zeros of a(A, ) contribute, not the singular-
ities of g*(k*)g(A, ). Any such pole of g*(A,*)g(A. ) is
counterbalanced by a corresponding pole in a*(A,*).

Here we have acted as if poles are the only singularities
encountered in the analytic continuation. But in many
contexts there could be branch cuts. We shall discuss
such a situation for the cascade model.

where O(co) = argp(co is) —is the phase shift. If we choose
nonrelativistic kinematics so that

co=k /2p (63)

the more conventional scattering amplitude (with the di-
mension of a length) is given by

~lb (co)l e' '"'sinO(co)

kP(co+ie) k

V. THE YAMAGUCHI POTENTIAL MODEL STATES = [k cotO(co) ik]— (64)

A model related closely to the Friedrichs-Lee model is
the separable potential model [25] which in its lowest
relevant sector has a one-dimensional continuum. The
states in & are, then, L (0, oo ) functions:

. N: f Q*(co)p(co)dco & ~
0

4a
cT(co)= sin (co) .

k
(65)

When analytic continuations are carried out the
scattering amplitude T(co) is continued to yield

which manifestly satisfies unitarity. The total (S-wave)
cross section is given by

We choose a total Hamiltonian of the form

(Hcti)(co)=cog(co)+iih(co) f h*(co')P(co')dco'
0

(56)

vrh (z)h *(z*)
(66)

where g = 1. Define the function

h *(co')h (co')d co'
z =1—il

0 Z CO

(57)

If p(z) has a real zero, it will arise for i) &0, at z =zo (0.
In that case there is a discrete solution

T(z) so defined may have poles due to complex zeros of
p(z) or due to poles in h (z)h*(z*). The latter do not cor-
respond to extra physical states: they are "redundant
poles" (see below in Sec. VIII). If there are no complex
zeros of p(z) the completeness relation in the analytically
continued space 9 is

dzz z =3. .
r (67)

q= —1, z0&0 .

There is a continuum of scattering states

C&i.Pi(co) =5(X—co)+ iih *(A, )h (co)

(58)

(59)

The explicit expression for the ideal states lz) and the
proof of the completeness and orthogonality are straight-
forward. In many contexts there could be branch cuts.
We shall discuss such a situation for the cascade model.

VI. THE CASCADE MODEL

These ideal states satisfy orthonormality

and completeness

lo&&ol+ fdale&I=I . (60)

Of course if p(z) has no zero, the discrete state l 0 ) would
be missing from this equation. + f f itj*(co, v)g(co, v)dcodv& ~ .

0
(68)

We now consider a model [22] with three classes of
states for the unperturbed Hamiltonian: a particle 2 with
bare energy M0; a two-particle continuum with energy
p0+~, 0&co& ~; and a three-particle continuum with
energy co+ v, 0 ~ ~, v & ~. We denote the amplitudes for
these by i), P(co), and it(co, v) and the scalar product is
given by

ri*ri+ f (t*(co)p(co)dco
0
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The vector space &of states is the completion of this vector space. The total Hamiltonian and eigenvalue equation are
given by

f*(co')

f(co) (p,a+co)5(co —co')

0 g(v)5(co —co')

g*(v')5(co —co')

(co+v)5(co —co')5(v —v')

Ilk,

P„(co') =A, Pg(co)

lt~(co'v') P~(cov)

The energy eigenvalues are degenerate and infinitely de-
generate once the three-particle channel becomes open.
We can enumerate the (ideal) eigenstates of (69) in the
form

IA.n

lA, n &:— Pq„(co)

f*(A, n) g—'(n)
a(A, +is) y(n +i@)

g*(n)5(~ ~ —n) — f(~)~~.+y(leo+i .e—) y(Aco+. —ie)

5(v n)5(—Aco ,
—n)+— . Pq„(co)

g(v)
V+ l E'

where 0~ n ~ X & ~, and

I

Note that k and ~ vary over ranges differing by p so that

0(A, , (r p)(—~ .

If there is a real value M such that

a(M) =0, a'= aa(z)
a

then there exists a discrete state

Xf0

IM &
= $0(co)

$0(co, v)

a(z) =z —Mo- f*(co')f(co')

o y(z —co'+i e)

y(z)=z —po — dv .g*(v)g(v)
0 Z V+l6

If there is a real value p such that

(71)
1

v'a'

1

f(co)

y(M —co)

g(v)f(co)

y(M co)(M ——co —v)

(75)

c)y(z)
Z z=p

there exist a two-particle one-parameter family:

7l~

lr &
= P„(co)

g,(cov)

(72) These states are (ideally) normalized. By a straightfor-
ward calculation they can be shown to be mutually or-
thogonal. We can also show them to be complete. The
best way is to compute I jdco'dv'g*(co'v')f(co'v') etc.
and to convert it into a contour integral. If there are
zeros of y(z) they will compensate the one-parameter
continuum and so on, and we may obtain

f'(r —
C )

v'y'a(r+i e)
1 f (co)5(r p co)+- —
7' r +col E

g ( v)
'7 CO V+lE

(73)

and

&MIM & =1, &Mlr & =o, &Ml~n & =o,
&r lr&=5(r r), (r lan &=—o,
(A, 'n'lan & =5(AA')5(n .—n', ), —

(76)

f fQg„(co'v')Qg„(cov)d& dn + f Q~(co'v')Q,*(cov)dr+go(co'v')$0(cov) =5(co co')5(v —v'), —

f f P~„(co'v')P~„(co)1kdn + fg,(co'v', )P,*(co)dr+$0(co'v')$0(co) =0,

f f fg„(co'v')rig„di, dn + fg,(co'v')ri,*dr+go(co'v')rio =0,

f fP~. (co')P~„(co)d& dn+ fP,(co')ct,*(co)dr+go(co')$0 (co) =5(co' co), —

f f pq„(co')riz„dkdn+ f p, (co',)ri*dr+po(co')rio =(),

f fg,„g,*„d~d + fg,g,*d +„,„,*=1.

(77)
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VII. SCATTERING DF UNSTABI. K PARTICI.KS

To study analytic continuations with complex branch cuts we choose Mo and po sufFiciently positive so that there is
no real zero for y(z) or for a(z). Then the only states in & which are (ideal) eigenstates are ~A.n ) and these states are
complete in the sense of (77). The S-matrix elements are

(A.n, out~A'n, ', i n) =6(A, —A, ') {5(n —n')+2iT(n, n', A. ) I, (78)

T(n, n', A, )= ~—a(A+i@, )qz„'gz„+ 5(n n'—) . .
g*(n)g (n)
y(n +i@) (79)

Both the S-matrix element and the T-matrix element considered as a function of X can be viewed as analytic functions
of (complex) energy z with a branch cut 0 &z & ~. Since by hypotheses y(g) has no real zero we would find a complex
zero at p, in the lower half plane as we deform the branch cut to the contour C of Fig. 1. This pole induces a branch
cut in T(n, n; A. ) from p, to infinity along a contour of our choice. So we can have, as illustrated in Fig. 4, the choice of
the contours I „or I 2+I z, or I 3+I 3+I 3'. For I 2+I z we have the complex branch cut beginning at p, . For

3 + I 3 + I 3' we have the complex branch cut beginning at p i and the pole at
These analytic properties signal the possibility of analytic continuation of the space & into Q. For the contour I

&
we

get the complete set of states ~z, g):

Iz, )=

f*(z*—g*)g*(g*)
a(z +i e)y(/+i e)

g*(g*)&(z —
g —g) + f (g)f*(z*—g*)g*(g*)

y(z /+i e—) a(z +i@)y((+ie)y(z /+i—e)

g(v) g*(g*)&(z —
g —g) + f(g)f*(z*—g*)g*(g*)

z —
g v+i e — y(z —(+i e) a(z +i

e)y(/+i'�)y(z

—(+i e)

(80)

where z lies on the contour I
&

and we may choose g+ v, g, and v also to lie on this contour. By a lengthy but straight-
forward calculation using the conversion of open contour integrals into closed contour integrals we can show that (80)
constitutes a complete (ideal) orthonormal system. Neither the zeros of a nor of y are in the complex plane cut along
I &, and consequently the closed contour integrals do not enclose any of the related singularities.

If on the other hand we choose the contour I"2 we have crossed the branch point at p, . This branch point "snags"
the closed contour over which we integrate, and completeness is restored only by including the generalized (ideal)
states

f*(y* i i)—
QyIa(y +i e)

1
~ f(g) f y Pi

s& +
V'y I

y'y &+'E) ~yIa(y+i~)
(81)

g(v) 1
&

f(g) f y p&

y g v+i—e —
Qy y(y —/+i') Qy

(8&)

T (g, g';z) —T*(g*,g'*;z *)
= I dg" &*(g"*,g*;z*)T(g",g';z),

the unitarity relation

(83)

Here y and g+ p& are along 1 2 and g lies on 1 2. 1 z is ob-
tained from I 2 by displacing it by the fixed complex num-
ber p'. The states ~y) and ~z, g) in Eq. (81) and Eq. (80)
now form a complete set. The contour I 2 is the spectrum
of the "unstable" particle B (which has now become a
"stable particle" !) scattering a 0 particle with energy g.
This scattering also obeys in addition to the generalized
unitarity relation along I z,

&(g') —&*(g*)= &*(g*)&(g) (84)

along I 2. There is a technical point here. For the
definition of the continued wave functions, the contour
I 2 is chosen through the "parallel transport" prescrip-
tion stated above. However, for the continued unitarity
relation, it can be shown that it is no longer necessary to
be confined to the parallel transported contour I 2.
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IM ~1

A +p,

r
A=A +p,

are implemented by unitary family of linear operators
realizing the time translation group, the same would also
be true of the states in Q. 2 pure exponential decay or a
Stieltjes integral over damped exponentials would then
not be possible with states obtained by analytic continua-
tion ofphysical states.

One can, however, ask what property has to be relaxed
to realize an extended space & and its corresponding
continuation 0 so that a semigroup of time evolutions
can be realized. These semigroups would, generally, be
realized by an isometry which is not, however, unitary.
After all, an unrestricted Breit-Wigner resonance [27]
with its Lorentz line shape does correspond to pure ex-
ponential decay (for positive time). We need to relax the
positivity of energy and define states with all possible
values of energy. In this case we can realize semigroups
of time evolution [28].

Let g(A, ) be a vector in a Hilbert space &:

f "~q(X)~'dr= 1, y(X) =0, X &0 . (86)
0

We enlarge it into H+, where %(A, ) is defined for negative
values of A, also, in such a fashion that it is analytic in a
half-plane:

q (z)= . f dA, . p(A, ).
2&l 0 A, Z+l 6

(87)

FICx. 4. Spectra and contours for the cascade model with

M, »p, »O.

These functions are analytic in the two half-planes and
their sum is equal to P(k):

f(A, )=%' (A, )+ql (A, ) . (88)

In the context of the continuation of wave functions,
further deformation of the contour does alter the states
~r). When z and g+g are along the contour 13, r is

along I 3=I 3+p„see Fig. 4. It could also uncover the
discrete state ~M, ) with dke ' ' g(A)

2&l 0 A, Z+ l 6
(89)

On %'+(A, ) the time evolution for positive times is realized
by a contractive semigroup:

4+(z;t) = T+ (t)4+(z)

1

f(g)
y(M, —g)

g(v)f(g)
y(M, —g)(M, —

g
—v)

(85)
T+(t, )T+(t2)=T+(t, +t2), t„t2)0,
T+ (t) =0, t (0, T+ (0+ ) = 1 .

By the converse of a theorem of Titchmarsh,

t+(r)= f 4+(A, )e ' 'dA, =O, +r(0 .

(90)

(91)
which then needs to be included in the completeness rela-
tion.

Unitarity relations for the T matrix are energy-local re-
lations [26] and as such do not mix the unstable particle
scattering and stable particle scattering.

Then

T (t)4 (r) =4 (r+t),
T+(t)4+(r)=0, t & —r .

(92)

(93)

VIII. EXTENDED SPACES AND SEMIGROUP
OF TIME EVOLUTION

We have so far formulated the passage from & to 0 as
a correspondence between dense sets in & and g. With
this understanding the basis in 9 is "the same" as in &.
Therefore when we know that a pure exponential-decay
time dependence is not possible for states in & (with a
nonnegative spectrum for the total Hamiltonian) the
same should also be obtained for corresponding states in

Furthermore since the time evolution (and regression)

Thus a semigroup evolution obtains on the half-plane an-
alytic function ++(A, ). A similar conclusion obtains the
backward tracing of 4 (A, ).

Given 4+(X) we can continue it to a vector ql+(z) in 8
and the semigroup acts in 8 in the same fashion.

The functions 4+(z) are analytic in the half-plane by
construction. They constitute the Hardy class of func-
tions [29] which are square-integrable along Rez for any
negative imaginary part. Xone of this class is a physical
state (expressible as linear combinations of states of non-
negative total energy). But many familiar unphysical
states such as the Breit-Wigner function
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(94)

are included in this Hardy class. In addition to such a
single pole we could also have multiple poles and/or
branch points. To obtain them we can use a perfectly
physical state obtained as a linear combination of states
like (35), (80), or (81) and carry out the linear maps (87)
into the two Hardy class functions.

IX. REDUNDANT AND DISCRETE STATES
IN THE CONTINUUM

For the model discussed in the preceding section, when
the contour I passes through z =M, the continuum
wave function (45) exhibits singularity at z =M, , a com-
plex eigenvalue. There is, when the contour justifies it, a
discrete eigenstate with eigenvalue M, . The scattering
amplitudes also have singularities (poles) at the same
point. People often take the poles of the scattering am-
plitude to correspond to unstable particles. It has, how-
ever, been known [30] that poles appear in the S matrix
(or the scattering amplitude) which do not correspond to
discrete eigenstates of the Hamiltonian in &. This is true
of the (repulsive) exponential potential; a number of
phase-equivalent potentials [31] have been known for
some of which the S-matrix poles are bound (discrete)
states while for others it is not. The circumstances obtain
in the context of the Lee model and other such models.
In the Lee model this corresponds to the distinction be-
tween the zeros of the denominator function a(z) and the
poles of the form factor f*(z*

)f (z). Nor are these
redundant singularities restricted to being isolated poles;
for example the S-wave Yukawa potentials give a branch
cut [32], but with no continuum of (ideal) states entering
the description. In all such cases the redundant singular-
ities of the S matrix do not correspond to states entering
the complete set of states.

A similar situation is obtained in the case of analytic
continuation of the vector space & to Q. Consider the
Lee model wave functions (48). They would develop
singularities not connected with the spectrum of the
Hamiltonian in 0 if the form factor g (z) develop singu-
larities. But these singularities do not give any contribu-
tions to the completeness identity since in these calcula-
tions we obtain the contour integrals involving 1/a(z).
The poles in g*(z*)g(z) are matched by corresponding
terms in a(z) and they disappear from the contour in-
tegral. As the contour I smoothly deforms itself, it is
not snagged by singularities of g*(z*)g(z). The same sit-
uation is obtained for the Cascade model; only the zeros
of a(z) contribute to discrete state and only the branch
cuts in y(g) contribute to the scattering states involving
an unstable particle.

A related phenomenon is that of states which contrib-
ute to the complete set of states which are located in the
continuum but which do not contribute any singularity
for the S matrix [24]. This occurs when a zero of a(z)
coincides with a zero of the form factor g (z) as far as the
Lee model is concerned. The spectrum is degenerate at
this point M, a(M) =0 with a discrete state in & and an

ideal state belonging to the continuum. In analytic con-
tinuation we can have complex zeros of a(z) where the
scattering amplitude vanishes; nevertheless the complete
set of states include these states. They also enter the com-
putation of survival amplitudes (53).

For the Lee model we choose a form factor g*(z*)g (z)
and an a(z) such that

a(M, )=0, g*(z*)g(z)-(z —M, ) G(z) (95)

for some complex M&. Then the scattering amplitude
vanishes at this point:

T(z) —(z —Mi )t(z) . (96)

The (ideal) state of this point is a "plane wave"

q& =0, P&(z) =5(z —M& )+nonsingular terms, (97)

(with no asymptoting diverging wave) which is degen-
erate in energy with the proper state in 9 with

g (z)vl,
l, =[a'(M, )] ', P, (z)=

Mi —z
(98)

In a similar manner for the Cascade model, if the form
factors have zeros along the cut beginning at the branch
point p& then the scattering amplitude vanishes at these
points on the branch cut, but the (ideal) states ~z ) in (81)
beginning at p& exist and contribute to the completeness
(and to the survival amplitude for the unstable A parti-
cle).

Thus the S-matrix singularities and the spectrum of
states are not necessarily in correspondence.

Along with redundant poles we could also have redun-
dant branch cuts from the "geometry of the potential. "
There will be no contribution from these to the com-
pleteness identity. Such branch cuts are familiar as the
left hand (and the short- and circle-) cuts in partial-wave
dispersion relations.

X. DISCUSSION: TWVO CHOICES
FOR UNSTABLE PARTICLE STATES

In our study of generalized quantum state spaces we
have given expositi, on to analytic continuation of state
spaces, correspondence between dense sets of states in &
and in O'. For analytic Hamiltonians the spectrum can be
"analytically continued" in Q. The resolution of unity
embodied in the completeness identity has alternate ex-
pressions. Incidentally this is an example of reducible
representations of the (time) translation group having
different decompositions in which no component of one
decomposition is equivalent to any component of the oth-
er one. The notions of discrete states, of continuous spec-
tra, of "in" and "out" states and exact expressions for the
(ideal) states are all obtained for these generalized spaces.

There are two views that one could take about what is
an unstable particle. Qne is that it is a physical state of
the system which is normalizable and which ceases to ex-
ist as a discrete eigenstate of the total Hamiltonian. If
~M) denotes this normalized state, the survival ampli-
tude is
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(99)

This amplitude cannot be ever strictly exponential in t
and is bounded in absolute value by unity for all t, posi-
tive or negative. It exhibits a Khalfin regime where it has
an inverse power dependence and a Zeno regime where
the departure of its absolute va1ue from unity is quadratic
in t. But for much of the intermediate region it is ap-
proximately exponential in ~t . One of the drawbacks of
this picture of an unstable particle is that its survival am-
plitude does not furnish a representation of the time
translation group or semigroup. The unstable particle so
defined is not autonomous. " It ages.

The other picture of the unstable particle is as a
discrete state in the generalized space 0 and as such hav-
ing a pure exponential dependence. The time evolutions
form a semigroup (for t )0) the absolute value steadily
decreasing exponentially. Such a state cannot have a
counterpart physical state in &. For negative values of t
the state tends to blow up. If we start from any state in
& which can be continued into 9, the result so obtained
would never be a pure discrete decaying state, but that
plus remnants of a continuum. We could extend & to &
by relaxing the spectral condition 0~0 and obtain a
state in H+ as in (87); then we could obtain a semigroup
evolution law (92). While this choice appears to be
elegant, it is deduced at the expense of giving up the
lower boundedness of the energy spectrum. We consider
it to be the less desirable choice.

Anyhow, the distinction between these two choices for
the "unstable particle" becomes even more pronounced
when we consider two distinct lifetimes for two unstable
particles coupled to common continuum (ideal) states.
Such a situation is obtained for positronium coupled to
two- and three-photon continuum states: ortho- and
parapositronium have lifetimes which differ by three or-
ders of magnitude [33]. If charge conjugation invariance
is invoked one of them (orthopositronium) decays only
into two photons and the other into three photons. The
positronium states may be classified by their charge con-
jugation properties. And the two sets of states would be
orthogonal.

A more interesting case is provided by the E -K sys-
tem [34] (and also by B Band D D-systems) wh-ere

there are two different lifetimes which differ by two or-
ders of magnitude and which share common decay chan-
nels. These two "particles" E] and E2 would have been
eigenstates of combined inversion (CP) if that were a

symmetry operation. But since CP is not conserved in
the phenomenological Lee-Oehme- Yang [35] (see also
Wu-Yang [36]) generalization of the Weisskopf-Wigner
[37] phenomenological non-Hermitian Hamiltonian mod-
el the physical states Es and EL which are the "decaying
particles" are not orthogonal. Khalfin [38] had shown

that the Lee-Oehme-Yang version predictions are not
consistent with the non-negativity of Hamiltonian if CP is
not conserved; we have verified this by detailed calcula-
tions [13]. Experimental results on kaon decay with ap-
propriate phenomenological definitions of E&,EI have
determined that

~
(,KS ~KI ) ~

—10 rather then zero.
On the other hand if we identify the decaying particles

Ks and KL with two distinct discrete states in 9 they will
be at different energy values; since Es and EL differ in
lifetime they have difFerent imaginary parts, while E,E
oscillations [39] show that they have different real parts.
Hence in 9, Es, and EI are orthogonal and have strictly
exponential time evolutions. It is not exactly news that a
discrete complex energy eigenvalue state cannot be ob-
tained from a Hamiltonian in & bounded from below but
can correspond, at most, to a state in the extended space
&. The additional spurious contributions from —oo to 0
for Kz and KI states in % would cancel the overlap of
Ks and KI states in &. Recently the question of wheth-
er (K+~KL ) should vanish or not have been reexamined
by Y. Yamaguchi [14] and by Tasaki, Petrosky, and Pri-
gogine [15]. In our view there is no discrepancy between
the expectation of the vanishing scalar product found by
these authors and the nonzero value found in measure-
ments. This rnatter will be analyzed in detail elsewhere
[40].

Finally, we observe that the spaces & and 0 that we
have used are distinct spaces though there is one-to-one
correspondence between dense sets of analytic vectors in
& and Q. This correspondence can be implemented by
an intertwining operator V:&~0 with its inverse
V:Q~& given by the formal Stieltjes integral

V(z, x) = fda P (z)it'(x),

V '(z, x)= fdag (x)g'(z")= f da P (x)g (z),

where [g (x)] is an analytic basis in & and [f (z)] its
counterpart in Q. Any analytic operator, including the
Hamiltonian in & has the counterpart in 0 defined by

These operators V, V ' are intertwinning between the
spaces & and Q.
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