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Proof of the convergence of the linear 5 expansion: Zero dimensions
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The convergence of the linear 6 expansion is studied in the context of the integral I:=I e dx,
which corresponds to massless y theory in 0 dimensions. The method consists of rewriting the ex-
ponent as —6gx —A,(1—6)x and expanding in powers of 6. The arbitrary parameter A, is fixed by the
principle of minimal sensitivity, BI&(k)/BA, =O, where I& is the expansion truncated at order K with 5
set equal to 1. This has a solution A,& only for K odd, when it gives very good numerical results. We are
able to show analytically, using saddle-point methods, that the sequence of approximants I&(A,&) is con-
vergent, the error decreasing exponentially with K, even though for fixed A, the series expansion is a
divergent alternating series.

PACS number(s): 11.10.Jj 02.70.—c

I. INTR@DUCTION

In almost all physically interesting theories, analytic
progress depends on perturbative approximants which
form a divergent asymptotic series. Such a series is clear-
ly only useful in the minority of cases where the e6'ective
expansion parameter is small. In massless Yang-Mills
theory there is no natural small expansion parameter (ex-
cept in the large X limit) in the low-energy regime, and
one must rely on numerical techniques. Moreover, the
divergent asymptotic series obtained by conventional per-
turbation theory is usually not even Borel summable, so
that in interesting field theories we really have no idea,
even in principle, how to reconstruct the full theory from
a weak-coupling perturbative expansion. Even in simple
toy integrals defining nonresummable asymptotic series,
the required modifications of the Borel method [1] are
awkward and extremely complicated. In this paper we
present a rigorous proof that for such integrals the opti-
mized linear 5 expansion can completely cure the prob-
lems of perturbation theory, even in the non-Borel-
summable case.

The linear 5 expansion has been used in a variety of sit-
uations, with good numerical results in most cases [2—8].
The method involves the introduction of an artificial pa-
rameter 5 which does not appear in the original problem.
In the language of field theory we define a new action S&,
which interpolates between the theory we hope to solve,
with action S, and another theory, with action Sp, which
is soluble and reflects as much as possible of the physics
of S.

In the linear expansion method S& is defined as

Ss.=A(1 —5)SO+5S,

with Sg —p
=Sp and Sg —,=S.
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Any desired quantity is evaluated as a perturbation
series in 5, which is set equal to 1 at the end of the calcu-
lation. At the moment A, is arbitrary.

In fact we might expect that quantities in the 5 expan-
sion would lose their A, dependence when 5 was set equal
to 1. This mould be the case if the evaluation were exact,
but of course, any truncated expansion is necessarily ap-
proximate and does retain some X dependence, even after
5=1 has been imposed. This apparent ambiguity can be
turned to our advantage, as a means of optimizing the ex-
pansion. Namely we impose the principle of minimal sen-
sitivity (PMS) [9], which states that A, should be chosen as
a stationary point of the truncated expansion, reflecting
at least locally the expected lack of dependence of the re-
sults on A, .

Up until now, there has been no guarantee, by way of a
proof, that the linear 5 expansion converges; although in
practice it seems to do so in a wide variety of contexts.
In this paper we prove, in the simplest case of cp in d =0,
that the linear 5 expansion does indeed converge. The
PMS condition plays a crucial role here (cf. [10]):in fact
for any axed X the perturbation series ultimately
diverges, but the imposition of the PMS makes k a func-
tion A,z of the order E. Denoting by Rz the expansion
for the quantity R truncated at odd order K, it then turns
out that the sequence of approximants Rx. (A,x ) is a con-
vergent sequence bounded above by R. Moreover, the
saddle-point techniques used to establish these results are
capable of extension to the path integrals of quantum
mechanics and field theory. Work on these generaliza-
tions is in progress (see following paper).

In Sec. II we discuss the general features and the nu-
merical evaluation of the 5 expansion for the 1-
dimensional integral which corresponds to the vacuum
generating functional of the 0-dimensional theory, and
then in Sec. III we develop a proof of the convergence
which takes advantage of some properties of the truncat-
ed exponential and relies heavily on saddle-point integra-
tion at large order. The details of the saddle-point calcu-
lations are given in the Appendix.
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II. NUMERICAL EVALUATION

Evaluating the path integral in 0 dimensions for y
theory amounts to evaluating the 1-dimensional integral

TABLE I. The coefficients of the 5 expansion applied to P
theory in 0 dimensions for A, =1 and X=4. A, =4 is the value
that satisfies the PMS condition at 0 (5").

+oo 4 2 2I — d

where g is the coupling and p the mass. In what follows
we shall restrict our attention to the massless case p=0:
the cases p =+1 are dealt with in Ref. [11].

The first step in the linear expansion method is to
modify the exponent (action) to

Ss.= —5gx —(1—5)kx

= —
A,x +5(A,x —gx ),

CI

C2

C3

C4

Cg

C6

C7

C8

C9

CIO

—0.4
3.1

—27. 1

336.6
—5498.6
111471.8

—2 700 994.1

76 166 358.6

0.4016
0.2398
0.1405
0.0767
0.0385
0.0177
0.0075
0.0029
0.0010
0.0003
0.0001

giving the integral
—kx +6(kx —gx )

Qo $77

dxe " g (A, —gx )x"
OO nl

1/2

, g( —g)".=o n', =o
21'

X [2(r+n) —1]!!,
2 T + tl

(4)

where we have expanded out the (A, —gx )" terms, and
performed the integrations using

1/2
+ 2 i, 2 vr (2m —1)!!

(2A, )
(5)

To find a truncated expansion for I, we simply terminate
the sum over n at the chosen order K, and set 6=1. The
most economical way to compute the coefficients is recur-
sively, building up from lower orders.

The integral (2) can be evaluated in terms of a I func-
tion by the substitution y =gx, which gives4

I= I ( —')/2g ' = 1.812 81/g" . We are immediately4

aware of a g
' dependence which makes an ordinary

perturbation expansion in the coupling constant impossi-
ble. However, by virtue of the PMS condition, the linear
5 expansion is able to reproduce this nonanalytic behav-
ior in g. Let us just show how this happens at 0 (5):

' 1/2

I, (5)= — 1+577 1 3g

sequent numerical comparisons.
We can understand the operation of the PMS process

better if we know the form of the divergence that it has to
overcome. It is easy to establish, either by saddle-point
integration or via recursion relations, that the coefficients
c„ in Iz(5) =g+ oc„5"behave as

1 )n n —n4n n —I/2/g2n+1/2
cn (8)

for large n. For fixed k, for example A, = 1, the c„
coefficients alternate in sign and grow as n". However,
when k is set to kz, the PMS value, the divergent behav-
ior of the numerator of (8) is tamed by the denominator,
as is shown in Table I. At k=4, the PMS value appropri-
ate to %=11,the coefficients c& to c» are all of the same
sign and decrease in such a way that c» is only 0.005%%uo

of the total answer.
The general behavior of Iz for K odd as a function of k

is shown in Fig. 1. For small A, the integral is large and
negative, reAecting the divergent behavior of the last
coefficient cz. It then increases with A, , with a single
maximum at Xz. As will be shown in the next section,
the position of this maximum grows like &K. Beyond A,

We set 5= 1 in the truncated expansion,

I = (2/(, ' —A, )1 4
(7)

and impose t)I, /BA, =O. This fixes A, = A,
&

=&(5g /2),
which when substituted into (7) gives I& =

—,(2m' /5g)2 1/4

So indeed, at O(5) and in fact at all orders, the PMS
gives rise to the nonperturbative g

' dependence.
Solutions to the PMS equations only exist for odd orders
in 6, but this is no real problem, and we obtain
I9= 1.811 87/g', accurate to 0.1%. Knowing that the
g dependence is correctly reproduced, we set g = 1 in sub-

FIG. 1. Schematic behavior of the truncated series Iz (K
odd) as a function of k.
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the integral decreases because of the increasing damping
A.xfrom the factor e ", eventually tending to zero like

Irc = —
ere

III. PROOF OF CONVERGENCE

We shall shortly perform a similar saddle-point in-
tegration to find A, , the value of k picked out by the PMS,
but first we prove that for odd K, Ix. ()(, ) is bounded from
above by the true value I. We can rewrite Iz asf" exp( —gx )Ox(z)dx where Hx(z)=e '(e']x with
z=AX —gx and (f]x. represents the truncation of the
Taylor expansion of f at Kth order. If we can prove that
Hx. (z) & 1 for all values of x and A, then we have shown
that I' ' is always less than I. The crucial point is that
the derivative of Oz is rather simple, involving only the
last term of the series, namely

K

+t (9)

with Ox (0)= 1, so by integration from z =0 it is clear that
&x(z) &1, for K odd. For K even, the inequality is only
true for z positive, as illustrated in Fig. 2.

It is not possible to evaluate Iz analytically for large E
because the sum includes terms of low orders: n =0 to K.
However, derivatives with respect to A, exhibit the same
sort of cancellations which occurred in d(9x /dz, depend-
ing only on one or two of the higher-order coefficients c~.
These involve an extra factor of x relative to the c, and
are defined as

We observe that, after integrating by parts,

Ix = —(3/2A, )Ix. —(2g/A, )cx (12)

A. Estimate of the PMS value A, &

According to Eq. (11), A)r is the solution to cz()(.) =0.
This does not difFer greatly from the FAC condition,
whose solution is given in the Appendix. In terms of P,
defined by sinhP=a)r=2Kg/A, th, e solution is again
close to Po, about which we may perturb: P=Po+e. In
particular [cf. (A19)],

( f+ /a+—P)x = —(1+1/sinhPo)

+e coshPo/( coshPo —1 ),
( f /tz P)z—= ——(1+I /sinhPo)

(13)

E coshPo/(coshPp+ 1 )

To the order that we are working, we can use the p =0
expressions for () P/t)x, as ~fh /(f +h )~+= fh /
(f +h )~)+ +O(1/K). So eventually we have an ex-
pression similar to (A22):

Equation (12) shows that ((l/Bk)()(, Ix ) &0 for K odd.
Hence in this case there is only one maximum in the
I)~(k) curve. For even K there is no stationary point at
all.

CP:= dX e
—)"x (g gX2)nx2(n+P)+~ 2

nt
(10)

They are evaluated by saddle-point methods in the Ap-
pendix. There we also use the asymptotic expression for
cx. to estimate the fastest apparent convergence (FAC)
value of k, where this coefficient vanishes.

In terms of the c~,

e Ptanh —,)/3= exp[ 4KeP() —2p (Po ——ln tanh —,'Po) ],
giving

Po+ ln tanh —,'Po+ 2p (Po —ln tanh —,'/3o )

4K/3()

0.733 190 168
K

(14)

(15)

( xp(-z) [exp(z)) for p =1. Substituting in A, =l/(2Kg/sinhP) we find that
the predictions for A, are good, though not as good as
those for A.„Ac because the magnitude of epMs is greater
than the magnitude of e„Ac; for example A.z 4~ is correct
to two decimal places (0.01% error).

B. Estimate of the error Ez

This estimate is greatly facilitated by the use of the
identity (cf. Ref. t10])

g ( ) 1 d K —w(sgnz)1 Iz I

Et o
(16)

It is true for K odd, and is proved by integration by parts.
In applying this identity to the error,

Ee.=I Ix(4 ), — (17)

the integration range divides naturally into the two re-
gions 0&x & l/(A, /g) and x ) l (A, /g), leading to

FIG. 2. Sketch of 0~(z)=e '(e']~ for N=K (odd) and
N =E —1 (even). &sc = ~++&rc (18)
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where

K! 0 0
(19)

APPENDIX

In this appendix we evaluate the generalized
coefficients defined in Eq. (10) for large n, using saddle-
point techniques:

aIld

x4 —Xx'8 = f dxe s f dhow eK + I (g/ )1/2 0
(20)

(X/g) 2

AK( dx e "(Xx'—gx')~+'
K! 0

(21)

In the first of these, the maximum of the second in-
tegrand occurs at w =K. However, the upper limit
Ax —gx &A, /4g. With A, =v'(2ICg/a), this is K/a,
which is below the position of the maximum. So within
the integration range, the integrand is an increasing
function of w, and may be bounded by
(Xx' —gx')~exp(gx' —Xx'). Thus

c~:= dx e (A, —gx )"x '"+~'] +~ 2

n!
1 f +co

n!
where, with y =x,

P= —Ay+n ln(A, —gy)+(n+p)lny .

Accordingly,

ap ~ ng n +p
ay

' ~-gy+ y

and

(Al)

(A2)

(A3)

In the second contribution to EK, the integrand is
again an increasing function, so

a/ ng n+p
3'

(A4)

QO Xxa~ & dx e ' (Xx' —gx')x+',
K! (A. /g) '

using again the fact that K is odd.
Altogether, then,

(22) with a'y/ax'=4ya'y/ay when ay/ax =0.
Let us first deal with the simpler case p =0: the expres-

sions for p&0 can be treated perturbatively in p/n. For
p =0 the two solutions to ap/ay =0 can be written as

Ex & dxe (A,x —gx )E! 0

=(IC+ 1)ex+~

y+= f+
2g

(23) where

(A5)

Referring to Eq. (A32), with p =0, and using Stirling s
theorem for the factorial we find that

and

f =1+a+(1+a )'~ (A6)

~ C~ 1/4e 0 g~ 1/4 —0.663K
K (24) a =2ng /A,

It is also useful to define another quantity h+ as

(A7)

Thus the error decreases exponentially fast at large (odd)
K.

IV. CONCLUSIONS

h+=1 —a+(1+a )'

so that

(A8)

We have been able to show in this toy model that the 6
expansion in conjunction with the PMS prescription
leads to a highly convergent sequence of approximants.
It is worth commenting that the proof goes through
essentially unaltered for p WO, even for p & 0, the bro-
ken symmetry (and non-Borel-summable) case. The PMS
prescription does not in fact differ asymptotically from
other possible criteria for fixing A, , such as the FAC cri-
terion: what is crucial is that A, must not be kept fixed,
but must be allowed to grow like +K.

Clearly the next goal is to attempt to extend these re-
sults to higher-dimensional theories, starting with the
anharmonic oscillator in quantum mechanics [2]. The
saddle-point techniques we have employed are well suited
to such a generalization.
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y+= ~+ . (A9)

a P 8gn f +h
ax ~ fh

while

(A10)

f+n ln(n/2a)—+n lnfh . (A 1 1)

The form of (A6) and (A8) suggest the definition

sinhP=a

in terms of which

f =1+e—~

(A12)

In terms of f and h the second derivative of P at the sta-
tionary point is
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h =1+e —~,
so that

(A13)
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f+h+ =+-2ae —~ . (A14)

There are two solutions to the equation BPIBy =0 and
consequently four solutions to BPIBx =0, so we can ap-
proximate our integrand by four Gaussians. As the in-
tegral is symmetric in x, we can just consider the two
Gaussians in the positive x region and multiply the result
by two. For odd K, the integral cz consists of one Gauss-
ian above the x axis, from the y solution, and one
below, from the y+ solution. The saddle-point formula
for the integral is

f "dx e&"=y0 P"(x; )

1/2
p(x,. )

e (A15)

where the sum over i represents the sum over solutions to
By/Bx =0.

We now use these expressions to estimate the opti-
mized A, chosen by the criterion of fastest apparent con-
vergence (FAC), whereby A, is chosen in such a way that
the last (Kth) coefficient is set to zero. While this is not
of direct relevance to the main calculation of Sec. III, it
exemplifies the method and serves to introduce some ad-
ditional notation.

According to the FAC criterion, we wish to solve

Po+ ln tanh —,'Po

4Kpa

0. 100 366
X (A23)

The value of A, can then be retrieved from
A, =(2Kg/sinhp)'~ . The prediction for A,„~c from this
method is correct to four decimal places when
K =45 (0.000 15% error), indicating that the assumption
that the integrand can be modeled by two Gaussians is a
good one. The value of A,„~c grows like &K, since P
tends to the constant value po as K~ oo.

Returning now to the case p&0, the expressions for f
and h are changed to

f+ = 1+a+( 1 —y+ a )'~

h =1—a+(I —y+a')'", (A24)

where a=(2n+p)g/A, and y =2pg/A, . The exponent P
and its second derivative become

f+ n ln—(n /2a)+ n lnfh +p [In(A, /2g)+ lnf] .
cz

(A25)

c~(A, ) =0 . (A16) and

To satisfy this we must simply ensure that the area of the
Gaussian below the axis is equal to the area of that above:

fh exp[K( fla+ lnlfh I—)]f +h

B P 8g nf +(n+p)h
Bx ~ fh

(A26)

It is useful to expand in p—=p/n. After some algebra we
find that, to order p,

1/2
h

f +h
exp[K( f /'a+ lnlfh

I )]
and

f+ = 1+e ~+p(—e —~+ 1)/2 cath/3 (A27)

(A17)

However,
l fbi(f +h )I+=lfhl(f +h )I, so this

reduces to

f+h+ = —2a +e ~+pe —~+ — ——p
p(1+a) 1

2( 1 +a2) 1 /2

(A28)

[Ih I exp[K( f /a+ lnl fh —I)]]+
=[lb I'~ exp[K( f/a+ lnlfh I)]]—

or

Ih I' exp[K( f la —P)]—
= lh+ I' exp[K( f+/a+P)] . (A19—)

Thus (A16) reduces to

so that

lnlfh
I

= ln2a+P+p[1 —(+1+e "~)]/2coshP . (A29)

In the expression for P there are cancellations between
various p terms, so that altogether we have

1+e +—~
P(x+)=n — . + lnn+P+plnf +p In(A, /2g) .

sinh

(e~tanh —,'/3)'~ =exp[2K(cothp —p)] . (A20) (A30)

The solution is clearly /3=PO+O(1/K), where /3o is the
solution to

Po =cothPo, (A21)

which is Pa=1. 19967864. If we define e by P=PO+e,
then

To the order we are working we can evaluate the pre-
factor at p=0, since the difference is of order (1/K).
Then

4A,a 2(1+a )'
x+

lh

e tanh —,
'
po = exp [ 4K e( 1+ csch2po)—],Po

giving

(A22)
8k

coshP .

The final formula for c~ is

(A31)
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c~(A, ) = n! 4A, coshPo

. 1/2

2g

1+sinhPon" exp —n
sinh o

coshPo
X ~1+e ~~' exp —ne +p ln(1 —e ~) +( —I)"~e~—l~' exp ne

coshPc+ 1

coshPo
+p ln(1+e~)

cosh o
—1

(A32)
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