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Complete screening of a magnetic flux string by vacuum polarization in 3+ 1 dimensions
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The feedback effects of the vacuum current induced by a magnetic flux string in 3+ 1 dimensions are
studied. It is found that the induced magnetic field cancels the applied one completely; i.e., a magnetic
flux string does not exist in 3+ 1 dimensions.

PACS number(s): 12.2O.Ds

The vacuum polarization around a classical magnetic
flux string located at the origin has been studied exclud-
ing the feedback effects of induced currents both in 2+ 1

and 3+1 dimensions [1—4]. It has been shown that the
induced current density behaves as 1/r in 2+ 1 and 1/r
in 3+1 dimensions respectively near the origin, and de-
cays exponentially at a large radius r with a characteristic
length scale 1/m, m being the fermion mass. The in-
duced charge exhibits a similar distribution in 2+1 di-
mensions, and its total amount is found to be a topologi-
cal invariant Q= eF/2 [—5], with e (0 the fermion
charge and F the total magnetic flux, 0 ~ F ~ 1; while
there is no charge density in 3+1 dimensions. This
essential difference is due to the parity violation of the
fermion mass term in (2+ 1)-dimensional Lagrangian.

The feedback interaction of the induced currents in
2+ 1 dimensions appears as a Chem-Simons term with a
dimensional coefficient e /4' in the Lagrangian [6—8].
This coefficient is equivalent to an effective photon mass,
on which the dependence of the self-consistent induced
current density j(r) derived with feedback effects includ-
ed has been investigated in Ref. [9]. It was shown that
for the dimensionless coupling constant g —=e /m ) 1 the
characteristic length scale of j(r) transited from the fer-
mion Compton wavelength 1/m to the photon one 1/e .
When the photon becomes extremely massive (g ))1),
j (r) is highly concentrated at the origin and its effect can-
cels the applied magnetic field completely. In 3+1 di-
mensions a photon does not acquire mass from vacuum
polarization. However, the 1/r divergence of the
lowest-order induced current density at the origin gives
rise to a similar phenomenon to that associated with
g )) 1 in 2+1 dimensions; a magnetic flux string is com-
pletely screened by vacuum polarization in an all-order
consideration.

It was pointed out that the lowest-order total flux in-
duced by a magnetic flux string was infinite [1,4].
Though this unphysical infinity can be removed by ex-
tending the tube containing the applied magnetic field to
one with a finite radius R ) 10 /m [4], it indicates
that feedback effects are never negligible for R below this
scale. Intuitively, it is expected that the inclusion of feed-
back effects removes the infinity. We shall solve for a
self-consistent induced vector potential A (r) satisfying
both the Dirac and Maxwell equations, which produce
j(r) from A (r), and relate A (r) to j(r) respectively The.
finiteness of A (r) will verify our conjecture. Rather than

study the system of a flux string directly which involves
infinity, we start with an extended magnetic field

B( )=FR e '"
e r

which approaches the form of a flux string in the A.~ ~
limit. We obtain the self-consistent A (r) under this ap-
plied Geld and study its variation with A, .

The method to calculate A (r) is the same as that
developed for the (2+ 1)-dimensional case [9]. We absorb
the combination of the applied and induced vector poten-
tials, both of which are now radius dependent, into the
indices of fermion wave functions. Under this approxi-
mation the expression for the induced current density, a
sum over all wave functions, is simplified to contain only
several terms. Then it is possible to solve for A (r) from
this expression and the Maxwell equation numerically.
We find that the product erA (r—) shows a similar
dependence on r to that in 2+1 dimensions, its magni-
tude increasing from the origin and reaching a plateau of
height h. The constant h is always smaller than and ap-
proaches F as A.~~. The slope to attain h becomes
infinite in this limit. These imply the existence of a high-
ly concentrated induced current density at the origin.
The applied vector potential is then completely canceled
by the opposite induced one. Hence a magnetic flux
string is in fact "invisible, " i.e., does not exist in 3+1 di-
mensions. Note that our conclusion is applicable to cases
with an arbitrary coupling constant e . Therefore, as-
surning a small e suppresses quantum fluctuation, and
the assumption of classical background gauge Geld holds.

The considered system is described by the Dirac Ham-
iltonian

H=a (p —e A,pp
—e A)+I3m,

where the matrices P and a;, i = 1 —3, are in the standard
representation. The applied vector potential A

pp
corre-

sponding to the extended magnetic field is given in cylin-
drical coordinates by

er A,pp=F(1 —e ")$,

with F—:(e 2/s) rtI)A, .dl and P the unit vector in the
azimuthal direction. The induced vector potential A is
derived from the induced current density j(r) through
the Maxwell equation
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d 1 (rA) = —4mj(r) .
dr r dr

sg n«)4. k.~"4. k.

p, k, v

(5)

An induced scalar potential does not appear in Eq. (2)
due to the absence of the induced charge density.

The induced current density is expressed as a sum over
all products of fermion partial waves [5]:

with the appropriate regularization [10,11]. The function
I„is the normalized solution to the Dirac Hamiltonian

in Eq. (2) with the index p, for fermion z-component
momentum, k =(E p, —m—)'~ for the radial one and
v=n —F for angular momentum, n HZ. Only the in-
duced current density in the azimuthal direction is non-
vanishing from rotational symmetry, and it has been de-
rived for the case of a magnetic Aux string excluding
A (r) [2]:

—e(mr) sin(Fn. ) 2j(r)=
3 3 [ ,'K2+y—(mr)K2 F(mr) ', K]+—F—(mr)K, F(mr)+KF(mr)],

4m r
(6)

where KF is the Fth modified Bessel function.
For the present system with feedback eff'ects taken into account, we rewrite Eq. (6) by substituting the combination

v(r) =er [ A, „(r)+A (r) ] for the index F as in Ref. [9]:

j(r)= » [—,'K2+ ~„~(mr)K2,~„~(mr) ——", K, +,~„~(mr)K, ~„~(mr)+K,~„~(mr)] .
—e (mr) sin[v(r)n. ] 2 (7)

Equation (7) is an approximate expression for the induced
current density, in which the contribution from the
derivative of the total vector potential dv/dr has been
neglected. We shall find that as A,~ ~ Eq. (7) describes
the system of a magnetic Aux string appropriately.

We analyze the case of F = 1 with —e and m set to be 1

as an example. We solve Eqs. (4) and (7) for rA (r) using
an iterative method. Results for different A, are presented
in Fig. 1. It is observed that r A (r) grows from zero and
reaches a constant at large r, which approaches F with A, .
As A, =10 rA(r) rises so rapidly that it is essentially
equal to F everywhere except the tiny region character-
ized by r —1/A, . On this A, scale both the applied and in-
duced magnetic fields are in the form of a Aux string, and
Eq. (7) gives an exact expression for the induced current
density. It is evident that the applied and induced vector
potentials will cancel each other completely if A, is large
enough. For smaller e or larger m the same conclusion

I

is achieved but the complete cancellation happens at
higher A, .

To realize the cancellation analytically, we propose a
model form for erA (r) w—ith two parameters h and s
which characterize its height and the slope to reach this
height. They are determined by the limiting behaviors of
rA (r) and j(r) at the origin and infinity. Assuming
r A (r) —r at small r and —h at large r we have, from Eq.
(7), j(r)-1/r and -exp( 2mr)/r a—s r~0 and ~ oo,
respectively. The above limits still hold when they are
substituted into Eq. (4), so self-consistent solutions should
satisfy these conditions. A possible choice for the model
of r A (r) is given by

T

erA (r)=h 1 ——exp( —2mr)
1+sr

Inserting Eqs. (7) and (8) into the right-hand and left-
hand sides of (4) respectively, we obtain a set of coupled
equations for h and s corresponding to the r~0 and~~ limits:

1.2 - rA (r)

1.0

0. 8
(b)

4e
h (2m +s)= [FA.—h (2m +s)],

3m

h e sin[(F —h)n. ]
s 4am

0. 6

0. 4

0.2

0. 0

(a)

6. 0

Solving Eq. (9) we find, as A, ~ oo,

m (3~+4e ) 1

e4

4e
s = 2~-

3m+4e

(10)

1.0 2. 0 3.0 4. 0 5. 0

FIG. 1. The r dependence of the self-consistent induced vec-
tor potential rA (r) for (a) A, =10, (b) A. =10, and (c) A, =10
with —e =m =1 and F=1.

It is obvious that h and s exhibit the desired dependence
on A, ; they approach F and infinity, respectively, as

Their values evaluated at A, =10 are consistent
with those shown in Fig. 1. The induced vector potential
tends to the form of a Aux string, which is in the opposite
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direction to the applied one. The applied magnetic flux
string is thus completely screened. Note that the cancel-
lation becomes exact only when A, ))m, or the applied
magnetic field is confined in a region with radius much
smaller than the fermion Compton wavelength. For a
real magnetic flux tube corresponding to A, «m feedback
effects are negligible [4]. The expressions for h and s also
possess the right dependence on e and m; rA (r) ap-
proaches F at higher A, for smaller e or larger m.

We shall make more comments on the particular case
of F=1. Since the lowest-order induced current for a
magnetic flux string with integer F vanishes, it seems that
this special flux can never be canceled by vacuum polar-
ization due to the absence of feedback effects. However,
starting with an extended system we observe different dis-
tribution for the lowest-order induced current. For arbi-
trary F the current density behaves as FA, /r in the re-
gion of r « I/A, from Eq. (7) with v(r) replaced by the
applied vector potential in Eq. (3), and decreases outside
the above region, following the lowest-order expression
Eq. (6). As A, ~oo the current density is recovered to
that described by Eq. (6) for F & 1. For F = 1 the current
density vanishes for all r )0, consistent with Eq. (6), but
tends to be divergent at the origin in the A.~ ~ limit. It
is this singularity, not appearing in a direct analysis for
the system of a magnetic flux string, that gives the re-
quired feedback effects. Hence the two limits F~1 and
A, —+~ do not commute. If we allow X~~ at first, the
current density, always divergent at the origin for
0&F &1, drops to zero at F =1. This drop is not ob-
served if the limit A, ~~ is applied later, because the
current density remains singular there. A similar
difference happens in the calculation for the total induced
charge Q in 2+ 1 dimensions. Setting F = 1 at the begin-
ning leads to vanishing induced charge density and Q,
while evaluating Q at first and then letting F =1 gives
Q = —e/2. Therefore we have explored different struc-
ture through an extended configuration. For 2+ 1 dimen-

I

sions a flux string and an extended field lead to the same
limits in the sense that feedback effects due to the
lowest-order induced current vanish in both systems as
F—+1.

Cases with other values of F and several extended
forms of magnetic field have been studied. Similar
features to those exhibited in Fig. 1 are obtained. It is
found that for F =1 the self-consistent induced current
density is more singular near the origin and decays faster
at large r than for F=0.5. This result is consistent with
the above statement; for the former case no self-
consistent induced current exists at large r where the
lowest-order one vanishes, and feedback effects arise
completely from the region of small r so that a more
divergent current density is required there.

To generalize the conclusion to F beyond 1, say,
F =1+a with 0& e & 1, we design a special procedure of
preparing the magnetic field, in which the applied flux is
increased from 0 to 1 in the form of a string, and then
from 1 to F in the extended form. At the former stage
the effect of the self-consistent induced current cancels
the applied field completely, and the space is left empty.
Hence, at the latter stage the system can be treated as an
extended magnetic field with total flux e only. As A,~ 00

a complete screening of the magnetic flux string withF) 1 is observed. In fact, this is the only possible solu-
tion, because any nonzero net line field leads to an infinite
total flux which is not self-consistent. Therefore an accu-
mulation of singular induced current proportional to F,
similar to Q in 2+ 1 dimensions, is associated with the
magnetic flux string. Based on the above analysis, it is
concluded that the periodicity of the lowest-order in-
duced current distribution in F is lost when feedback
effects are taken into account.

Finally we shall examine the influences of contribu-
tions from higher derivatives of v(r) Following . the same
procedures as in Ref. [9] it is straightforward to derive
the first-derivative correction to j (r):

bj (r)= I sin(ver)[K (mr) —KI+ (mr)K& (mr)]]
( ~

—,r~0m e dv(r) d —e FA, —h (2m +s)
8P' 8v 7"

where Eqs. (3) and (8) have been inserted to obtain the
second expression. At large r the correction Aj(r) van-
ishes much faster than j(r) due to the factor dv/dr,
while at small r the former behaves like the latter as
shown in Eq. (11). If b j(r) is included into Eq. (9) for
analysis, we shall find that the cancellation is improved,
because the induced vector potential approaches the ap-
plied one at smaller A.. The corrections from the second
derivative or the square of the first derivative of v(r) are
less important due to their 1/r behavior in the r ~0 lim-

I

it. The higher-derivative corrections are also negligible
by similar reasoning. Therefore these corrections do not
modify the conclusion that a magnetic flux string is com-
pletely screened by vacuum polarization.
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