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Gauss law commutators in anomalous gauge theories from a geometrical point of view
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A new method of deriving the commutation relations for Gauss law operators is studied in anomalous
gauge theories. We use the method of coadjoint orbits extensively. Instead of dealing with the Gauss
law operators explicitly, we consider the Becchi-Rouet-Stora-Tyutin (BRST) operator on a coadjoint or-
bit associated with anomalous gauge theories. We derive a basic equation satisfied by the BRST opera-
tor. The equation for the BRST operator plays a fundamental role in our formulation and it precisely
reproduces the Schwinger terms in commutation relations for the Gauss law operators.
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I. INTRODUCTION

In recent years there have been increased attempts to
study quantum field theories from a geometric point of
view. In 1970, Kostant [1] and Souriau [2] found out the
method of geometric quantization, which allows us to
quantize classical fields without referring to any particu-
lar coordinate system. As a consequence, the method en-
ables us to describe quantum field theories in coordinate-
free, geometric language.

Bowick and Rajeev [3] formulated a classical nonper-
turbative bosonic string field theory on the basis of a gen-
eral symplectic geometry. They succeeded in quantizing
closed bosonic strings by application of geometric quanti-
zation, showing that DiffS'/S' is a homogeneous Kahler
manifold, which is one of the typical symplectic mani-
folds [4].

A symplectic manifold [5] is an even-dimensional man-
ifold M with a symplectic structure co which is a nonde-
generate and closed two-form on M. In particular, if a
field theory has a symmetry governed by a Lie group,
then the field theory is constructed on the basis of a
group manifold, which is endowed with a symplectic
structure.

As is well known, typical symplectic manifolds are the
Ka,hler manifold, adjoint and coadjoint orbits [1,5,6], as
well as cotangent bundles. Among others, coadjoint or-
bits have been studied [7,8] recently in dealing with some
kind of field theories such as quantized string theories,
the nonlinear o. model with the Wess-Zumino-Witten
term and two-dimensional (2D) gravity theory, which are
strongly subject to infinite-dimensional Lie groups.

On the other hand, we have also gained important
geometrical insight into quantum field theories from the
study of anomalies [9]. Zumino [10] and Stora [11]have
revealed anomalies inherent in chiral gauge theories from
the point of view of the cohomology theory of Lie groups.
Faddeev and Shatashvili [12] studied the commutation
relations of Gauss law operators in non-Albelian gauge
theories by making use of the geometrically expedient
property of the Chem-Pontryagin density and obtained
anomalous Schwinger terms in the commutation rela-
tions.

A perturbative derivation of Schwinger terms in the

commutation relations of Gauss law operators has been
carried out in Refs. [13,14] for Yang-Mills theory with
chiral fermions. A derivation by means of path integrals
has been done in Ref. [15]. Anomalous Gauss law com-
mutators in the chirally gauged Wess-Zumino-Witten
model have been evaluated in Refs. [16,17]. There have
been proposed some other interesting ways of deriving
the Gauss law commutators such as those based on the
quantum phase holonomy [18],current algebras [19],and
on a more unified framework [20—22].

In this work we present a new method of deriving the
commutation relations for Gauss law operators in anom-
alous gauge theories. The aim of this work is to explore
some other possible ways of studying quantum field
theories geometrically. We use the method of coadjoint
orbits extensively. Instead of dealing with the Gauss law
operators explicitly, we consider the Becchi-Rouet-
Stora-Tyutin (BRST) operator [23] on a coadjoint orbit
associated with anomalous gauge theories. We derive a
basic equation satisfied by the BRST operator. We will
see that the equation for the BRST operator precisely
reproduces the commutation relations for the Gauss law
operators and that the BRST transformation [24] of field
variables plays an important role in our formalism.

The rest of this paper is organized as follows. In Sec.
II, we give a brief review of the method of coadjoint or-
bits, by introducing a canonical coordinate system on a
coadjoint orbit. We lay special emphasis upon the role of
the BRST operator which is obtained as a solution of the
fundamental equation on the coadjoint orbit. In Sec. III,
we apply the method to an effective chiral gauge theory
and derive anomalous commutation relations for Gauss
law operators. We consider the chirally gauged Wess-
Zumino-Witten model in Sec. IV, where we also derive
the Schwinger terms in the Gauss law commutators. Sec-
tion V is devoted to clarifying remarks, in which we dis-
cuss the difference between a similar work studied in Ref.
[25] and ours.

II. SYMPLECTIC GEOMETRY
OF COAD JOINT ORBITS

In this section, we make a brief survey of the theory of
coadjoint orbits in the symplectic geometry of Lie
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Ad(g) Y=g Yg

ad(X)Y=[X, Y],

(2.1a)

(2.1b)

where X, YE 9, g E G, and [, ] is the commutator in the
Lie algebra. We define the coadjoint action of G on
Q*,Ad*:GXQ*—+0* and the coadjoint action of 9 on
9*,ad*:0 X 0*~0*, respectively, by

groups, laying special emphasis upon the fundamental
equation (2.23) and its solution, which we will use in sub-
sequent sections. A coadjoint orbit is a manifold con-
structed by a coadjoint action of a connected Lie group
on a dual space of the Lie algebra. Every orbit of the
coadjoint action of a Lie group possesses a symplectic
structure, and the orbit is even dimensional. In fact, a
coadjoint orbit is a symplectic manifold on which one can
define a nondegenerate, closed symplectic two-form m.

Let G be a connected finite-dimensional Lie group,
0= T, G its Lie algebra, and 0* the dual space of the Lie
algebra. The adjoint action of G and that of 0 on 0 are
defined, respectively, by

X;*=g C,"ak a
(2.&)

which satisfies the commutation relations (2.4) and the
tangent vector on the coadjoint orbit is given by

X a= g C,"ake~ .
j,k

(2.9)

A natural G-invariant symplectic structure on M is
defined by introducing the symplectic two-form co at a
as

co (X*,Y'*
) =i( Y* )i(X* )co

=a([X,Y]) (2.10)

with X, YmodQH, which is nothing but the definition of
the symplectic structure given by Kirillov and Kostant
[1,7]. Here, i(X)co denotes an interior product between X
and ~. The symplectic structure co can be explicitly
written in terms of the one-forms [y', y 1, . . . ] dual to the
vector fields [X,*,X*,. . . ] as follows:

[Ad*(x)a]( Y) =a[Ad(x) 'Y]=a(x 'Yx ), (2.2a) co =
—,'n;.y'Ay (2.11)

[ad*(X)a](Y)= —a[ad(X) Y]=—a([X, Y]) . (2.2b) where

It should be noted that ad* is a representation, the coad-
joint representation, of the Lie algebra and satisfies the
commutation relation

a, =a([X;,X~])=C~ak .

The one-forms y~ satisfy the equations

(2.12)

[ad'(X), ad*( Y) ]=ad*( [X, Y ] ), (2.3)

[X, ,X.]=C;"Xk (i,j,k&Z), (2.4)

where C;" are structure constants, and let [e', el, . . . I be
a basis of the dual space. The relation between the two
bases is given by the orthogonality condition

which immediately follows from (2.2b).
The coadjoint orbit M through a fixed point o.' 'E 0*

is a symplectic manifold which is given by
M =[Ad*(g)a' '~gEG] with a definite symplectic
structure. The coadjoint orbit is isomorphic to the coset
space G/H, where H is the isotropy subgroup of the fixed
point a . The tangent space to M at a is given by a set
of vector fields [X"~XH9]. Let [X;X,, . . . . I be a basis
of the Lie algebra 9' with commutation relations

da, =o;,"y~,

dy = —
—,
' C;jy' R, y

(2.13)

(2.14)

owing to the fact that the symplectic form (2.11) is
closed; des =0.

Substituting (2.14) back into (2.11), one obtains a sim-
ple expression for (2.11):

CO Akdy dCXk R y (2.15)

The symplectic two-form cu is closed and nondegenerate
at all points of the coadjoint orbit and (2.11) is, in fact, G
invariant, since owing to the Jacobi identity one has, for
arbitrary gE 0,

6~ (X*,Y* ) =[ad*(g')a]([X, Y])+a([[Q,X],Y])

+a([X,[g, Y]])
e'(X) )=5', (2.5) =a([[X,Y],g])+a([[g,X],Y])

implying the duality of the two bases.
It should be noted that a point on a coadjoint orbit is

expressed in terms of coordinates [ a;,a, . . . ] with
respect to the dual basis as

+a([[Y, (],X])=0 . (2.16)

Here 5& denotes infinitesimal transformation on the or-
bit by g. As a matter of fact fix (XH 0) is nothing but
the Lie derivative with respect to X:a= ga, e'.

It follows from (2.5) and (2.6) that

(2.6)
fixa =Esca =ad*(X)a,

fiz Y=Xx Y=ad(X) Y=[X,Y] .
(2.17)

a(XJ)=a (2.7)

It is worthwhile to note that the tangent vector field X
is expressed in terms of the coordinates on the coadjoint
orbit as

Now it is worthwhile to consider the situation where
the infinitesimal transformation on a coadjoint orbit is
generated by an underlying generator 0, which takes
values in Q. For simplicity, we denote 5&=6. Our basic
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equations are

5a =ad*(Q)a,

5X=ad(Q)X=[Q, I'],
5y = —

—,'C;,y'hy

and

(2.18)

BX
IJ gg ya

az
gya

5S= f d'xa„

for P, one obtains the variation of S to be

(3.2)

(3.3)

5a;=a([Q,X;])=a;.y~ . (2.19)

Here one should note the differences between 5a, , 5(a;)
and (5a);, i.e.,

5(a;)=0,
5a, =a(5X; ) =a( [Q,X,]),
(5a); = [ad'(Q)a](X, ) =a( [X;,Q] ) = —5a; .

(2.20)

A=X;y' . (2.21)

Taking infinitesimal transformations of both sides of this
expression, one obtains

One notices from (2.19) that Q is a one-form taking the
value in 0 and, in fact, the solution to (2.19) is found to
be

Here we have taken 5x =0 ( v =0, . . . , 3 ). Also taking
the boundary conditions appropriately we are lead to a
descent equation

5S= —dQ,
where

(3.4)

Q= —f dxvr5$
with ~ =BE/BP being the canonical momentum conju-
gate to/ .

The simplest nontrivial Lagrangian for Yang-Mills
fields without spinor fields is given by

XvM= —
—,'TrF„F" +X (3.6)

Here F„=F„'T, with F„' =B„A'—8 A„'
+gf,b, A „A '„and the gauge group is taken to be SU(N),
generators of which satisfy the commutation relations

5Q =5X,y '+X,-5y '
[ T„Tb ]=if,b, T, (3.7)

= [Q,Xi]y' ——,'C;"Xky'hy J,
and we finally arrive at the equation for Q:

5Q=Q =
—,'[Q, Q},

(2.22)

(2.23)

with f,b, being structure constants and Tr( T, Tb ) = —,'5,b.
The Lagrangian (3.6) is invariant under the BRST trans-
formation by virtue of the fact that the first term on the
right-hand side of (3.6) is BRST closed whereas the ghost
term X is BRST exact. In this case we have

which we will use in subsequent sections. This is the fun-
damental equation for 0, so that the equation should
hold even if there exist central extensions in the algebra.
Expression (2.21) is the simplest form for Q; namely, we
can take any representation for generators of the Lie
algebra 9 instead of generators X; themselves. In fact,
we will take Gauss law operators in place of the X s in
subsequent sections. Also, it should be noted that solu-
tion (2.21) is not unique, since we may add terms which
commute with generators and/or their representations.

III. ANOMALOUS GAUSS LAW COMMUTATORS

In this section, we apply the method of coadjoint orbits
to deriving the Gauss law commutators in anomalous
gauge theories. We will make extensive use of the BRST
operator Q and show that Q plays an essential role even
for BRST noninvariant actions.

Let us start with an elementary consideration of the
variational principle applied to the action functional

S= f d xX(Q, B P ) (a=1, . . . , n, @=0,. . . , 3),
(3.1)

Qa=i f d x[~;5A i5. (gri'—)], (3.8)

5A„'(x)=i [D„g(x)]',

5''(x) = — gf, b, ri (x)ri'(x), —
(3.10)

(3.8) is rewritten as

Q0= f d x (D;rr;)'ri'+5Pri'

where 5 is the BRST transformation and the exact term
on the right-hand side of this expression comes from the
ghost part of (3.6): q' is the ghost field and P is the an-
tighost field both of which are Grassmann variables and
the Poisson brackets among them read

(3.9)

We have not taken account of the gauge-fixing term,
which might give additional exact terms to (3.8). As a
matter of fact, we have taken the noncovariant gauge
20 =0. However, the gauge-fixing term does not play an
essential role in the present formulation and we take
g'=0 for the sake of simplicity.

By virtue of the BRST transformation

where X is the Lagrangian describing our dynamical sys-
tem and P are localized fields. Taking account of the
Euler-Lagrange equations

+
2 gfabcF'9 '9 (3.11)
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This is nothing but the BRST operator without spinor
fields. One finds from 6QO=O the BRST transformation

56'(x) =gf,b, G "(x)g'(x), (3.12)

where 6'(x)=(D;~;)', and G'(x)=0 is the Gauss law
constraint. It follows from I Qo, QOI =0 that

Evidently 6Q does not vanish; in other words, the BRST
operator is not left invariant under the BRST transforma-
tion. However, the BRST operator 0 is the generator of
the BRST transformation; in fact, one obtains

5g' = I g', 0 I
= — gf,b—,g"g',

[G'(x), 6"(x')]=igf, I„G'(x)5'(x —x') . (3.13) 5Ak =
I Ak, Q] =i (Dkri)' .

(3.16)

It is known that the chiral SU(N) gauge theory is
anomalous for X ~ 3. Similar anomalous features are ob-
served in the gauged nonlinear o model with the Wess-
Zumino-Witten term Xwzw. By making use of the coho-
mology theory of Lie groups, Faddeev [12] pointed out
that the infinitesimal one-cocycle co& descending from the
Chem-Pontryagin density is the Lagrangian density X~
which makes the theory anomalous. The BRST transfor-
mation of X~ gives rise to a two-cocycle of the gauge
group on 1R: explicitly one obtains

5 f X~d x= — e'J f d x g'Tr[T, (A, B Ak

+a, w,-~„

+A;A, Ak)] .

Also one finds from

g'= IP, QI =0
that

(3.17)

6'+igfb„g"g'=
~
e"" Tr[q(A, B Ak+8, A Ak

+ A;Ai Ak )] . (3.18)

The Poisson brackets of 0 with itself is to give the BRST
transformation of 0 itself. Precisely, one has

5Q= —,
' IQ, Q] . (3.19)

The Poisson brackets of the BRST operator with itself is
evaluated as

Consequently one has

&=f d x 6'ri'+i5Pri'+ gf, b, Pribq'—

2
e'j" f d x Tr[q(A, B Ak+i3; A. AI,

48m.

+A;A)Ak)] .

(3.14) III, QI = f d x d y I [H'(x), H (y)]ri'g~

igf, b, H'(x)—ri ri'5 (x —y)],

where

H'= 6' — e'j"Tr[ T, ( A, c},Ak+ 8, A, A„

+A, A Ak)] .

(3.20)

(3.21)

(3.15) As a consequence, one obtains from (3.19) and (3.20) that

[H'(x), H (y)]„=igf,b, H'(x)5 (x —y)

2

+ e'J"ITr[T, B;(A TbAk)]+if Tbr[T, (A,.B Ak+B,. A Ak+A, . A Ak)]I5 (x —y), (3.22)
48~

which is nothing but the anomalous Gauss law commutation relations obtained in [13—17].

IV. THE GAUGED WESS-ZUMINO-WITTEN MODEL

In this section, we consider the chirally gauged Wess-Zumino-Witten (WZW) model in order to reinforce the formal-
ism developed in the preceding section. The Lagrangian density X of the gauged WZW model is given by [16,21]

where

+cr++Y +M+w z&w (4.1)

+wzw=

Tr[(8' + A )(IV"+ A")],1

f2 P P

e" ~Tr[(A„B A +B„A A +A„A A —
—,'A„W A —A W W)W ]48~

(4.2)
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a,y =W„K:(y), (4.4)

where K, (P) is a component of the Killing vectors
defined by V, =K, (P)B/BP, which satisfy the commuta-
tion relations

with W„=B„UU '= W„'T„and XvM is defined by (3.6).
Here f is a constant and the local field U = U(x) is a map
from space-time into the Lie group G. The T, 's are gen-
erators of G satisfying the commutation relations (3.7).
The local coordinate P is defined by

A„~A„'=g 'A„g+g 'B„g,
~„'=g -'w„g —g -'a„g,

U —+U'=g 'U (g EG),
(4.13)

whereas, as is well known, Xwzw is not gauge invariant.
At erst, we restrict our consideration to the gauge-

invariant system given by the Lagrangian density
Xo=LYM+X~. The canonical momenta conjugate to
A „' and P are given, respectively, by

[V„Vb]= f,b, V,—. (4.5)
rr' =r'

os (4.14)

We can define a set of one-forms 8" dual to the Killing
vectors by

and

vr = h p[P~+AOK, ] .
2 a ~p (4.15)

W'=dP K'(P) . (4.6)

dW'= 'f W /—i W- '

It follows from (4.5) and (4.7) that

K:a.Kii K„a.K—i'= f.„KP—,
a.K~ a~K: =—f.„K'.K;,

(4.7)

(4.8)

(4.9)

The duality condition 8"Vb =6b implies that E,K
and K, Kp=6p. The one-forms 8",8', . . . satisfy the
Maurer-Cartan equations G'= a, 11;+gf.„A,"11;+K:~..

The equal-time commutation relations read

[ A,'(x), II~(y) ]= i 5~5' 5(x —y),
[P (x ), ir&(y ) ] =i 5&5(x —y) .

The BRST operator Qo is defined as in (3.11):

(4.16)

(4.17)

(4.18)

The Gauss law operators are written in terms of the
canonical momenta as

where i) =8/BP .
The Lagrangian density (4.2) can be rewritten in terms

of the local coordinates as

Qo= f d x G'ri'+5+re'+ gf, b, Pri ri'— (4.19)

where

(4.10)
Then, one finds again the BRST transformation (3.12)
from 500=0 and the commutation relations (3.13) from
IQ0, 00I =O. One also finds from (3.12) the BRST trans-
formation for ~, =K,~, which is explicitly written as

V„P~=B P~+ A'K~ (4.11) 5'., (x)=gf,b, orb(x)ri'(x) . (4.20)

pry~+ p~rg«+ ~r v$,~p+ BQv pr+ B,v pr

=i Tr[T, TbT, Td T, ]K'KpKrK&K', . (4.12)

Evidently, X and XYM are invariant under gauge
transformations

and h p
=K'K

p is the metric tensor.
The skew-symmetric tensor ~ pr& in the last term on

the right-hand side of (4.3) satisfies the differential equa-
tion

[ r, (i), xb(i') ] =igf, b, m, (x)5(x —y) . . (4.21)

We next take into account the WZW term and derive
anomalous commutation relations for the Gauss law
operators. The BRST transformation of Xwzw is evalu-
ated to be

One can extract the commutation relations for
vr„~b, . . . , from (3.13):

5 f X d x= — e'~" f d x t)'Tr[T, (A,.B Ak+8;A Ak+A;A Ak)
48m

+T, (W, d~ Ak+B,. AJ Wk —W, W~ Ak —A, WJ Wk —W, W) Wk)] .
Consequently, one has

(4.22)

0= f d x G'ri'+i 5@i)'+ gf,b, Pi) i)'—
E'J" f d x Tr[i)(A;BJ Ak+8, A, Ak+ A;A Ak+ W;8 Ak+8;A Wk

48m

—W; W, Ak —A; W Wk —W; W~ Wk ) ] . (4.23)
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The Poisson brackets of the BRST operator is simply written as

[0,0]= f d x d y j [I'(x),I (y)]g'g ig—f,&,I'(x)q g'5 (x —y) j,
where

(4.24)

I'=G' — e' "Tr[T,(A;8 Ak+B;A Ak+ A;A Ak+ W,.B.Aq+8;A Wk —W, W Ak —A; W Wk —W, W' Wg)].
48m

(4.25)

As a consequence, one finally arrives at the result [21]

[I'(x),I (y)] =igf, &,I'(x)5 (x —y)

+
q

e'~"[Tr[T,B, (A TqAk+ W)TqWk)]
48m

+if,q, Tr[T, (A, B Ak+8;A Ak+A;A~Ak

+ra, w, w, +iowa, a, —w, B, w, —a, w, a,
—W, W, A „—A, W, W„—W; W', Wk ) ] j 5'(x —y) . (4.26)

The last term on the right-hand side of this expression is
derived from 50 [21] and obviously this reduces to (3.22)
if one takes 8'=0.

V. CONCLUDING REMARKS

We have introduced the BRST operator Q through re-
lation (3.4), which is a descent equation appearing in the
system given by the diagram

0 —+ co —+ 0
1d 1d (5.1)

S ~ 5S ~ 0

where co is the symplectic structure defined in the phase
space constructed in terms of the BRST transformation.
If the action S is invariant under the BRST transforma-
tion, then co=5Q=O; namely the nilpotency of the BRST
operator is preserved.

As is well known, non-Abelian anomalies appear in
field theories containing Weyl fermions interacting with
Yang-Mills fields in themselves. From the point of view
of path integrals, anomalies originate from the fact that
the path-integral measure for Weyl fermions interacting
with external gauge fields is not invariant under gauge
transformations. Anomalies are observed effectively as
cocycle terms appearing in quantum action functionals as
a consequence of gauge transformations. Corresponding
to the system (5.1) we have the following diagram for a
descending system of cocycles:

co~= —,'Tr[dr1(AdA+dAA+ A )] . (5.4)

On the other hand, we have shown that the BRST
operator 0 can be defined on a coadjoint orbit and it
satisfies the Maurer-Cartan equation:

50= —,
' [Q,A j . (5 5)

c03 —+ 5c03 ~ 02 2

1d 1d
5 5

C04 —+ 5C04 ~ 01 1

(5.6)

where

If the action S is not invariant under the BRST transfor-
mation, then 5Q does not vanish and it gives us the
Schwinger terms in the anomalous Gauss law commuta-
tors. It should be emphasized that the derivation of the
Schwinger terms is extremely simplified by extensive use
of the BRST technique, as we have shown in this work.

Similar consideration as ours has been made by Bar-
Moshe, Marinov, and Oz [25] from a different point of
view. They started from the anomalous commutation re-
lations for the Gauss law constraints, and they construct-
ed bosonized actions for anomalous gauge theories by
making use of the coadjoint-orbit method. Their con-
sideration is based on the descending system of cocycles
given by the diagram

and

~,=Tr[ A (d A )~+ —,'A '+ —,
' A 'd A ]

c04 ~ 5' g ~ 01 1

1d 1d
6 5

c05 ~ 5c05 ~ 00 0

where

(5.2)

(5.3)

co3= Tr[(dg) A ] .

The BRST operator fL in this case is written as

0= J d x G'r1'+i 5pg'+ gf,q, pr) r1'—

If follows from the descent equation (5.6) that

(5.7)

(5.8)
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(5.9)

Consequently, one arrives at the Gauss law commutation
relations in the following form:

[F'(x),F (y)]=igf, b, F'(x)5 (x —y)
2

+ Tr[T, Tt, T, ]E""d,A'c)„5 (x —y),
24m

(5.10)
which was originally given by Faddeev [12].

[1]B. Kostant, Lecture Notes in Mathematics Vol 170.

(Springer, Berlin, 1970).
[2] J-M. Souriau, in Structure des Systemes Dynamiques

(Dunod, Paris, 1970).
[3] M. J. Bowick and S. G. Rajeev, Phys. Rev. Lett. 58, 535

(1987); Nucl. Phys. 8293, 348 (1987); in Frontiers in Parti-
cle Physics, Proceedings of the Johns Hopkins Workshop
on Current Problems in Particle Theory, Lanzhou, China,
1987, edited by Yi-Shi Duan, G. Domokos, and S.
Kovesi-Domokos (World Scientific, Singapore, 1988).

[4] A. Pressley and G. Segal, Loop Groups (Clarendon, Ox-
ford, 1986); G. Segal, Commun. Math. Phys. 80, 301
(1981); B. Zumino, in Particle Physics (Cargese I985),
Proceedings of the NATO Advanced Study Institute on
Particle Physics, edited by M. Levy, M. Jacob, D. Speiser,
J. Weyers, and R. Gastmans, NATO ASI Series B: Phys-
ics Vol. 150 (Plenum, New York, 1987); S. G. Rajeev, in
Superstrings, Proceedings of the NATO Advanced Study
Institute on Particle Physics, Boulder, Colorado, 1987,
edited by P. G. O. Freund and K. T. Mahanthappa,
NATO ASI Series B: Physics Vol. 175 (Plenum, New
York, 1988); J. Mickelsson, Commun. Math. Phys. 112,
653 (1987); Current Algebras and Groups (Plenum, New
York, 1989), and references therein.

[5] R. Abraham and J. E. Marsden, Foundations of Mechanics
(Addison-Wesley, Redwood City, California, 1985); V.
Guillemin and S. Sternberg, Symplectic Tech niques in
Physics (Cambridge University Press, Cambridge, Eng-
land, 1990).

[6] A. A. Kirillov, Elements of the Theory of Representations
(Springer, Berlin, 1976).

[7] E. Witten, Commun. Math. Phys. 114, 1 (1988); G. W.
Delius, P. van Nieuwenhuizen, and V. G. J. Rodgers, Int.
J. Mod. Phys. A 5, 3943 (1990),and references therein.

[8] A. Alekseev and S. Shatashvili, Nucl. Phys. B323, 719
(1989);Commun. Math. Phys. 128, 197 (1990).

[9] R. Jackiw, in Relativity, Groups and Topology II, Proceed-
ings of the Les Houches Summer School, Les Houches,
France, 1983, edited by B. S. DeWitt and R. Stora, Les
Houches Summer School Proceedings Vol. 40 (North-
Holland, Amsterdam, 1984); in Current Algebra and
Anomalies, edited by S. B. Treiman, R. Jackiw, B. Zumi-
no, and E. Witten (World Scientific, Singapore, 1985); B.
Zumino, Y.-S. Wu, and A. Zee, Nucl. Phys. 8239, 477
(1984); J. Manes, R. Stora, and B. Zumino, Commun.
Math. Phys. 102, 157 (1985); W. A. Bardeen and B. Zumi-
no, Nucl. Phys. 8244, 421 (1984), and references therein.

[10]B.Zumino, in Relatiuity, Groups and Topology II [9].
[11]R. Stora, in Progress in Gauge Field Theory, Proceedings

of the Cargese Summer Institute, Cargese, France, 1983,
edited by G. 't Hoot et al. , NATO Advanced Study Insti-
tutes Series B: Physics Vol. 115 (Plenum, New York,

1984).
[12] L. D. Faddeev, Phys. Lett. 145B, 81 (1984); L. D. Faddeev

and S. L. Shatashvili, Theor. Math. Phys. 60, 206 (1984);
Phys. Lett. 1678, 225 (1986).

[13]S. G. Jo, Phys. Lett. 163B, 353 (1985); Nucl. Phys. B259,
616 (1985); Phys. Rev. D 35, 3179 (1987).

[14]M. Kobayashi and A. Sugamoto, Phys. Lett. 159B, 315
(1985); M. Kobayashi, K. Seo, and A. Sugamoto, Nucl.
Phys. 8273, 607 (1986); F. S. Otto, H. J. Rothe, and K. D.
Rothe, Phys. Lett. B 231, 299 (1989).

[15]K. Fujikawa, Phys. Lett. B 171, 424 (1986); 188, 115
(1987);T. Nishikawa and I. Tsutsui, Nucl. Phys. 8308, 544
(1988).

[16]A. C. Davis, J. A. Gracey, and A. J. Macfarlane, Phys.
Lett. B 194, 415 (1987); R. Percacci and R. Rajaraman,
ibid. 201, 256 (1988); Int. J. Mod. Phys. A 4, 4177 (1989).

[17]T. Fujiwara, S. Hosono, and S. Kitakado, Mod. Phys.
Lett. 3, 1585 (1988); T. Fujiwara, Phys. Lett. 1528, 103
(1985); T. Fujiwara, S. Kitakado, and T. Nonoyama, ibid.
1558, 91 (1985); S. Hosono, Mod. Phys. Lett. A 3, 901
(1988); S. Hosono and K. Seo, Phys. Rev. D 38, 1296
(1988).

[18]A. J. Niemi and G. W. Semenoff, Phys. Rev. Lett. 55, 927
(1985); S. Iida and H. Kuratsuji, Phys. Lett. B 184, 242
(1987); H. Kuratsuji and S. Iida, Phys. Rev. D 37, 441
(1988);H. Sonoda, Nucl. Phys. 8266, 410 (1986).

[19]P. Mitra, Phys. Lett. B 188, 111 (1987); 214, 105 (1988);
Phys. Rev. Lett. 60, 265 (1988); C. Schwiebert, Phys. Lett.
B 241, 223 (1990);242, 415 (1990).

[20] S. G. Rajeev, Phys. Rev. D 29, 2944 (1984); J. Mickelsson,
ibid. 32, 436 (1985); P. Nelson and L. Alvarez-Gaume,
Commun. Math. Phys. 99, 103 (1985); A. Y. Alekseev, Y.
Madaichik, L. D. Faddeev, and S. L. Shatashvili, Theor.
Math. Phys. 73, 1149 (1988); I. Tsutsui, Phys. Lett. B 229,
51 (1989); Y.-Z. Zhang, ibid. 219, 439 (1989); Phys. Rev.
Lett. 62, 2221 (1989); T. D. Kiew, Phys. Lett. B 223, 72
(1989); R. Floreanini and R. Percacci, Int. J. Mod. Phys.
4, 4581 (1989); M. Abud, J-P. Ader, and F. Gieres, Nucl.
Phys. 8339, 687 (1990).

[21]J. A. deAzcarranga, J. M. Izquierdo, and A. J. Macfar-
lane, Ann. Phys. (N.Y.) 202, 1 (1990);J. A. deAzcarranga
and J. M. Izquierdo, Z. Phys. C 49, 627 (1991).

[22] T. Inamoto, Phys. Rev. D 45, 1276 (1992), and references
therein.

[23] B. Kostant and S. Sternberg, Ann. Phys. (N.Y.) 176, 49
(1987).

[24] C. Becchi, A. Rouet, and R. Stora, Phys. Lett. 52B, 344
(1974); Ann. Phys. (N.Y.) 98, 287 (1976); I. V. Tyutin, Le-
bedev Institute Report No. 1976 (unpublished).

[25] D. Bar-Moshe, M. S. Marinov, and Y. Oz, Phys. Lett. B
254, 115 (1991).


