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Studying the continuum limit of the Ising model
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DifFerent continuum limits of the Ising model in dimensions 2, 3, and 4 are investigated numerically.
The data indicate that triviality occurs for D =4 and fails for D (4 in each limit.
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The triviality of quantum field theories in four dimen-
sions (4D) that are not asymptotically free in perturba-
tion theory has been advocated for many years now.
Both theoretical and numerical studies have been concen-
trated on the A,P model, relevant to the Weinberg-Salam
model. Not only is there general agreement that the
model becomes a free field theory in the continuum limit,
but several groups have translated that information into
upper bounds on the mass of the Higgs particle [1]. A
dift'erent point of view has been expressed by Branchina
et al. [2], who contend that in the phase with spontane-
ous symmetry breaking a nontrivial continuum limit ex-
ists. In this work we will present the results of what we
believe are the most extensive numerical studies regard-
ing the continuum limit of the Ising model in 2D, 3D,
and 4D; they indicate that whereas several nontrivial lim-
its can be constructed for D &4, all continuum limits in
4D are trivial.

Let us briefly review the issue of triviality. In the
Feynman path-integral approach to quantization, the
functional integral is undefined without introducing
space-time discretization (except for the Gaussian case).
Consequently, for the A,P model, the functional integral
is defined via the expression
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for suitably chosen values of the two relevant parameters,
the correlation length may become infinite. This situa-
tion could be regarded as having let the lattice spacing go
to zero, since the correlation length describes the physi-
cally meaningful distances. Therefore constructing the
continuum limit of a quantum field theory is equivalent
to studying the critical behavior of a certain statistical-
mechanics model. We are emphasizing this point because
most papers on the subject refer to the continuum limit
as a ~0 and in fact a can obviously be scaled away, so it
should be regarded as 1.

To complete this brief review of the triviality problem,
let us assume first that the parameters in Eq. (1) are such
that (P) =0 and the correlation length is finite. We are
interested in the behavior of the Green's functions of the
lattice model at distances which are asymptotic in lattice
and in physical units. The central limit theorem guaran-
tees that at such distances the 2n-point (n ~ 2) Green's
function becomes a sum of products of two-point func-
tions. Consequently, the renormalization-group invariant
introduced by Binder [3],
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must vanish as 1/L (L is the linear size of the lattice) as
long as the correlation length g„ is finite and (P) =0.
Dimensional analysis then suggests that a
renormalization-group invariant which does measure the
non-Gaussian character of the continuum limit is
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4 l g~ '= lim UL([p] )(L/gL ) (3)

Here A C:Z, a is the lattice spacing, m and X are the
bare parameters, and z is the wave-function renormaliza-
tion. In the usual parlance of particle physics, the con-
tinuum limit is achieved by letting a ~0, while adjusting
suitably the bare parameters m and A, and the wave-
function renormalization constant z in such a way that
the Green's functions of P„approach well-defined limits.
The lattice spacing a is not a dimensionless quantity;
hence, a better specification of the limit a ~0 is needed.
It comes from observing that Eq. (1) can also be regarded
as the partition function of a certain lattice model. This
model depends upon two parameters; the others can be
scaled out. In general its truncated correlation functions
decay exponentially at large (lattice) distances. However,

The quantity gz ' plays the role of a renormalized cou-
pling constant at zero momentum and describes the non-
Gaussian character of the symmetric, massive phase.
Namely, if, as one adjusts m and A, to approach some crit-
ical point, gz ' approaches a nonzero value, then a non-
trivial massive, symmetric continuum limit exists (ac-
cording to Newman's theorem [4], the larger-point
Green's functions are also non-Gaussian. )

Two other continuum limits could be constructed. We
could approach the critical point from the phase in which
( P ) is nonzero. For that purpose it is convenient to
define shifted fields

(4)
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Again the central limit theorem guarantees that UL ( [P] )

vanishes as long as g is finite and that

g~ '= lim UL([p])(L/gL )
L, —+ oo

(5)

TABLE I. $1 and gR
' in dimensions 2, 3, and 4 in the sym-

metric phase. In 2D, we took two different values of L/gL. '

L/g L6 is the limit above which the thermodynamic limit is
reached. The data in 4D show g&

' drops very rapidly as
P, =0.1497 is approached.

0.40
Q.41
0.42
0.425
0.40
0.41
0.42
0.425

0.215
0.217
0.220
0.2203
0.2206

0.1460
0.1480
0.1490

5.96(0.13)
8.02(0.26)

11.74(0.38 )

15.76(0.39)
5.93(0.09)
7.83(0.09)

11.63(0.16)
15.44(0. 19)

4.45(0.02)
5.59(0.03 )

1Q.89(0.06)
12.39(0.02)
14.53(0.05)

3.02(0.02)
4.65(0.06)
7.55(0.02)

L /$L

6.04(0. 13)
5.99(0.19)
6.13(0.20)
6.03(0. 15 )

4.05(0.6)
4.09(0.5)
4.13(0.6)
4.08(0.5)

6.06(0.03 )

6.08(0.04)
6.06(0.04}
6.05(0.01 )

5.99(0.03 )

3.97(0.03 )

3.88(0.05 )

3.97(0.02)

(4)
gz

14.0(1.1)
14.2( 1.4)
14.6( 1.8)
14.2( 1.9)
12.3(0.4)
12.3(0.4)
12.5(0.6)
12.3(0.6)

26.4( 1.1)
26.4( 1.4)
25.1(3.3)
26.2( 3.4)
24.1(2.0)

32.0( 1.6)
26.5(1.3)
22.2(0.3)

exists. The question of triviality concerns the limiting
value of g~

' as the bare parameters are adjusted to reach
a critical point from the phase exhibiting symmetry
breaking. In such a phase though, one is not restricted to
investigate 2n-point couplings and an equally good indi-
cator of triviality is provided by the three-point coupling
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which should tend to a nonzero value as the critical point
is approached, if the continuum limit is nontrivial. Final-
ly, one can attempt to construct a massless continuum
limit by adjusting the bare parameters to some critical
value and studying the limiting value of gz' ' and Ul ( [ P] )

as L ~ ac (see below).
In this paper we report numerical results on the quan-

tities discussed above. However, for computational
reasons, we investigated only the Ising model, which can
be regarded as a certain limiting value of the model
defined in Eq. (1). Therefore, we studied only the ap-
proach to one particular critical point on the critical line
of the lattice A,P model. It is generally believed that all
critical points on that line have identical continuum
properties; however, this fact remains unproven.

Before presenting our results, we would like to recall
what is rigorously known about the problems we are ad-
dressing.

(1) Aizenman [5] proved that, for the 2D Ising model,
g (4)~0

1 X
2 sin(m. !L)

1/2

where

(4) .TABLE II. $L, gs, and gs in dimensions 2, 3, and 4 in the
phase with symmetry breaking. In each dimension, we took two
different values of L /gL. We believe that at the larger value the

(3)thermodynamic limit has been reached. In 4D, both gz and
(&)

gs drop considerably fast as P, is approached. Note the sign
(4)

change in gz compared to gz ' in the symmetric phase.

D P L /gl

2 0 459
0.455
0.425
0.459
0.455
0.450

0.2260
0.2235
0.2230
0.2250
0.2240
0.2230

0.1522
0.1506
0.1504
0.1502
0.154
0.1522
0.151

2.88(0.05)
3.68(0.07)
5.72(0. 15 )

4.11(0.13)
5.36(0.05 )
7.82(0. 10}

3.22(0.01 )

5.70(0.01 )

6.86(0.05 )

3.62(0.01 )

4.61(0.06)
6.37(0.01 )

2.53(0.04)
4.34(0.09 )

4.97(0.04)
5.90(0.08)
1.70(0.01 )

2.39(0.03 )

3.43(0.08)

6.60(0.11)
6.76(0. 13 )

6.65(0. 17)
9.73(0.04)
9.51(0.09)
9.85(0. 10)

4.70(0.02 )

4.74(0.01 )

4.67(0.04)
7.97(0.01 )

7.81(0.2)
7.86(0.02)

4.82(0.07 )

4.84(0. 1)
4.83(0.04)
5.08(0.07 )

7.06(0.04)
7.11(0.09)
7.01{0.2)

17.1(0.3)
16.9(0.4)
16.8(0.4)
24.6(0.5 )

24.2(0.4)
23.9(0.2)

12.9(0.2 )

13.2(0.4)
12.7(0.3 )

16.0(0.2)
16.4(0.5 )
15.6(0.7)

16.4(0.2)
12.1(1.2)
10.6(0.6)
8.0(0.9)

17.5(0.7)
13.1( 1.4)
9.8(0.9)

454(19)
438(27)
432(26)

1352(78)
1332(67)
1349(65)

256(14)
286(19)
260( 12)
768(19)
763(83)
753(86)

808(9)
436(65)
335(72)
193(59)
756(15)
444(60)
221(97)

(2) Aizenman [5] and Frohlich [6] separately proved
that g~ '=0 for D )4.

(3) Aizenman and Graham [7] proved that in 4D
gz '=0 if there is a logarithmic correction to the mean-
field divergence of the susceptibility. This fact was estab-
lished by Hara and Tasaki [8] for A, sufficiently small.

(4) Gawedzki and Kupiainen [9] proved that the mass-
less continuum limit in 4D is trivial for I, sufficiently
small.

(5) A nontrivial continuum limit in 2D and 3D has
been constructed [10) but not for the Ising model (strong
coupling), the case investigated here.

The numerical study consisted in using the Monte Car-
lo procedure to compute normalized expectation values.
We used the Wolff [11] version of the Swendsen-Wang
[12] cluster method. The number of measurements de-
pended on D and I.. As an example, for the case of 4D,
/3=0. 1490 and L =30, we had five different bins, each of
which consisted of 4500000 clusters. For thermaliza-
tion, 100000 clusters were generated for each bin.

We employed always periodic boundary conditions.
Consequently, at low temperature, the magnetization was
defined as the time-averaged value of the absolute magni-
tude of the lattice spin. This procedure produces the
correct magnetization provided a sufficiently large lattice
is used. We defined the correlation length gL as
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TABLE III. gt and gs' ' in dimensions 2, 3, and 4 in the massless phase.

Uq
(4)

gz

ln(&2+ 1)/2

0.221 65

0.1497

25
75

125

32
48
72

20
30
35

1.832(0.001 )

1.832(0.001 )

1.833(0.03)

1.415(0.002)
1.406(0.02 )

1.389(0.003 )

1.069(0.016)
1.056(0.016)
1.055(0.029)

22.66(0.04)
67.64(0.28)

113.02(0.54)

20.51(0.03 )

30.73(0.05 )

45.69(0.07)

13.98(0. 10)
21.63(0. 13 )

25.62(0.35 )

1.10(0)
1.11(0.01 )

1.11(0.02)

1.56(0)
1.56(0)
1.58(0)

1.43(0.01 )

1.39(0.01)
1.36(0.02)

2.23(0.01)
2.25(0.02)
2.24(0.07 )

5.37(0.01)
5.36(0.07)
5.44(0.03 )

4.48(0. 18)
3.91(0.17)
3.67(0.31)

t()oP &cexp i x,
x&A L

Here x
&

is denoted as the first component of x.
We define the massless regime as the regime in which

g„/L ))1, gL ))1, with gt still defined by Eq. (7). Obvi-
ously, at p„gL does not represent a true correlation
length; moreover the limit L ~ Do does not exist (gL in-
creases with L). For this massless regime, we continued
to monitor gz

' as the renormalized coupling. It is only
this latter function which vanishes in 4D. On the con-
trary, Binder's function UL seems to converge to nonzero
values in all D, in agreement with certain theoretical pre-
dictions [13]. Therefore, Binder's function UL seems to
be a good indicator for signaling critical behavior but not
triviality. (Theoretically one could modify the definition
of Binder's UL so that it can be used as an indicator of
the triviality of a massless limit: namely, let p=p, and
consider an infinite lattice, partitioned into blocks of size
L. Let UL be the spatial average of Binder's function
defined for these blocks. Then in 4D this UL will vanish
as L goes to ~, indicting the Gaussian nature of the
massless continuum limit [14].)

Our numerical findings are recorded in Tables I, II,
and III. The difference between the scaling behavior of
the Ising model in the superrenormalizable cases 2D and

3D and the renormalizable case 4D leaves little doubt to
its trivial continuum limit in 4D. The data also suggest
that taking different values of L/gL does not affect these
conclusions. Also, we note that there is a sign change in
the four-point renormalized coupling in the phase with
symmetry breaking. The physical meaning of this is un-
clear; however, we have verified the correctness of this
fact through the low-temperature expansion. We report
the result of fitting for g~

' with L/5L ——5; it is shown
that

-(+) 1

~C +ln(P —P, )~

with C, = —288.9, C2 ——6.35, and P, =0.1497. However,
it was found that g~

' does not fit to an inverse of the log-
arithmic function. Of course, our data covering only one
point of the critical line of the A,P lattice model, do not
rule out the conjecture by Branchina et al. [2], but make
it unlikely. On the contrary, the data confirm nontriviali-
ty in D &4 and triviality in D =4 in every phase of the
Ising model.
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