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Green-Schwarz formulation of self-dual superstring
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The self-dual superstring has been described previously in a Neveu-Schwarz-Ramond formulation
with local N =2 or 4 world-sheet supersymmetry. We present a Green-Schwarz-type formulation, with
manifest spacetime supersymmetry.
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I. INTRODUCTION

The string with local X =2 world-sheet supersymmetry
[1] has been shown to describe the self-dual forms of
gravity and Yang-Mills theory in two space and two time
dimensions (or appropriate dimensional reductions in the
heterotic case) [2]. However, the field-theory actions [3]
which were originally claimed to correspond to the am-
plitudes of this string [2] are not Lorentz covariant, even
though the field equations of these self-dual theories are
Lorentz covariant by definition. Furthermore, these ac-
tions defy even dimensional analysis: For example, the
Yang-Mills fields used are dimensionless (appearing in ex-
ponentials), but they still have the usual d'Alembertian
kinetic operator, and thus require a dimensionful cou-
pling constant (in four dimensions), as for nonlinear o.

models, which they closely resemble [1]. This seems
inappropriate for the self-dual restriction of a theory that
has a dimensionless coupling because of (spacetime) con-
formal invariance (classically, or quantum mechanically
for the N =4 supersymmetric extension).

The fields used in these actions are related at those ap-
pearing in light-cone-like gauges [4,3]. In the past,
Lorentz covariance has been an important tool for study-
ing light-cone formulations of strings with or without
world-sheet supersymmetry. However, Lorentz transfor-
mation properties for these self-dual strings were not con-
sidered until recently [5]. There it was found that super-
symmetry was an important ingredient in Lorentz covari-
ance: The only field-theory actions that are Lorentz co-
variant (with the usual vector Yang-Mills field and tensor
gravity field, of the right engineering dimensions), give
the correct string amplitudes, and have all fields related
by supersymmetry ("spectral fiow" [6]) are those with
maximal supersymmetry.

In addition to Lorentz covariance, the major consisten-
cy conditions which have always been imposed on string
theories involve loop corrections. In the original, nonsu-
persymmetric descriptions of the self-dual string, there is
disagreement between the loop corrections found directly
from the string and those from the proposed correspond-
ing field theories [7]. In fact, the string calculations give
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results characteristic of a two-dimensional field theory (as
does the above-dimensional analysis of the proposed non-
covariant actions, since nonlinear o. models have dimen-
sionless couplings only in two dimensions). On the other
hand, in the supersymmetric description all loops vanish
(at least in the nonheterotic cases) in both string and
field-theory calculations, and thus the two methods are
trivially consistent [5]. (The simplest way to supersym-
metrize the usual string calculations is by graded Chan-
Paton-like symmetry factors: In light-cone-like gauges,
the fields depend on anticommuting coordinates 0, but
the action has no explicit 0's or 8/00's, so the 0 integra-
tion in the action causes the component fields, even the
fermionic ones, to appear with the same vertices as in the
nonsupersymmetric case, but in various combinations. )

Finiteness is also believed to be a requirement, in general,
in string theory (the nonfinite Veneziano string has prob-
lems at least with tachyons and unbounded potentials):
The original bosonic version of the self-dual string has
loop divergences, while the supersymmetric version is
trivially finite because all loops vanish. Since self-dual
theories are essentially topological (for example, all tree
diagrams except for the three-point function vanish [8,2],
even in the bosonic version), loops might be expected to
vanish anyway.

Although in [5] we described how to treat the self-dual
string theory in a manifestly Lorentz-covariant way with
the N =4 Neveu-Schwarz-Ramond (NSR) formalism (the
N =2 NSR formalism is just a partial light-cone gauge
for N=4), and how to treat the corresponding field
theory in a manifestly Lorentz- and supersymmetry-
covariant way in superspace, we did not describe the
string theory in a manifestly spacetime-supersymmetry-
covariant way. For the usual superstring, this was
achieved [9] by generalizing a formulation of the super-
particle [10] in terms of the classical mechanics of the
coordinates of superspace. Here we describe the mani-
festly supersymmetric formulations of the self-dual
string, and the equivalent self-dual particle. Because of
the unusual nature of self-dual superspace, all constraints
are automatically first class. As a consequence of mani-
fest supersymmetry, external fields can be introduced
classically which include all the components of supersym-
metric multiplets, allowing nonlinear o.-model style cal-
culations for all fields, including fermions. Also, the
zero-slope "limit, "which in this case actually includes all
the physical string states, can be taken directly in the

47 2512 1993 The American Physical Society



47 GREEN-SCHWARZ FORMULATION OF SELF-DUAL SUPERSTRING 2513

classical mechanics string action (unlike NSR formula-
tions of strings), allowing a straightforward transition to
the superparticle descriptions of the same theories.

a ap .=cp =0,

a.'a, =0,

II. PARTICLE

Since all the oscillator modes of the self-dual strings
vanish, its physics can be described by just its zero
modes, the self-dual particle. As, in general, for relativis-
tic systems, writing a classical mechanics action is
equivalent to writing the set of constraints: The Lagrang-
ian can be written in Hamiltonian form qp

—A, G(q, p) in
terms of constraints G with Lagrange multipliers A, . (For
example, for the Veneziano string 6 is the Virasoro con-
straints and A, the two independent components of the
unit-determinant world-sheet metric; the action takes its
usual form after eliminating p. ) In this paper we will al-
ways work directly in terms of the constraints, but every-
thing can be translated straightforwardly into the
language of the classical mechanics action.

Once the nature of the self-dual superspace [5] is un-
derstood, the constraints are almost automatic. This su-
perspace has anticommuting spinor coordinates of only
one chirality, as might be expected from self-duality:
x" =(x,8 ), where a, a' are the usual spinor indices
of SO(2,2) =SL(2,R )I3I SL(2,R ) and a is an internal
GL(N, R) [Wick rotation of U(N)] index labeling the N
spacetime supersymmetries (not to be confused with the
world-sheet supersymmetries of the NSR strings). As im-

plied by the indices, this space is a linear realization of a
global GL(N~2)CSGL(2) symmetry. [In self-dual super-
gravity, an OSp(N~2) subgroup of GL(N~2) is gauged. ]
This global symmetry includes not only the SO(2,2)
Lorentz and GL(N) internal symmetries, but also scale
symmetry, half of the supersymmetry, and half of S su-
persymmetry (the "square root" of conformal boosts). In
fact, this group is a subgroup of SL(N~4), the supercon-
formal group (which is discussed in more detail below).
In addition to these manifest "rotational" symmetries of
the coordinates x, there are also the "translational"
symmetries, which include the usual spacetime transla-
tions as well as the other half of the supersymmetry. Un-
like ordinary superspace, the fermionic translations here
are just the naive 0~6I+e; there is no "torsion" in self-
dual sup erspace. Thus, this uncomplicated self-dual
super-Poincare group contains not only the usual one but
also dilatations and half of S supersymmetry, and in a
simpler form.

The equations of motion (constraints) then follow from
the usual Klein-Gordon equation in the unique way
which preserves this symmetry:

As a consequence of the statistics of the partial deriva-
tives, these equations are graded antisymmetric in the in-
dices AB. (We treat the indices a, a' as bosonic, a as fer-
mionic. ) Separating these equations into bosonic and fer-
mionic parts,

These equations are just the truncation to self-dual super-
space of a set of first-class constraints proposed long ago
for the superparticle [11]: The first constraint is the
Klein-Gordon equation, the second is half of Pd, the gen-
erator of ~ symmetry [12], and the last is a truncation of
dd. (In the "chiral representation" half the covariant
spinor derivatives can be written as partial derivatives,
while the other half, the half which does not explicitly
appear in self-dual superspace, takes the usual, more
complicated form. ) In [11]these constraints were shown
to follow from superconformal symmetry; here the half of
the S supersymmetry which is manifest is enough to do
the job. Just as these covariant derivatives commute
(since they are just partial derivatives), these constraints
also are Abelian. This difFers from the usual superspace,
where the non-Abelian nature of the constraint algebra
makes quantization difficult.

These constraints can be solved easily in the light cone.
The first constraint is solved as usual; the second just kills
half the anticommuting coordinates; the third is then
redundant. (For example, in the frame where 8 =0,
we also find 8, =0.) In the usual superspace, the first
two constraints are not sufhcient, since the anticommut-
ing space must be reduced to a quarter of the original size
to obtain an irreducible representation of supersymmetry;
here we already started with half the usual number of fer-
mionic coordinates since the superspace is chiral, so a
further division in half completes the process.

III. SUPERCONFORMAL GROUP

The open self-dual string describes self-dual X =4
super Yang-Mills theory, which is superconformally in-
variant. The usual (super)spacetime representation of the
superconformal group can be derived by starting with
six-dimensional superspace and imposing covariant con-
straints which reduce the spacetime to four dimensions.
In particular, both the self-dual and the non-self-dual rep-
resentations can be derived from the same six-
dimensional superspace and constraints. Essentially, this
is because the four-dimensional superconformal group
SL(N~4) has a unique linear realization that includes six
spacetime coordinates: In terms of SL(N~4) indices
A, X, . . . , the coordinates are graded antisymmetric ten-
sors x . This follows from the fact that an antisym-
metric tensor of the subgroup SL(4) is a vector of SO(3,3).
We also introduce SL(N~4) spin operators M~
(M~ =0). The complete SL(N~4) generators are then

J~ =x B@~—trace+ M~ .

The constraints that eliminate the extra two spacetime
dimensions are
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x [Ax cl)) 0

x't~M ~)+ kx~~ ——0,
N —4

—,'x ~a =0.
[The factor (N —2)/(N —4) makes the scale weight N in-
dependent. For N =4, where the superconformal group
is actually SSL(N~4), we either set k =0 or drop a certain
trace part of the generators from the group. ] In the
N =0 case, the first constraint is just the scalar equation
x =0. To reduce to four dimensions, we expand
A =( A, a') for the self-dual representation, or further ex-
pand A =(a,a, a') for the usual left-right-symmetric rep-
resentation. For the self-dual case, the constraints be-
come

—xa+-'x ABa

N —2Ma' + A a'M + kx —0
4

AB Aa' B

X XMa'B+ Ca M B+xBy'M a'+x BCM a' kx Ba' pc N 4

—XI ~M ~ '+x t M '+ kx =0N —2
N —4

xt "Bxc' '=0
j AB CD)

where we have written x ~ =C~ x, 0 &.
=C& B. These

constraints, which are also gauge generators, yield the
solutions and gauge conditions

B=O, x =1,
N —2

M = —M = k,a' A

AB Aa'X B g —pAB

N —4

and the last three constraints are redundant. The
remaining variables are now just the coordinates x
(and their conjugates) of self-dual superspace, the spin
operators Mz and M~ .P. )

of SL(N~2)C3)SL(2), and the
scale weight k. [As usual for supergroups, for the case
N =2, SL(N~2) becomes SSL(N~2), and the traces of both
the GL(N) and GL(2) subgroups vanish. ] The supercon-
formal generators are now obtained by substituting these
results into the original six-dimensional expressions:

B B 1J = —x BA +MA + k5A,

J .~'= —x ~'3A .—trace+M

Ja'A=XA~'XB a a' —XBa'M A —XAI'M a'+ —'kXAa'X P~ B X B X

where a tilde means the traceless part. This result is
essentially the same as the usual representation of the su-
perconformal group in chiral superspace [13], but
simplified by the use of SL(N~2) notation to the point
where it looks the same as the representation of the ordi-
nary conformal group (in spinor notation).

IV. o MODELS

N =4 spinning particle

I, V

—,'I (, I b) ~

sup erparticle

—,'V't, V'
)

~

TV(a ~b)a'

The main difference between these two sets of constraints
is that for the spinning particle the fermionic variables
are y matrices, while for the superparticle they are
(gauge-covariantized) partial derivatives. (For the corre-
sponding strings, they also have different conformal di-
mension. ) For closure of the algebra

In the a-model approach to introducing interaction to
strings, external fields are added to the classical mechan-
ics action, and their equations of motion follow upon
quantization. For the usual Green-Schwarz (GS) super-
string, and for the N =2 Neveu-Schwarz-Ramond super-
string, some of these equations follow already at the clas-
sical level. For the self-dual GS superstring, and for the
N =4 NSR string, all field equations appear classically.
Here we present the calculations for the last three cases,
but introducing the external fields into the constraints in-
stead of the action. This is equivalent, since gauge invari-
ance of the action requires closure of the constraint alge-
bra. (In these cases, unlike the usual GS string, all con-
straints are first class: i.e., they all generate symmetries,
and their algebra closes. ) Also, since all three cases de-
scribe the self-dual superstring, we can replace the string
with the corresponding particle. (For the NSR cases, we
consider just the Ramond sector, since the Neveu-
Schwarz sector takes the appearance of an ordinary sca-
lar and is uninteresting. )

We consider external (super) Yang-Mills fields, corre-
sponding to the open string. (In the string constraints,
the external field couples to the ends of the string. ) This
interaction is achieved by the usual minimal coupling
B~V=B+A. For the self-dual superparticle, this gauge
covariantization of the equations of motion of the previ-
ous section produces the algebra

I

Gai) ———,'V(A Va)~, —[Gwii, GcD] = F(„(cGD)i))—

where to get the algebra to close we had to impose

[V z, Vi))i I
=C&. ,Faa

which are exactly the equations of self-duality of super
Yang-Mills theory, written in self-dual superspace [5].

For the particle version of the N =4 NSR string (taken
from the zero modes of the Ramond sector), the analysis
is similar, although in this case the physical description is
of a Weyl spinor in an external Yang-Mills field (no su-
persymmetry). The constraints, compared with their
self-dual-superparticle analogues, are
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[I, V', , I b V'i3ir} =C,bC p(U+F I' .I p )

we need F &=0.
The particle version of the %=2 NSR string is de-

scribed by a restriction of the N =4 constraints (in terms
of the same variables) to the subset

, I + V ., I V+, I + I . To obtain closure of
the algebra

(I + V )'=(I V' )'=0

we require

self-dual 0's, we find a simpler algebra with no structure
constants (just as for the superparticle):

, +x.'.,
6 1 5

50aa' ' Q2 5Xaa'
PQ Piga' a'

[P~ (o ),P~ir(r) } =i 5'(r o—)C ir ri~~,

~ ~ =( . . .P' ), ri~~=(C p, 5,",5'b) .

The constraints must then be a simple generalization of
the Virasoro constraints:

F++ =F-- =o .

In this case, the complete set of self-duality conditions is
not required. However, for the string, world-sheet con-
formal invariance (i.e., closure of the Virasoro algebra
with the external fields included) as usual requires that F
satisfy the usual non-self-dual field equations. Using the
Jacobi identities for the covariant derivatives V ., all
these conditions then imply F+ =O„and thus F &=0
[14].

V. STRING

Since the constraints for the self-dual superparticle,
which followed uniquely from symmetry considerations,
are just the self-dual restrictions of those of a certain su-
perparticle with only first-class constraints, and, in turn,
the constraints of that superparticle are the zero-modes
of the first-class formulation of the Green-Schwarz super-
string, it follows that the self-dual superstring should fol-
low from the self-dual restriction of that superstring.
That non-self-dual, first-class formulation of the Green-
Schwarz superstring was constructed from an afFine Lie
algebra D (o)=5/58 + . , P, (o)=(5/5X +X,')/
&2+ .

, 0 (o)=0' whose structure constants are y
matrices. The zero-mode parts of D and P are the usual
covariant derivatives of the superparticle. Truncating to

(normal ordered) with the Virasoro constraints them-
selves given by their trace L =

—,'g G~+. Their algebra
is

%=4 NSR string

I, P
—,'I(a I b)a

GS superstring
paa p + ] pea'p

aa Oa'

P P
—,P( P-),

where for the GS case P = (P, ,P' ), and th—e fermionic
commutation relations

[G~@(o ), Gqz, (r) }
= ,'i5'(r—o)r—i(~(p[G~)~)(o )+(r)],

where we have ignored anomaly terms.
These constraints can be solved quantum mechanically

in the same way as for the N =2 (or 4) NSR string [15].
The solution is that none of the oscillators contribute to
physical states; the spectrum is given by the massless
ground states, the self-dual superparticle. The proof is
simplest for the case where the GS string has %=1
spacetime supersymmetry, since in that case it has the
same number of fermionic variables as the N=4 NSR
string. We first compare the expressions for the con-
straints

N =4 NSR string

t I, ( o ), I b p ( r ) }
=C,b C~.ir 5 ( r o)—.

GS superstring
[P~,(o ),Pbp(r) }=ri bC pi5'(r o). —

(Here the NSR a index and the GS a index both take two
values, with C,b

=o 2 and g,b
=o ) )By comp. aring oscilla-

tor expansions for these two formulations, we see that the
constraint algebra is identical except for the fermionic
zero modes and the mode-dependent normalization of the
terms. (Basically, I + ~ and I act as 8 ~ and 5/50
but 0 appears as 0'.) By considering the N =2 NSR sub-
set of the X =4 NSR constraints (as described in Sec. III)
and the corresponding subset of the N = 1 GS con-
straints, to get an irreducible set of constraints, the proof
that oscillators do not contribute to physical states is the
same for the NSR and GS cases. The only difference is in
the fermionic zero modes which remain in the two for-

malisms for the particle described by the ground states.
(In Ref. [14] only the Neveu-Schwarz sector was con-
sidered whereas here we need to consider the Ramond
sector for the two proofs to be parallel. The treatment is
essentially the same except for the treatment of the fer-
mionic zero modes. )

The Virasoro anomaly calculation for this irreducible
subset of the N =1 GS constraints is very simple: The
bosonic and fermionic variables have the same conformal
weight and come in the same number (four each), as do
the bosonic and fermionic constraints (two each). Thus,
the anomaly cancels.

The solution of the constraints for the X ) 1 GS super-
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string is accomplished by considering an N =1 subset of
the constraints. This subset is identical to the N =1 con-
straints not only in its algebra but also in its representa-
tion in terms of four (of the total 4N) of the fermionic
variables and all four bosonic variables. Thus, solving
these constraints [ignoring the remaining 4(N —1) fer-
mionic variables], and the corresponding gauge condi-
tions, is identical to the N =1 case, leaving dependence
on only the zero modes of those 4+4 variables. The
remaining fermionic constraints then easily reduce the
remaining fermionic variables to their zero modes.
(Eliminating fermionic excitations is easy even in the
N = 1 case; only the bosonic variables required any
effort. ) The result is that the self-dual GS superstring, for

all N, reduces to the self-dual superparticle. (The same is
not true for the D )4 N =4 NSR string, since the above
analogy of constraints to the GS superstring no longer
holds: the o," index is extended instead of the a index.
Thus neither D nor N of the NSR strings bears any rela-
tionship to N of the GS strings. ) The anomaly calcula-
tion is not as simple as the N = 1 case because of the fur-
ther reducibility of the constraints; we did not find an ir-
reducible analogue to the N =2 NSR constraints.

Although we have described the (noncovariant) quanti-
zation of the self-dual CxS superstring at the free level, we
have not considered further restrictions resulting from in-
teractions. Presumably this would determine N to take
the maximal value [5].
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