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Convergence proof for optimized 5 expansion: Anharmonic oscillator
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A recent proof of the convergence of the optimized 6 expansion for one-dimensional non-Gaussian in-

tegrals is extended to the finite-temperature partition function of the quantum anharmonic oscillator.
—cN /

The convergence is exponentially fast, with the remainder falling as e ' at order N in the expansion,
independently of the size of the coupling or the sign of the mass term. In particular, the approach gives
a convergent resummation procedure for the double-well (non-Borel-summable) case.

PACS number(s): 11.10.Jj, 11.15.Tk

I. INTRODUCTION

Conventional perturbation expansions in renormaliz-
able quantum field theories, in which the G-reen's func-
tions or S-matrix elements of the theory are formally ex-
panded in powers of a physically defined coupling, typi-
cally yield well-defined (term-by-term) asymptotic, rather
than Taylor, series [1]. Such series are only useful in
those fortunate cases where the effective expansion pa-
rameter is small. Moreover, in many (indeed, most) cases
of physical interest, the perturbative series is not even
Borel summable, and one lacks a precise procedure, even
in principle, for reconstructing the Green s functions of
the theory to arbitrary accuracy from purely perturbative
information.

In four-dimensional Yang-Mills theory, for example,
the perturbative series is not Borel summable [2], and the
low-energy physics is effectively strongly coupled.
Indeed, a pure SU(NJ gauge theory has no dimensionless
parameters available in terms of which mass ratios (say)
might sensibly be expanded, other than the heretofore in-
tractable 1/N expansion employing the dimension of the
gauge group itself. The relation of the perturbative series
to the "full" theory is very tenuous indeed in this case.

There have been many suggestions [3—21] that the con-
vergence of perturbation theory may be improved by an
optimizing procedure in which the partition of the action
into "free" and "interacting" parts is made to depend on
some set of auxiliary parameters, and the results obtained
by expanding to finite order in this "Aoating" perturba-
tion theory are optimized (one hopes) by fixing the auxili-
ary parameters at a point where the result is least sensi-
tive to them ["principle of minimum sensitivity" (PMS)],
or at a point where the next term in the series vanishes
["fastest apparent convergence" (FAC)].

Despite the distinctly alchemical Aavor of such
proceedings, there has recently appeared strong evidence
that optimized perturbation theory may indeed lead to a
rigorously convergent series of approximants, even in
cases with (a) strong coupling, and (b) where the conven-
tional perturbative expansions would be non-Borel

summable. In particular, the convergence of the opti-
mized linear 6 expansion has been rigorously established
[14] for the one-dimensional integral which serves as the
archetype for studying the asymptotics of saddle-point
expansions around Gaussian theories:

Z(p, g, l,;5)= J dx e
0

At 6=1, we recover the non-Gaussian integral which we
wish to evaluate. The error R~ incurred by evaluating
the expansion of this integral to order 6 at 5=1, evalu-
ated at the (global) maximum in the auxiliary parameter
A, , was shown in [14] to satisfy

~(CN' e N~~,
irrespective of the size of g, or the sign of p. For p (0, a
conventional saddle-point evaluation of Z leads to a non-
Borel-summable series. Evidently, the optimized expan-
sion is capable of handling simultaneously the problems
of strong coupling and non-Borel behavior.

In this paper, we extend the results of [14] to a proof of
convergence of an optimized 6 expansion (in some sense,
using the simplest imaginable interpolation of the action)
for the finite-temperature partition function of the quan-
tum anharmonic oscillator. In this case the error falls,

—cx'"
modulo power prefactors, like Rz-—e for large N.
The methods used here extend straightforwardly to Eu-
clidean two- or three-dimensional P [(P)z 3] field theories
in a finite space-time box. We begin by reviewing in Sec.
II the convergence proof for the optimized expansion of
the toy integral defined above, as many features of the
calculation reappear in the analysis of the functional in-

tegral defining the quantum-mechanical partition func-
tion. In Sec. III, the general structure of the optimized
expansion in quantum (field) theories is outlined and vari-
ous useful general formulas are given, in particular the
condition for PMS extrema and explicit formulas for the
remainder term R&. In Secs. IV and V the contributions
to the remainder term R& for the anharmonic oscillator
from the weak- and strong-field regions, respectively, of
the functional integral are bounded. In particular, we
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find that the strong-field contribution is dominated by an
instanton configuration of exactly the type known to
determine the large-order behavior [15] of conuentional
(nonoptimized) perturbation theory. The PMS scaling
for A. is determined analytically in Sec. VI and confirmed
by explicit high-order calculations in Sec. VII. In Sec.
VIII we discuss in greater detail the nonuniformity of the
convergence for P~ ~, and show that the optimized ex-
pansion for Z necessarily fails in this region. Sec. IX
presents some evidence that optimized perturbation
theory still leads to convergent results for large P when
carried out for connected quantities (i.e., for 8'—= lnZ), al-
though the appropriate choice of PMS extremum appears
far more delicate in this case. The rigorous basis for this
convergence is not yet clear to us. Finally, in Sec. X we
summarize our results and indicate some promising ave-
nues for further work.

II. AN INSTRUCTIVE TOY INTEGRAL

The divergent character of conventional perturbation
theory is clearly illustrated by the famous example of the
non-Gaussian one-dimensional integral

Z(p, g)—= f dx e (1)
0

(which can be regarded as a 0-dimensional P field
theory). For p)0, the formal expansion of Z(p, g) in
powers of the "coupling" g leads to a divergent asymptot-
ic series, with coefficients ck behaving at large k
effectively as ( —1)"k! This series is resummable by the
Sorel technique. On the other hand, for p &0, a formal
perturbative expansion must be performed by expanding
around a minimum of the double-well potential V(x)
= —~p~x +gx, leading to a non-Borel-summable series

I

with coefficients behaving like k! (without the oscillating
sign factor) at large k. The rather intricate contour de-
formations required to reconstruct the full function
Z(p, g) from the saddle-point expansions have been dis-
cussed by Zinn-Justin [16].

In a recent paper, we have shown [14] that the opti-
mized 5 expansion leads to a rapidly convergent evalua-
tion of Z(p, g) for either sign of p and any size coupling
g. Many qualitative features of this calculation survive in
the functional integral case. In this section we review, us-
ing a somewhat streamlined argument, the results of [14].

One begins by extending the desired integral to a one-
parameter family interpolating between (1) and a Gauss-
ian integral:

Z(p g g. $) = f dx e
—(p+gA. )x —gs(x —ix )

0

=— g c„5"+R~ .
n=0

Evidently, Z(p, g, A, ; 1)=Z(p, g ). The partial approxi-
mants at 6=1,

N

ZN —X cn
n=0

will be shown to converge to Z(p, g) exponentially fast as
%—+co, provided A, varies appropriately with N. The
scaling of A, which yields the optimal convergence will be
shown in Sec. III to correspond to the condition [6] of
minimal sensitivity (PMS) of ZA with respect to the
auxiliary parameter A, .

The calculation is considerably simplified by use of the
contour representations:

Z d
—(P+gA. )x

0 o 2+i z++'
N+1

1 —z
—gz(x "—Ax )e

Z( ) f d
—(p+gi. )x' —gz(x' —ix')2 dz 1

0 ~2~i z —1

R~=Z(p, g) Z~ f dx e
dz 1 1 —gz(x "—Ax )

0 mi z++' z —1

In (4)—(6), the contours CO, C, refer to small loops
around the origin and z =1, while the contour Co, en-
folds both the poles at z=O and z=l (see Fig. 1).
Differentiating (4) with respect to A., we find the PMS
condition

1+a /4+1
+I+a /4 —1

-'a=1.3254. . .

O=f dxx (x —kx ) e
0

which has a real root in A, for odd X only. For large odd
N, the integral in (7) is dominated by two saddle points,
one in the region x /k=—u & 1 and the other in the region
u ) 1, which give canceling contributions. Defining
a =—(gk +@A,)/N, one finds [14] that cancellation of the
leading saddle-point contribution occurs for a satisfying

implying k=&N for large N. (In the notation of [14],
a =2/sinh13. )

The remainder term R&, given by the expression (6),
can be estimated by finding the joint saddle points in z
and u =x /A, . Changing variables from x to u,

&X - du dz Ks ~(u, z)R~—
2 0 V'ii » 2~iz(z —1)

where
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1
zo &0,

aou(u —1) (16)

so the contour CQ, should now be deformed on the left of
the origin to pass through this saddle point. The result is
a contribution of exactly the same form as (15):

N
—3/4 —Q. 663N

N B (17)

FIG. 1. Contours used for the representation of Z&, Z, and
R~ [Eqs. (4) —(6)].

S,(r(u, z):—au +aozu(u —1)+ln(z),
(10)

The identity of the exponential factors in (15) and (17)
should come as no surprise: the PMS condition precisely
implies the equality of the effective actions at the relevant
saddle points in the "A" and "B"regions.

In most of the rest of this paper, we shall return to a
purely real expression for the remainder RN, to avoid is-
sues of complex deformations in functional integrals,
which make it dificult to derive rigorous bounds. Name-
ly, one easily verifies, for odd N (by repeated integration
by parts), the identity

V k i du 1 1 —tv[au —1 —(n[aou(1 —u )) I
~N e

2 o Vu zo —1 V2irN

(12)

The saddle point in u of the integral (12) is identical to
the lower saddle in the PMS integral (7). Setting a =ao at
large N, this saddle occurs at

u =u &(ao)= —+ (1 —1/ 1+ao/4)=0. 349. . .
1 1

O'0

with

(13)

S„(u &
):—aou &

—1 —ln[aou & (I —u & ) ]=0.663. . .

(14)

leading to the final result

N
—3/4 —0.663N

N

Similarly, for u ) 1, the saddle point in z occurs at

(15)

N N

Note that irrespective of the sign of (M, a=ao[1
+0 (1/&N ) ] for large N, scaling A. as i/N. Thus, if this
scaling leads to convergence at large N, it will do so in
the non-Borel-summable case ((Li (0) as well as for p )0.

The saddle-point condition for z reduces to

1
zo

aou(1 —u )

In the region u &1, zp) 4/o, '0) 1 and the contour CQ,
may be deformed on the right side to pick up the contri-
bution

III. GENERAL STRUCTURE OF
THE OPTIMIZED 5 EXPANSION

The basic idea of the optimized linear 6-expansion ap-
proach is to generate approximants to the functional in-
tegral defining a quantum (field) theory by expanding in
an artificial parameter [17] which interpolates between a
soluble (i.e., Gaussian) model and the full physical theory
of interest. Thus, one writes an extended action, contain-
ing the parameter 5, as

Ss =5S+ (1 —5)So(A, ) (19)

where S—:JX is the full (interacting) action functional,
corresponding to 5= 1, and So(A, ) is an arbitrary (it might
even be nonlocal) Gaussian functional of the fields, de-
pending on some set of auxiliary parameters, here denot-
ed collectively by A, , not present in the original theory.
The convergence of the sequence of approximants ob-
tained by expanding in 6 depends crucially on the optimi-
zation performed via these parameters, which must be
scaled appropriately as we work to higher and higher or-
der. Thus, convergence is achieved by arranging a sliding
separation between the "free" and "interacting" parts of
the action.

Denoting the fields on a Euclidean time slice generical-
ly by x, and Euclidean time by ~, the finite-temperature
partition function of the 5-extended theory is given by
the functional integral:

Zs = f 2)x exp —f [5X(x)+(1—5)Xo(x;A.)]dr
Zp x(P) =x(0) 0

N
:—g 5"c„+R~ .

n=0
(20)
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The functional integral in (20) has been normalized rela-
tive to a free theory. The Nth-order approximant to the
partition function is given by setting 5=1 in the partial
sum:

RN = AN+BN

1 So —S
A~ = f2)x 9(so —S)e '"' f e &Pdg,

0

ZN—
n=0

Cn (21)
1 S—Sofaxe(S S,—)e ""-',f 'e~g~dg . (24)
0

Of course, both Z~ and R~ (at 6=1) depend on A, for any
finite N. In analogy with (4) we find

1 dz 1 1 —z N ' —zs —(1—z)so
Z~ = X)x 0

ZQ 2~i zN+' 1 —z

(22)

so that the PMS condition of minimal sensitivity to A, im-
plies

BZx 1 BSO(x ~)
x S-SQ e '=0 . 23

Zp

It is frequently the case that Bso/M, is a positive (or neg-
ative) definite functional, so the PMS condition can only
be satisfied for N odd, and requires a balancing of the
contributions to the functional integral (23) from the re-
gions So )S (called henceforth the "weak-field" regime)
and So (S ("strong-field regime").

We may note here in passing that the large N estimates
made below rely on saddle-point calculations which are
dominated by the exponential and the (S—So) factor in
(23): in particular, the Bso /M, term is subdominant. It
follows that the PMS condition for N odd is asymptoti-
cally equivalent to the condition of fastest apparent con-
vergence (FAC) for N —1 (even):

1 1 N So2)x(S —So)+e 0=0 .
Q ~

The variational significance of the PMS condition (23)
may be more fully appreciated by using the remainder
formula (18), which for odd N implies

The crucial point is that both AN and BN above and,
hence, RN, are positiue for N odd. It follows that for arbi-
trary A, the partial approximant ZN is bounded from
above by the exact Z:

Z~(k) ~ Z, N odd . (25)

RN —+0, (26)

establishes, a fortiori, the convergence of the Z~(A, ) ap-
proximants when evaluated at the PMS point corre-
sponding to a global maximum in A, .

In the following two sections we shall show, by explicit
bounding of AN, BN, that such a scaling exists for the
partition function of the anharmonic oscillator (for arbi-
trary coupling and sign of the quadratic term). The scal-
ing we find will be shown in Sec. VI to be essentially iden-
tical to that implied by PMS. Specifically, we shall be in-
terested in the quantum-mechanical system defined by
the Hamiltonian

H =
—,'(p +m x )+gx (27)

The partition function for this system at finite tempera-
ture I//3 is given by evaluating at 5= 1 the functional in-
tegral

There are two immediate consequences of this positivity.
(1) At any given odd order in the 5 expansion, the most

accurate estimate of the exact partition function is
achieved by picking the global maximum (in A, ) for Z~.
Assuming that this does not occur at an end point of the
allowed range for A., such a point will satisfy the PMS
condition (23).

(2) Any scaling of A, with N [not necessarily that im-
plied by the PMS condition (23)] which leads to

Zs= f X)x exp —f [—,'x + —,'(m +2gk)x +5g(x —Ax )]dr1 P, . 2-

Zp x(0)=x(P) 0
(28)

corresponding to the choice

So= f [ ,'x + —,'(m—+2gA,)x ]d~,
S= ( —,'x + —,'m x +gx )d~

(29)

in the preceding discussion. In (29), m may be taken
positive or negative. In the latter case, we have a
double-well potential, tunneling phenomena, and a non-
Borel-summable theory [16]. Nevertheless, we shall see
that the optimized 5-expansion method handles this case
with equal ease.

IV. ESTIMATE QF REMAINDER:
WEAK-FIELD REGIME

Px 2d7 & PX4d
Q 0

(30)

At order N in the 5 expansion (20), the contribution to
the remainder from this regime is given by (24):

The weak-field regime in the path integral (20) for the
partition function of the anharmonic oscillator is defined
by the inequality
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=1 g (Ax —x )d~ N2 4

f 2)x exp —f ( ,'x—+,'—Ix +gx )dr f e ~dg
0

(31)

where the notation I ~2)x . denotes the restriction of the functional integral to the weak-field regime characterized
by (30), and we have normalized the anharmonic partition function by dividing by the simple-harmonic partition func-
tion

Zo—= f2)x exp —f ( ,'x—+,'
~m ~x )dr (32)

[note: m may be negative in (31)].
Making the change of variable

g=g crf (Ax —x )dr, 0&o.&1,13

0

one finds

(33)

A~= f dcr f 2)x fg(Ax' —x')dr go f (Ax' —x')dr
Z0 0

T

Xexp —f dr[ —,'(x +m x )+g(1 —o )x ] exp go—lfx , dr

leading to the bound

f do f g)x fg(i,x x)dr—
,

go. f (kx x)dr —exp —fdr( —,'x + —,'m x ) exp go—k f x dr
0

(34)

Using Stirling's formula for large N, we find

A~ & f do. f 2)x f (Ax x,)dr—exp —f ( —,'x + —,'~m ~x )dr XS„(x,o—)
2mXZ,

with

(35)

2

Sz(x, o ):— + 8( —I ) f x (r)dr —ln f (Ax —x )dr —1 .
N N 0 N

(36)

Define

~2 ~ d —QU
0

A Cauchy-Schwarz identity implies

f x'(r)«~ —f x'dr =pA, 'U',4 p 2

(37)

(38)

so the weak-field regime corresponds to the range 0 ~ U ~ 1. Moreover

g
g f (Ax x)dr=gBA, U—(1—U) &

4
(39)

S„(x,cr) ~ cr+ PA.O( —m ) U —ln U(1 —U) —1
gA, p m z gA, /3o.

N N N

where

=a U —in[a U(1 —U) ]
—1

gA, /3

(40)

(41)
a=a+ 0( —I ) .mph, 2

The function aU —ln[ U(1 —U)] is minimized in the range 0 U & 1 at
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U= —+—(1 —+I+a /4)=u ((a)1 1 -2

[cf. (13)],so we have

S„(x,o ) ~ F(a)—ln(a/2)

with

F( a )—:a /2 —V 1+a /4+ ln( 1 + V 1+a 2/4 ) . (43)

We shall see below (cf. Secs. V and VI) that the natural scaling needed for control of the strong-field contribution to
the remainder at large N is to take A to grow as N for large N (indeed, this is essentially the growth required by the
PMS condition, as we shall see analytically in Sec. VI, and numerically in Sec. VII). It is then clear that for large N,
and irrespectiue of the sign of m 2,

a [F(a)—ln(a/2)] (0
Bn

so that the integral over cr in (35) is dominated by the value attained at cr = 1. This leads to the further bound

A,
2

f » exp —f ( —,'x'+ —,'~m ~x )dr exp —N[F(ao) —ln(ao/2)]
4 2rrN Zo

where

(44)

(45)

gA, p
N

ao:—ao+ 8( —m ) .m pA,
(46)

As the functional integral in the numerator of (45) is bounded above by Z we have simply

exp[ —N[F(ao) —ln(ao/2)] j .

gpss,

'
4 2irN

For large N, ao=ao[1+0(N ~ )] and one finds

(47)

F(ao) —ln(ao/2) =

and, finally

1 &~ oo
CX0

(48)

2
1

gp
exp4&2mN.

exp( N /ao)—gpss,
~

4 2~N

(49)

5/6 —CNIf, as assumed above, A. =N, we find 3& vanishing at large N like N5z6e cx . Note that the convergence with ~ is
lost for p large. This problem returns in field theory with greater force, where p becomes pp; with y the volume of the
system. The point is simply that with the choice of interpolation (28), the weak-field contribution is necessarily dom-
inated by constant field configurations, so the effective action (for Az) becomes volume dependent. We will return to
the issue of large p convergence and, more generally, the issue of uniform convergence of connected parts for large
space-time volume, in Secs. VIII and IX.

V. ESTIMATE OF REMAINDER: STRONG-FIELD REGIME

The contribution of the Nth-order remainder from the strong-field regime, defined by the condition

fx dr Afx dr (in, dicated henceforth in the functional integration by the notation f~» ), is given by

1 g (x —Ax )de pn
B~= f » exp —f~~[ ,'(x +m x—)+gx]d~ f d~dg

ZO B 0

(50)

with Zo defined as in (32). With the change of variable
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g:'—ger f (x —A,x )dr

we have

(51)

B~= j 2)x exp —f [—,'(x +m x )+gx ]dr f (x —kx )d~X!Zo a 0

&+ & i gc (x —kx 2)de.
do'0 e

0

f 2)x f (x kx—)drexp —j [ ,'(x—+mx )+gkx ]dr+Nin —f (x kx—)dr +N&2~N Zo 0 N

j nx f (x' —Xx')dr e
&2~N Zo

(52)

where the effective action controlling the contribution in this regime takes the form

+2 A,S,(x)—= ' f x'dr+ + f x'dr ln —g f (x4 Xx')d—r —1.2X 0 2N o X 0
(53)

We shall see below that A, should be taken to grow with a power of N (actually, as N ), so that once again the sign of
the mass term will turn out to be irrelevant to the convergence (as gA, ))m for large N). The action functional S~(x) is
bounded below. To see this, it is convenient to make the change of variables

t—:&2gkr, x(r)—:&Au(t) . (54)

The action S~(x) now becomes, in terms of u(t),

dt

2
2

+ 1+ u~ dt —ln y f [u (u —1)]dt —1
2gA,

with the combination y='(/gA, /2N . For large N, we
may neglect the vanishing term m /2gk, and apply the
Sobolev inequality [18]

2 '2
~ f " +u' dt &R f u'dt

dt
(56)

(with R a constant) which implies that

goes to infinity with N, even for fixed 13.
The extremal condition (58) is precisely the equation of

motion for the instanton configuration known [16] to
determine large-order behavior of conventional perturba-
tion theory for the anharmonic oscillator. For A, ~~,
the solution of (58) approaches a finite action
configuration centered at an arbitrary time to:

S~ &y
GQ

dt

2

+u dt —ln y ju dt —1
I.

u(t)=i 1+yI ]. /2

cosh 1+ ( t to)—1

yI

)yX —ln yX
E (57)

1 2 3+ 1+ ZE
— 0 —0

dt y I XI
(58)

which is bounded below for X ~0. Moreover, the global
minimum lies in the strict interior of the integration re-
gion f~2)x . , as S~ manifestly goes to + oo at the
boundary. The global minimum thus corresponds to a lo-
cal extremum of S~, i.e., to a solution of

where —P&gl. /2 & to & PV'g A. /2. Reinserting this solu-
tion in the definition of I, we obtain a consistency condi-
tion (for A, large) for I:

I= f dtu (u —1)

~ iy2 [3(1+&I) 2(1+7'I)]
1+ '

yI

or

where
pQgk/2I—:f u'(u' —1)dt,—P&gz/2

and subject to periodicity of u (t) on the altered range

u (/3&g k/2 ) = u ( —13&gA, /2 ) . (59)

Note that with A, ~~ the range of the integration in t

=
—,'(2@I—1)&1+yI, (62)

which determines I in terms of y. There are two positive
roots for yI {one for 0 & yI & —,', the other at ) I)—,'). The
appropriate choice requires an inspection of the action
S~ at the saddle point. Inserting the instanton
configuration (60) one finds
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' 1/2

S~,) = 1+2y 1+ 1

yI
—1n(yI )—:Ss(y) . (63)

For y &0.186 both positive roots (for yI) correspond—NS~
to Sz)0, so BN-—e ~0 for large 1V. The root with

yI )—,
' always gives the smaller action, and thus the dom-

inant saddle point.
In the next section, we shall determine the scaling of A,

with N which corresponds to the PMS condition (23).
For present purposes, it is sufficient to note that the scal-
ing A, ~X for large X leads to constant y and hence—NS~(y)
(for y & 0. 186) exponentially falling Bz ——e . As
we saw in Sec. IV, this scaling is also consistent with an

—CNexponentially falling (=e ) contribution Az in the
weak-field regime, provided P is held axed.

Including the prefactor arising from the Gaussian in-
tegration around the instanton saddle points, one finds
more precisely, for large N (assuming the scaling
X=N'"),

Btv ——C(m, g)A, ~ P&A,e (64)

VI. PMS SCALING

In this section we analyze the precise form of the scal-
ing of X required to achieve the best possible accuracy in

The origin of the various factors in (64) is as follows: (1)
The factor g f (x"—Ax )dr in (52) gives a contribution
~ A,

3~z when evaluated at the saddle point; (2) the integra-
tion over the range (in t) of instanton positions gives a
factor ~peak, ; (3) an external factor of I/'t/N in (52)
(from Stirling's formula) has been cancelled by a rescaling
factor for the single missing mode in the numerator func-
tional integral after the collective coordinate delta func-
tion is introduced [16].

With the given scaling, then, the large %behavior is

B~=C(m, g)PN i'e (65)

and we have exhibited a scaling leading to exponential
vanishing of both AN and BN at large X. By the argu-
ments of Sec. III [see discussion following (25)], the glo-
bal PMS maximum of ZN must converge to the exact
partition function even more rapidly.

In this case also, one finds an increase in the remainder
with large p; however, the increase is due here to a linear
dependence in the prefactor (and hence can be compen-
sated for by logarithmic growth of N with p), in contrast
with the situation in the weak-field regime, where the
convergence is lost in the exponent, due to the dominance
of temporally constant configurations. This suggests that
it may be possible to improve the convergence of the 5
expansion for the partition function at large p by modify-

ing the choice of So in the interpolation in such a way as
to produce temporally confined, finite-action saddle
points in both the weak and strong-field sectors of the
path integral for the remainder term. With the simplest
choice (29) of So adopted in this paper, one has rigorous
convergence of the optimized 5 expansion for any finite /3,

but the number of terms needed to achieve a given accu-
racy rises with p [roughly like p, cf. (49)].

1 —NS~ (o =1)
xe

&2m.N
(66)

where Sz is the effective action given in (36). The subse-
quent analysis in Sec. III showed that the minimum value
of Sz, and hence the dominant contribution to the func-
tional integral, was obtained for a temporally constant
field configuration for which

S~ =F(ao) —ln(2/ao) .

For large ao (recall that ao =g PA. /N) we have S„
1/ao.
It is worth remarking that this result can be obtained

from a double saddle-point calculation whereby, in the
spirit of Eqs. (4)—(6), the coefficient c~ can be expressed
as the contour integral

—Sp dz 1 —z(S —sp )

cp 2~~ zN+' (68)

The saddle point in z is then given by the positive root of

4z =ao(z —1)

and S& can be written entirely in terms of z:

S~ = —1+lnz .2
z+1 (70)

In any event, assuming that I, grows faster than v'N, the
dominant exponential governing the behavior of cN is—%/ap
e ', corresponding to a saddle point at z = 1+2/o:0.

Turning now to the strong-field contribution to cN, we
have

c~= 2)xe '(S —So)1 Sp N

NS~-
xe

&2~N
(71)

where Sz is precisely the effective action of (53), the dom-

inant contribution to which comes from the instanton.
Again, this can be obtained by a double saddle-point cal-
culation in z and x. The saddle-point condition for z in

region B results in z= —1/(yI), so that the consistency
condition (62) can be reexpressed as

any large odd order X of the 5 expansion. Ciiven that the
Xth approximant ZN is bounded above by the exact re-
sult Z, the optimal result is obtained by maximizing ZN
with respect to A, . Thus one is led to the PMS condition
(23). As remarked in Sec. III, at large N this is essentially
equivalent to the FAC condition requiring the Xth
coefficient cN in the expansion of Z to vanish. In order to
achieve this, there must be a cancellation between the
contributions from the weak-field S & So and strong-field
S)So regimes. These can be estimated by saddle-point
methods, and turn out to be closely related to the two
contributions to the remainder AN, BN evaluated in the
preceding two sections.

The weak-field contribution to cN is given by

—Sp Nc~ = 2)xe '(S —So )
0
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z = ——', y(2+z )&1—z

and the expression (63) for the effective action can again
be written entirely in terms of z:

E= g e„5",
n=p

(79)

S,(y) = —2+»lz
I

.
6

2+z (73)

For the PMS condition to be satisfied, the dominant ex-
ponents (67) and (73) must be matched. This implies the
scaling assumed earlier, namely A, =N . Indeed, A, must
be taken to increase at least as rapidly as N; otherwise
y vanishes for large N, z~0, and S„~—~, cf. (70).
Consequently, Sz necessarily vanishes, which implies
that we must adjust z (and hence y) close to a zero of Ss
so that the two effective actions match. The desired zero
occurs at z =zp= —0.243. . . , which via (72) gives
y=yo=0. 186, the value mentioned in Sec. V. But now,
a constant value of y = t/(g A, /2N ) implies A. growing asN, and no faster.

More precisely, expanding Sz around yo we find

are substituted into (77), there results the recursion rela-
tion

where we have defined

p —m +2gA, (81)

the squared mass for the zeroth-order Hamiltonian. A
special case of (80), for n =0, is

,'/(/ 1—)ap —+2(/+1)eoap (/+2)p a—p+ =0, (82)

—' /(/ 1)a—„+2(/ + 1 ) g a„e„„—(/+ 2)p a„+
r=p

—2g(/+3)a„'+, +2gk(/+2)a„'+, =0 (80)

Sa(y)=(Y yo)Sa(yo)+

The matching condition is thus

1
'7 =TO+

&pSa(yo)

0. 1313
CXO

(74)

(75)

from which all the ao can be generated, given that for the
rth excited state eo=(r+ —,')p, ap =1, ap =ep/p .

There are two further ingredients needed to implement
the recursion relations. The first is the Feynman-
Hellmann theorem, which in our case reads
BE/B5= (g(x —kx ) ), relating the coefficients e„ to
those for ( x ) and ( x ), namely

y =y p + [F( (xp ) ln ( ap /2 ) ] /S& ( y o ) (76)

VII. COMPARISON WITH NUMERICAL RESULTS

Numerical evaluation of the 6 perturbation series can
be carried out to very high order by methods developed
by Caswell [3] and Killingbeck [5]. The essential element
is a recursion relation between the coefficients of the ex-
pansion of E and ( x ') obtained from the "hypervirial
theorem. " This latter arises from consideration of
the expectation value of the triple commutator

[p, [p, [p,x'+']]], which gives the relation

—,'/(/ —l)(x' ) +2(/+1)(x (E—V) ) —(x

(77)

where

V= —,'(m +2gi, )x +5g(x —Ax ) .

When the expansions

(78)

To summarize, we see that a balance between the two
contributions, leading to a solution to the PMS condition,
indeed occurs for the scaling A, =N (y ~const). The
second term in (75) then represents a correction going
like N ' . The approach to the asymptotic scaling of A,

is evidently rather slow, as borne out by the numerical re-
sults of the following section. In fact, given that
ao~N', the approach to scaling is more accurately
reproduced by avoiding the large ao approximation, and
instead writing

ne„=g(a„, —
A,a„,) .

The second is the ordinary virial theorem, 'obtained from
[xp, H], which gives

(84)

and the relation

e„=p a„+g(3a„ i
—2Aa„ i ) .

The strategy for implementing these recursion relations is
as follows. Having generated the ap from (82), and not-
ing that a„=0 for n & 0, we use the Feynman-Hellmann
theorem to generate e&. The virial theorem then gives us
a &, which is needed as an initial condition in the hyper-
virial theorem, (80). Here we recurse on /, generating all
the coefficients a &. We are then in a position to calculate
e2 from (83), a& from (85), and then all the a& from (80).
In such a fashion we can bootstrap our way up in both n
and I.

The procedure just outlined is perfectly adequate up to
n =45, but the coefficients a„grow rather rapidly, with
the end result involving somewhat delicate cancellations
between large numbers. It is therefore useful to rescale
these coefficients by defining a„~=p!a„~ (note that in the
recursion relations we use only even powers), which ab-
sorbs the major part of the growth. The recursion rela-
tions rewritten in terms of the & are more numerically
stable at large order, and it is these that we have used in
our numerical computations (employing quadruple pre-
cision on a Vax 8550).
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So far we have generated the expansion coeKcients for
the energy, but these must be translated into an expan-
sion for the partition function

TABLE I. Approach to asymptotic PMS scaling.

y =k //2%

Z(P)= ge (86)

nb„= —P g qeqb„
q=1

This is again most easily accomplished by a recursion re-
lation: if e ~ is expanded as gb„5", then

0.533
0.373
0.321
0.300
0.286
0.277
0.265
0.267

3
9

17
25
35
45
65
75

2.170
3.562
4.921
6.078
7.37
8.54

10.6
11.7

0.257 495 453. . .
0.258 237 1165. . .
0.258 239 4050. . .
0.258 239 4095. . .
0.258 239 409 544 66.
0.258 239 409 544 711
0.258 239 409 544 711
0.258 239 409 544 711

45. . .
65 ~ . .
65. . .

In Table I we show the results of the calculation of Z(p)
up to order N =75. The parameters chosen in this partic-
ular case were g= —,', m =1, and P=2. The sum over
states in (86) was taken up to r = 10. As discussed in pre-
vious sections, for odd N there is a single maximum, at
k =A, N, which gives the best estimate for Z. At N =9 the
error is already of the order of 0.01%, and thereafter the
sequence of approximants Z&(A&) converges rapidly: by
order N=65 the result is accurate to 17 decimal places.
The extreme fiatness of Ziv(P) as a function of A, after its
initial sharp rise is illustrated in Fig. 2, for N=31. Here
the PMS maximum is at A, =6.868 and the vertical range
is approximately 0.0001.

In the table we have also exhibited the value of
y~ =A,z~ /2N —in order to check the PMS scaling analysis
of the previous section. As can be seen, it converges
rather slowly to the asymptotic value yo=0. 186. Howev-
er, this was actually anticipated in (75), which for the
present parameters reads y&=ye+0. 1313N/A, z. For
example, at N =65, the saddle-point prediction for yN is
0.262, to be compared with 0.265 obtained numerically.
Finally, we can compare the exponents of the two contri-
butions which should balance at the PMS point. Again
for N=65 we find that S~ =0.541 and S~ =0.531, using
the exact expression of (67).

VIII. I.ARGE P BEHAVIOR

We saw in Sec. IV that the weak-field contribution to
the remainder at order N in the optimized 6 expansion,

—P[Eo(p —2gA5, g6) —E (m, O) jZs~e ' ', P~ oo, (88)

where Eo(g, g) is the ground-state energy of the Hamil-
tonian

H= —,'p + —,'rlx +gx

and, as previously,

(89)

p =m +2gk
It is apparent that the PMS condition (23) can be im-

plemented by appropriate differentiations of Z& with
respect to 5 and p (the normalizing denominator factor
is not differentiated):

Az, has a strong dependence on p as a consequence of
the dominance in the path integral of temporally constant
configurations. The result is a highly nonuniform conver-
gence of the 5 expansion with p: in effect, the conver-
gence apparently disappears for large P. We say "ap-
parently" because the bound (49) obtained for 3& is
strictly speaking only relevant for fixed P,N wee. It—may
be, in principle, a wild overestimate of AN in the region
which now interests us, namely N fixed (though ))1) and
p~ ae. We shall now see that the "minimal" interpola-
tion based on (28) really does fail us badly in this regime,
and not only for ZN, but more crucially for quantities
such as lim& „[—(1/P)lnZtv] (=ground-state energy),
or lim& [ —( I/P)(B/t)m )1nZ& j (= (Po)x ~@o)).

For large p, the partition function (28) is dominated by
the lowest state, so we have

Gr der 31 =B B"
2 NBp B5 g=p

() pN+ 1
BE()

B'g

B — B—2A, E
v=1 ' 0=O

+O(piv)

which for large P implies

—2A, Eo(rl, g)
B

BXf yl= p, /=0

(90)

5. 2

FIG. 2. Z~(p) vs k for N=31. The parameters are p=2,
g = 2, and m = 1, as in Table I.

(92)

(93)

Since Eo(rl, g) = t/g/2+ 3(/(4'�)+0(g ), this amounts to

+0= 3 1

2p P
2 2+ 3g

p
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so that the PMS point in A, becomes independent of X for
large )(3. The cubic equation (93) always has a single posi-
tive root with p & m. It is clear from the structure of the
expansion of Zs in 5 that, for large )8,

—i){Eo (p, 0)—Eo( m, 0) ]

with )M satisfying (93), and P&(P) a polynomial of degree
X in P. Consequently,

lim ——InZ)v =E() ()L(, , 0)—E() ( m, 0),1

p~ (x)
(95)

independent ofN for %) 1. So the 5 expansion is "stuck"
at the first order in this limit. From the positivity of R&
(cf. Sec. III) we know that

Eo(p, 0) )E()(m, g ) . (96)

IX. CONVERGENCE OF 5 EXPANSION
FOR CONNECTED PARTS

Similarly, a nonzero remainder persists in (x ) for arbi-
trary K once the limit )8—+ I) is taken to extract the
ground-state expectation value.

We therefore conclude that the optimized 6 expansion
of Z based simply on a Aoating adjustment of the mass
term, which is evidently the simplest interpolation
scheme, cannot be used in the zero-temperature limit.
Moreover, this example shows the danger of relying on a
few low-order calculations in concluding that a PMS pro-
cedure is usefully convergent: for 13~ 0() the optimized 5
expansion is instantly convergent, but to the wrong
answer.

It may be possible to resurrect uniform convergence in
I3 of the expansion by a more intricate interpolation
scheme, however. In the next section, we turn to the
question of convergence of 5 expansions carried out
directly at the level of connected quantities free of
volume factors. We shall see that there is numerical evi-
dence that such expansions also converge.

W(m, g, A,;5)—:ln[Z(m, g, A, ;5)]
N= g w„5"+R)v . (97)

N
The partial approximants W)v =—g„ow„can now be ex-
tremized with respect to X. However, in this case R~
(even for X odd) is not positive definite. We shall de-
scribe the situation for g =I=1.0, although the qualita-
tive features seem quite generic. By employing the usual
(and demonstrably convergent) expansion (3), we find the
desired answer (to 12 digits) for W by evaluating Z35 and
taking the logarithm:

W(m, g)=0.313 661 813489. . . , m =g =1.0 . (98)

The 6 expansion for 8' gives 0.2967. . . at first order,
which looks promising. This PMS point (a local max-
imum) can be tracked through odd orders, but over-
shoots the correct answer (98) at X= 5 (giving
W& =0.313879. . .). However, at order X= 11, a new
PMS extremum (a local maximum, the lowest of three ex-
trema for 0 & k & 10) appears, giving a more accurate esti-
mate 8, &

=0.313 6604 ~ ~ ~ ~ When tracked through odd
orders, this PMS point overshoots the correct answer at
order X = 17. Once again, a new PMS extremum appears
at order X=27, giving the very accurate estimate

p7 0.3 13 66 1 8 12 99. . . and so on. To summarize, it
appears that a convergent series of approximants may
indeed be available, but only by jumping discontinuously
to new PMS extrema as these appear from time to time at
higher order.

In the case of the anharmonic oscillator, calculations
of lnZ for large P reduce to evaluation of the ground-
state energy Eo(m, g, l,;5). The situation here is broadly
similar to that discussed above for the toy model, at least
insofar as the existence of several PMS extrema is con-
cerned. However, in this case, at low orders the most ac-
curate approximants arise from the selection of the first
local maximum for even orders of the 6 expansion, while
for low orders a local minimum (interlacing with a relat-
ed local minimum for even orders) gives rather sluggish
convergence. Finally, at order X=29, a new local

Most applications of the optimized 6 expansion to field
theory [8—10,19j have dealt directly with connected
quantities, with the space-time volume taken ab initio to
infinity. It would seem that such an approach would be
more appropriate, given the difhculties encountered
above with the infinite volume limit. Indeed, as we shall
see, there is some evidence that convergent results can be
obtained from an optimized expansion of 8'—= lnZ. How-
ever, the origin and structure of the convergence is much
more obscure in this case. In particular, typically several
PMS points can be found, some of which apparently do
not converge (or at any rate, converge much more slowly)
to the correct answer. Moreover, the positivity property,
which allowed us to identify the global PMS maximum as
necessarily the optimal estimate for Z, fails in the 5 ex-
pansion for 8'.

We first describe the situation for the toy model (2). In
analogy with (2) and (3), define

Order 31

5. 2

FIG. 3. Eo vs 1, for %=31. Parameters as in Tab1e II.
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Order

TABLE II. PMS values for ground-state energy of anharmonic oscillator.

min ( ~min)

9
10
11
12
19
20
29
30
31

0.696 175 778 (4. 18)

0.696 175 819 (4.80)

0.696 175 822 (6.98)
0.696 175 821 84 (9.8)
0.696 175 821 80 ( 10.1)
0.696 175 821 76 (10.4)

0.696
0.696
0.696
0.696
0.696
0.696
0.696
0.696
0.696

171 807 (5.87)
172083 (6.45)
172 328 (7.02)
172 542 (7.60)
173454 (11.53)
173 533 (12.10)
175 8208 (7.0)
174015 (17.7)
175 8208 (7.4)

0.696 173 982 ( 17.1)

0.696 174400 (18.2)

maximum-minimum pair appears, giving a much more
accurate approximant. These results (for an anharmonic
oscillator with g =0.5, m =1.0) are summarized in Table
II. The dependence of Eo on A, is shown in Fig. 3, for
iV=31. Note the extreme Aatness of the graph between
the first minimum and the following maximum. The
vertical range is 7X 10

In surnrnary, it appears that the 5 expansion for lnZ
also leads to convergent results with appropriate choice
of PMS points. Unfortunately, at present we do not
know how to extend the rigorous arguments of Secs.
IV —VI (in particular, the estimate of the remainder) to
this situation. The loss of positivity of 8& is particularly
bothersome, as it removes the clear variational intuition
available in the optimized expansion for the full partition
function.

X. SUMMARY AND CONCLUSIONS

The bounds derived in Secs. IV and V of this paper es-
tablish the convergence of the simplest available version
of an optimized 6 expansion for the partition function of
the anharmonic oscillator. The arguments used here ex-
tend straightforwardly to (bz 3 theory, with either sign for
the mass term, where the field theory is regulated both in
the infrared (by considering the finite-temperature parti-
tion function at finite spatial volume) and the ultraviolet
(e.g., by a higher derivative kinetic term, cf. [16]).How-
ever, the dominance of spatiotemporally constant
configurations in the weak-field region of the functional
integral for the remainder implies that the convergence
deteriorates in the infinite-volume and/or zero-
temperature limit. So this minimal form of interpolating
expansion is of limited practical utility for field theory.
Nevertheless, the proof given here establishes at least in
principle that "perturbative" information (i.e., the evalu-
ation of Green's functions using modified propagators,
followed by an optimization procedure) allows the recon-

struction of the exact partition function even in the non-
Borel-summable case.

There are two possible approaches to finding a sys-
tematic and practical nonperturbative procedure for
strongly coupled, non-Borel field theories. It may be pos-
sible to find an interpolating action which avoids the
dominance of constant configurations in weak-field re-
gime, thereby yielding a more uniformly convergent ex-
pansion for the partition function directly. Or (as the nu-
merical evidence described in Sec. IX suggests) it may be
possible to demonstrate the convergence of an optimized
expansion directly at the level of the generating function-
al for connected diagrams, circumventing infinite-volume
factors completely. The latter approach seems physical-
ly better motivated, but less susceptible to the analytic ar-
guments presented in this paper. W'ork on this problem
is currently in progress.

In the present paper, which was restricted to dimen-
sions d 1, the question of renormalization did not arise.
There is a potential problem here, insofar as the choice of
constants such as A, by the PMS or some similar prescrip-
tion could possibly convict with the requirements of the
renormalization procedure. However, in continuum
theories such a renormalization has so far been success-
fully carried out in two cases: the Gross-Neveu model in
the large N limit [20], and (b in four dimensions [21] up
to O(5 ). In lattice calculations [22] the PMS procedure
is implemented on the cutoff theory, where it reproduces
the Monte Carlo results rather well. The subsequent re-
normalization is then the same as for the Monte Carlo
calculations.
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