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Self-dual N = 8 supergravity as closed N =2(4) strings
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As open N =2 or 4 strings describe self-dual N =4 Yang-Mills theory in 2+2 dimensions, the corre-
sponding closed (heterotic) strings describe self-dual ungauged (gauged) N =8 supergravity. These
theories are conveniently formulated in a chiral superspace with general supercoordinate and local
OSp(8~2) gauge invariances. The super-light-cone and covariant-component actions are analyzed. Be-
cause only half the Lorentz group is gauged, the gravity field equation is just the vanishing of the torsion.

PACS number(s): 11.17.+y, 04.65.+e

I. RESULTS

N =2 strings [1] have been proposed as theories of
self-dual Yang-Mills theory and gravity [2—4]. In a pre-
vious paper [5] we showed how the open string [4] actual-
ly describes self-dual super Yang-Mills theory, with all
the helicities from +1 to —1. The amplitudes of this
field theory in an appropriate gauge are identical to those
found in the string theory, but Lorentz invariance shows
that the external states have helicities other than just the
+1 of nonsupersymmetric self-dual gluons. Previously,
the states of other helicities had been neglected because
spectral How indicated the equivalence of states with
diFerent boundary conditions [6]. This is obviously not
the case if some of the states are fermions. The fermionic
contributions to all loop corrections cancel those of the
bosons because of the trivial nature of the supersymmetry
generated by spectral fiow [5]. (This avoids some ap-
parent problems from infrared divergences [7] when the
fermions are neglected. ) This residual symmetry of the
N =2 string U(1) constraint is analogous to the residual
global U(1) symmetry which exists in QED in spite of the
local U(1) constraint (the quantum version of Coulomb's
law) which appears in quantization in the temporal gauge
(the analogue of the string's conformal gauge). The fact
that some of the states are fermions is obscured in the
N =2 formalism for this string because the SO(2,2)
Lorentz symmetry is not manifest. (In fact, it was not
realized until Ref. [2] that the theory contained Yang-
Mills theory and gravity and not just scalars. ) However,
in the equivalent (world-sheet) N=4 formulation, where
this Lorentz symmetry is manifest, there are clearly spi-
nors [8]. In [5] we attacked this problem from the field
theory approach to avoid the complications of quantiza-
tion of the N=4 string. In this paper we continue this
approach for the closed [2] and heterotic [3] strings,
which describe self-dual ungauged and gauged N=8 su-
pergravity.
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From the field theory point of view, the appearance of
states other than gluons and/or gravitons follows from
the requirement of a Lorentz-covariant action. The self-
duality conditions are then enforced by Lagrange multi-
pliers. The existence of these Lagrange multipliers is im-
plied by supersymmetry: They are in the same supersym-
metric multiplet as Yang-Mills theory and/or gravity,
but only when the supersymmetry is maximal (N=4 for
super Yang-Mills theory, N = 8 for supergravity), since
Lorentz invariance requires the multiplier have helicity
equal in magnitude but opposite in sign to the physical
self-dual Yang-Mills-theory and/or gravity polarization.
[This is also why, for SO(2,2), all helicities, except some-
times helicity zero, come with an indefinite Hilbert space
metric. Opposite helicities are not complex conjugates,
but are both real. ] This is particularly clear in the light-
cone formalism, where only propagating degrees of free-
dom appear, and the field content follows directly from
the unique free action jd x d 8—,

' V V. The fact that all

states are in the same supersymmetric multiplet is the
statement that all states (boundary conditions) of the
string are related by spectral How. The minimal off-shell
field content and the Lorentz- and gauge-covariant form
of the interactions are determined from the commutation
relations of the covariant derivatives, which can also be
solved explicitly in the light-cone gauge. The light-cone
form of the interaction vertices for open and closed
strings is independent of the helicities of the states,
another consequence of spectral Row, which is seen here
to follow from just supersymmetry and self-duality.

Thus, Lorentz covariance, supersymmetry, and self-
duality uniquely determine the open string to be self-dual
N =4 super Yang-Mills theory and the closed string to be
self-dual N=8 supergravity. The diA'erent values of N
prevent the closed and open strings from coupling, but
this is also implied from the vanishing of the usual one-
loop string diagrams which generate closed strings from
open ones. (This differs from the result of [4], where open
and closed strings are coupled, since in the absence of fer-
mions one-loop diagrams survive, as well as infrared
divergences. ) However, the heterotic string is more com-
plicated, since even when spectral Aow is taken into ac-
count there are still distinct gluons and gravitons both in
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the theory, as well as the two corresponding independent
coupling constants. (Although the heterotic string ap-
parently requires compactification to two or three dimen-
sions [3], here we consider only the (2+2)-dimensional
theory that gives that theory upon dimensional reduc-
tion. ) The solution also follows from supersymmetry:
Gauged N =8 supergravity has two couplings, including
one for the non-Abelian gauge vectors. (The N=8 super-
symmetry is again required by the appearance of the
graviton. ) This result is again unique, up to the choice of
gauge group for the 28 vectors [SO(n, 8 n—) or one of its
contractions]. This is smaller than the number of vectors
expected from the string analysis [3], but there may be
some analogue of Gliozzi-Scherk-Olive (GSO) projection
at work. In particular, this is the spectrum expected for
the N=(2, 1) heterotic string for such a projection, since
the direct product of an N =4 Yang-Mills multiplet (from
the N=2 open string) with an N=4 Yang-Mills multiplet
(from the dimensional reduction of the D = 10, N = 1

open string) is N=8 supergravity. Self-dual extended
(N )3) gauged supergravities avoid some of the awkward
features of the corresponding non-self-dual theories, in
particular the nonlinear scalar potential and the cosmo-
logical constant.

There is also an N=(2, 0) heterotic string. Unlike the
N=(2, 1) case, there are only 4 supersymmetries, from
the direct product of an N =4 Yang-Mills multiplet with
a nonsupersymmetric Yang-Mills field plus scalars. This
results in a theory of self-dual N =4 supergravity coupled
to self-dual N=4 Yang-Mills multiplets. Unlike all the
other cases [open, closed, N=(2, 1) heterotic], this string
has three types of supersymmetry multiplets instead of a
single multiplet, since the N=O open string in the direct
product has three types of massless states, unrelated by
supersymmetry: helicity +1, which gives the N=4 su-
pergravity multiplet in the direct product; helicity —1,
which gives the Lagrange multiplier multiplet for super-
gravity (since even self-dual N =4 supergravity by itself
cannot be described by a single multiplet), and helicity 0
(the scalars), which gives the Yang-Mills multiplets. We
will not discuss this theory in further detail in this paper,
since it can be derived from the N=(2, 1) heterotic
theory by simple truncation. For example, in the light-
cone superspace action (see below), separate the 8 an-
ticommuting coordinates (of N = 8 supersymmetry) into 4
(for N=4) plus 4. Expand the superfield in the extra 4,
keeping only terms with an even power of those coordi-
nates (N=4 supergravity at zeroth order, N=4 Yang-
Mills multiplets at second order, and the Lagrange multi-
plier multiplet at fourth order). The result is self-dual
N=4 (gauged) supergravity coupled to self-dual N=4
Yang-Mills multiplets with Yang-Mills group SO(4),
which can be generalized easily to arbitrary groups.
Also, the self-coupling of the Yang-Mills multiplets and
the Yang-Mills coupling of the N =4 gauged supergravity
can now be considered as independent. Unlike the other
strings, in this case our field theory arguments still leave
undetermined the choice (or even the size) of the Yang-
Mills group, as well as whether the N=4 supergravity is
gauged or ungauged. Such restrictions may arise from
the string theory, although even there the vanishing of

loop corrections may rescind the usual constraints of
moduli space.

The amplitudes that follow from our supersymmetric,
manifestly Lorentz-invariant actions for (uncoupled)
open and closed strings, when written in the string gauge,
are the same as those obtained from string calculations
[2,4]. (The string gauge for those actions [9] is closely re-
lated to the light-cone gauge [10]). Those for the heterot-
ic string are the same at least when restricted to Yang-
Mills interactions. (We have not compared the heterotic
gravitational couplings because those of Ref. [3] have
been given in a different gauge from all the other ampli-
tudes. ) Although the vanishing of loop corrections in the
open and closed strings follows directly from the absence
of fermionic derivatives in the action, the heterotic case is
again more subtle: Fermionic derivatives appear, but few
enough so that loops with fewer than four legs vanish au-
tomatically. The rest (four external legs or more) may
then vanish for kinematic reasons, as for tree graphs
[11,2 —4].

Although we demonstrate that maximal supersym-
metry follows from the assumption of Lorentz invariance,
we did not explicitly derive the existence of this multiplet
of states from the N =2 string theory. One simple way to
include these states is by Chan-Paton-like factors [5].
Since the momentum dependence of the vertices is the
same for all choices of the external states, which of the
state couple in the vertices is determined by a simple nu-
merical factor (in addition to the Yang-Mills group-
theory factors). The only dift'erence from the usual
group-theory factors is the association of different statis-
tics with the diferent states. (In our formalism these fac-
tors are implemented by the usual fermionic coordinates
of superspace, which appear in a trivial way in the light-
cone gauge. ) We expect that there should be a more
"world-sheet" type of way to introduce this multiplicity
in the string theory, such as the choice of Neveu-Schwarz
versus Ramond boundary conditions for each fermionic
world-sheet variable (leading to 8 fermionic +8 bosonic
states for the open string), so that spectral fiow can be
seen to generate spacetime supersymmetry as it does for
compactified N=1 strings with global N=2 world-sheet
supersymmetry.

This mechanism is analogous to the usual treatment of
the open N = 1 string with ordinary Chan-Paton factors,
where consistency at the loop level forces the use of the
group SO(32) ( or its contractions). In particular, if the
open N = 1 string is quantized in the light-cone gauge
(analogous to the noncovariant gauges for the self-dual
field theories usually ascribed to the N=2 string), then
anomalies destroy Lorentz invariance at the one-loop lev-
el if SO(32) is not chosen. Thus, the assumption of
Lorentz invariance forces the choice of the group SO(32).
For the N =2 string, Lorentz invariance again determines
the group, maximal supersymmetry. The fact that this
happens already classically (i.e., at the tree level) should
not be surprising, since it is already known that the
higher world-sheet supersymmetry also imposes field
equations on external fields already classically (i.e.,
without a P-function calculation). This has further impli-
cations at the loop level: no infinities, consistency be-
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tween string theory and field theory loop calculations,
and decoupling of open and closed strings. For the
heterotic N =2 string, the Yang-Mills group is also deter-
mined (up to contractions), and is smaller than the ex-
pected one, the analogue of the GSO projection required
for the open N = 1 string for Lorentz invariance (or can-
cellation of anomalies).

II. THE SELF-DUAL LIGHT CONE

We first consider general properties of the light-cone
gauge for self-dual theories, which is simpler than the
string gauge. Later we will analyze the covariant action,
from which both the light-cone and string gauges can be
chosen.

The light-cone formalism for self-dual theories is
simpler than the usual light-cone formalism because more
of the Lorentz symmetry is manifest. The coordinates
x are a representation of SO(2,2) =SL(2) SL(2)',
where only SL(2)' is broken, down to GL(1). The x is
treated as "time" coordinates and x + as "space" coor-
dinates, although both are lightlike (as x and x+ in the
usual light cone). The kinetic operator =iB .8 +, is
linear in time derivatives. The interaction terms must
contain only space derivative 8 + and no time deriva-
tives 8 . The manifest GL(2) invariance forbids the
1/0++. 's of the usual light-cone formalism, so the action
is local. For the theories considered here, we find only
cubic interaction terms, as for the almost identical (but
noncovariant) actions proposed earlier for self-dual
Yang-Mills theory and gravity [10].

Gauge fixing is similar to the usual light cone, but tak-
en a step further. By choosing a light-cone gauge, elim-
inating auxiliary degrees of freedom, and imposing self-
duality, all field strengths F and gauge fields 3 can be ex-
pressed in terms of "prepotentials" V with just a single
component, corresponding to the single helicity it
represents:

F . . . = —iB
2s 1 [s] [s+ 1] 2s

=a. . . . a. , v, . . .

(Its eigenvalue of the GL(1) generator, represented by the
number of —indices, is just twice the helicity s. [s ] here
means the greatest integer in s. ) Such prepotentials are
known from supersymmetric theories, where light-cone
gauges induce similar relations. This expression is also
correct for the interacting case, since we use only space
derivatives, and the gauge fields contain only time com-
ponents in this gauge. There are also Lagrange multiplier
field strengths F, , (unrelated to F . . . , with~—2s 1 2s

diFerent gauge fields), describing negative helicity; in the
light cone these appear only as F+ . . . + since the other
components do not generate equations of motion whose
solution requires inverting time derivatives (i.e., they are
auxiliary fields).

We will show below that such relations generalize in a
trivial way to supersymmetric self-dual theories, by gen-
eralizing the SL(2) index a to an SL(N~2) index
A =(a,a) on both the fields and the coordinates, thus in-

troducing anticommuting coordinates:

, = —ia„,. . . a, .v, . . .

There is a similar generalization for the free action.
Breaking the SL(N~2) covariance by solving this field
equation for all 0' dependence, V is reduced to a
superfield that depends on just x and 0'+:

So= jd xd 9—,'V V.

By dimensional analysis,

—4+ —,
' N +2( 1 —s ) +2 =0 = N =4s,

which implies maximal supersymmetry. We also have
the same result from GL(1): N+2(2—s)=0. Thus, the
condition that all fields are in the same supersymmetric
multiplet requires maximal supersymmetry. (In particu-
lar, the similar N=O actions proposed for non-super
self-dual Yang-Mills theory in the light-cone gauge and
the string gauge are not only Lorenz noncovariant but
are not even consistent with respect to dimensional
analysis. )

III. SELF-DUAL SUPERSPACE

Self-dual super Yang-Mills theory is described by the
commutation relations of the gauge-covariant superspace
derivatives:

IV', V pI =0, [V', Vbp] =5bV p, [V',Vpfr]=0,

[ Vaa'& V bp' I Cp'a'4ab &

[V-"Vp. ]=C.- F-'
[V', , V'pp. ] = Cp. X,p,

The commutation relations give the field equations as
well as the supersymmetry transformations. The latter
set of commutators can be written more succinctly as

[V„~,Vap ] Cp~'F~s

in terms of the indices A, B of SL(N ~2), which is a global
symmetry of the commutation relations.

The generalization of the former set of commutation
relations for gauged self-dual supergravity is

[V', V'P] =C Pm'"+„'"I P

I V, Vbp] 5bc Vpp, [V,V'pp] 5prI Vbp,

where M' are the gauge generators of the gauge group
SO(N) of the vectors, or more generally SO(n, N —n ) or
their contractions. Contraction to U(1) ' " gives
ungauged supergravity. Both M'" and the corresponding
group metric g' have dimensions of mass; this metric
has eigenvalues 0, +m, where rn =g/~ is the ratio of
gauge and gravitational couplings. (The inverse metric
g b never appears in the self-dual theory, and does not

where s is now the maximum helicity of the supersym-
metric multiplet. (Lagrange multiplier field strengths
come from hitting it with more 8, + 's. ) The free field
equation V=O for the prepotential also generalizes

a, 'a,.v, . . . , =o .
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even exist for the group contractions. ) M & is the self-
dual half of the local Lorentz generators. These con-
straints (and those below) follow uniquely from the self-
dual restriction of the non-self-dual theory, except that
the reality condition on the scalars for %= 8 is changed.
Instead of restricting the "self-dual" scalars to be the
complex conjugate of the "anti-self-dual" scalars, the
anti-self-dual scalars are set to vanish [5]. (For back-
ground on the non-self-dual case, see [12] for the
ungauged theories, [13] for the gauged N=4 theory, and
[14] for the gauged N= 8 theory in the equivalent com-
ponent formalism. Since non-self-dual %= 8 supergravity
is much more complicated than the self-dual case, even in
superspace, we do not reproduce it here. Self-duality for
supergravity for N &4, where there are no scalars, was
first discussed in [15];Wick rotation of those theories to
2+2 dimensions is trivial. )

From these commutation relations we can recognize
that (1) M', M ~, and V' are the generators M" of the
algebra OSp(N~2) (or a contraction, etc.), with metric

=(il', C ~), and (2) V„ is in the defining represen-
tation. (In the Yang-Mills case, V' is half of the fer-
mionic generators of the manifest global SL(N ~2) symme-
try, a subgroup of the nonmanifest (S)SL(N ~4) supercon-
formal symmetry, which is here broken to the OSp(N~2)
subgroup. ) We therefore choose to interpret V' as a lo-
cal symmetry generator rather than as a covariant coor-
dinate derivative. Our superspace coordinates are then
just x "= (x"",8 " ). Furthermore, since all field
strengths of the local SL(2)' and SL(N) generators vanish
anyway, we can drop those generators from the local
symmetry group, which is now just OSp(N ~2) [plus gen-
eral coordinate transformation in (N ~2)+ (N

~
2) dimen-

sions]. The covariant derivatives thus take the form

V'A .=EA ~ Mp'+ 2QAa'BCM

(As usual, there are extra implicit sign factors from reor-
dering of fermionic indices. ) Our conventions for
OSp(N~2) are that on the fundamental representation
[M",V I

= V( i) '; we then have the useful identities

solution to these relations can now be treated in exactly
the same way as the nonsupersymmetric case, simply by
generalizing the indices from SL(2) SL(2 )' to
OSP(N ~2)SSL(2)' (localglobal).

The field equations, supersymmetry transformations,
and expressions for the field strengths then follow from
these commutators and their Bianchi identities

~[ A a'FB)CDE

and their derivatives. We then find the series of identities

~ Aa'FBCDE FABCDEa' &

~ A a' BCDEFP' FABCDEFa'P'

1 HG+Cp'a' 24FA(BC ~G I FH~DEFI

and identities of the form VF"=F'"+FF',
V'F"' =F'"'+FF"+F' and V'F'"' =F""'+FF"'+F'F",
where all the F's are totally symmetric in their SL(2)' in-

dices and totally graded symmetric in their OSp(N~2) in-

dices. At 8=0 with all OSp(N~2) indices restricted to
SO(N ) indices, they are the nonpositive-helicity field

strengths.
The self-dual theory is considerably simpler than the

non-self-dual one, avoiding nonlinearities in the scalar
fields. This theory also has no cosmological constant, un-

like the general result for the non-self-dual case in the ab-
sence of spontaneous supersymmetry breakdown [16]
since the cosmological constant would appear as g'"q, b,
whereas in the self-dual theory only g'" ever appears any-
where. [This is actually a consequence of the fact that
even in the non-self-dual theories the SO(N) internal

group metrics g' and g, b which appear as complex con-

jugates in 3+1 dimensions are independent in 2+2 di-
mensions. ]

Another example of self-dual supersymmetric theories
is the scalar multiplet; the free case is described by

0( A
.FB)b.=0,

where b' is an internal symmetry index.

IV. LIGHT-CONE ACTION

Those determine the other representations and the com-
mutation relations of the generators themselves. The
grading is defined by treating a and a as bosonic indices,
and a as fermionic; q is graded antisymmetric in its in-
dices, while M is graded symmetric. In analogy to the
Yang-Mills case, the commutation relations of the covari-
ant derivatives are

[V Aa'~ VBp'] Cp'a' 2 +ABCDM

where FABcD is totally graded symmetric, and at 0=0
gives the non-negative-helicity field strengths. (There is
no analogue to the terms in I V', V"~], so the superspace
is in some sense "half de Sitter" ) Yang-Mills theory can
be treated in the same superspace, with V A

=8
A ~

+ A„.. [Yang-Mills theory is superconformal, so how
SL(N ~2) is broken for that theory does not matter. ] The

One way to analyze the commutation relations is by
going to the light-cone gauge, where half of the Lorentz
symmetry is manifest and half of the supersymmetry. We
first separate the constraints by breaking SL(2)':

[V g+, , Vii+, ] =0,
[V A(+'~ VB —') ]

& VBa'] +ABCD

[V~ — Va —!=0 .

(All except the third are the same as in Yang-Mills. ) The
first three constraints can be solved explicitly:

~A+ =~A+

+ —,'(B„+B~+ V )M
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v~ —=aA —+[a~+ ~——1

=a„+(a„,,a„,v. . . , )~ a„,
—,'(a„+ aii+ ac+ V )M

F„, = —ia, ,a, ,a, ,a,v. . . , .

The remaining constraint reduces to

a„'a,.,v. . . , +i(a„,,a, ,v. . . , )q '
X(aD+ aii+ V ~ )=0 .

For comparison, Yang-Mills theory gives

Vw+ =Bz+

v„,=a„,+(a„,v, , ),
Fwa & ~ a+'~a+' V—' —'

a, 'a,.v, , + [(a„,v, , ), (a, , v, , )] =o,
while, for the free scalar multiplet,

F~'= —&~~+ V—'
B~ B~ .V ., =0.

The string gauge is related to the light-cone gauge (see
[10,5] for details); there the roles of solved constraint and
field equation are switched between [V„i+,, Vii, ~]

=0
and [V„,, Vii ] =0. As a result, although the free term
of the field equation (action) is the same, the interaction is
more complicated (nonpolynomial in the Yang-Mills and
gauged supergravity cases) and contains time derivatives.

The parts involving 8, ~ can be solved for all 0'
dependence, so V can be taken as evaluated at 0' =0.
This leaves just the aP part of the last constraint as the
equation of motion; for supergravity,

v+-,'i(a, ,a„,v)~ "(a, ,a., v) =o .

The action is then

S,= fd'x d'0 —,
' V V

+-,'iv(a, ,a„,v)&"(a, ,a. , v) .

(minimal) couplings of the gluon of the open string and
the graviton of the closed string follow from the fact they
appear in their respective Vs at 0=0, so they have con-
tributions to the action which are 0 (spin) independent.

As for self-dual Yang-Mills theory [5], ungauged self-
dual supergravity has all loop graphs vanishing because
of the absence of spinor derivatives in the action. [These
cases are similar to the Z„model of [2], which also de-
scribes a multiplet of various spins, but here there are fer-
mions and V is a true superfield. There is no decoupling
of fields in the "diagonalized" field V(0) because it can-
not be interpreted as independent fields for different
"values" of 0.] However, this is not the case for gauged
supergravity, where the appearance of spinor derivatives
for the Yang-Mills coupling requires a graph-by-graph
analysis. In terms of the number of vertices V, propaga-
tors P, external lines E, and loops L, the relation that all
vertices are 3-point is 3V=2P+E, the Gauss-Bonet
theorem (A' counting) is L —1=P—V, and the condition
that each loop needs at least eight 0 derivatives to elimi-
nate each Id 0 [18] is 2 V ~ 8L. These imply
E ~ 2(L+ 1), so graphs with fewer than 2(L + 1) external
lines vanish. Since tree graphs vanish for E ) 3 by anoth-
er mechanism [2—4], the other loop graphs may vanish
for the same reason; in any case, the three-point graph
gets no quantum corrections.

V. COVARIANT FIELD EQUATIONS FOR HELICITY ) 1

Another useful gauge is the Wess-Zumino gauge,
which is Lorentz covariant but has no manifest super-
symmetry. (See [19]for more detail and a general discus-
sion. ) The gauge transformations V' =e Ve for the
gauge fields follow from commutators with gauge genera-
tors:

K =K V~ .+—K~~M

V,+e' V .+—'A, M ~

+e, M' + —,'g, bM ' .

All gauge fields (for positive helicity) are found in the
vector covariant derivative at 0=0:

This should be compared with the %=4 supersymmetric
self-dual Yang-Mills action that follows from the open
string [5], which differs from earlier noncovariant propo-
sals [10] only by the appearance of 0' as coordinates:

S = f d x d 0 —,'V V+ ,'tV(a V)—(a .V)

(A similar %=3, and therefore noncovariant, action fol-
lows from the self-dual restriction of the light-cone action
of [17]). The supergravity interaction has two terms,
from the il: the Yang-Mills-type interaction (i)' ) term
for gauged supergravity (heterotic string) and the
gravitational-type (C~~) term for both gauged and
ungauged (closed string). The i)' term is lower in space-
time derivatives because of the dimensional g /~ coupling,
but contains 0 derivatives, unlike the nonheterotic cases.
It has the same momentum dependence as the interaction
in the supersymmetric Yang-Mills theory. The universal

=EMp' 0=0

aa'
pp

0

0 gmgp'

5' 5„.

where E~„" is the inverse of Ez ~
". Similarly, gauge

choices can be made for terms in V linear in 0 such that
they include only these gauge fields and the field
strengths FwacD l e=o.

Part of the Wess-Zumino gauge choice is to use the 0-
coordinate transformations to choose

pp', /, m p'
eaa' 'Y aa'
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In this gauge, some component equations (specifically,
field equations for gauge fields) are simpler when ex-
pressed in Cartan notation, where a mixture of curved
and Hat indices are used. Then the general form of the
torsion and curvature (before imposing any constraints) is

[VA, Vi)] =T~ii Vc+ ,'R ~—BcDM
I

MN ~[M+N) +E[M +N)BC I

DC+MN AB ~[MN) AB +[M AC I +N)DB

where A= Aa', M=Mp'. The corresponding form of
the gauge transformation laws is

5VA=[VA, K Vi)+ —,'Ki)cM ]

M ~M + TNM + I EM +CB

~+M~B = + &NM~B+~M&ZB
DC+(~ IC+MDIB] '

Conversion of these curved indices back to Hat indices is
then easy at 0=0, where, for a general covariant super-
vector,

Therefore, from now on we use Aat and curved spinor
super-indices aa' and mp' interchangeable, while Aat and
curved vector indices on component fields are converted
with the vierbein e ."",with the g ~

p terms explicit.
The only ambiguities in finding an action principle for

these equations are which fields are to be taken as in-
dependent, and correspondingly which equations are to
be taken as equations of motion which follow from the
action (as opposed to constraints which are imposed in

defining the field content). To treat both the gauged and
ungauged theories in the same formalism, we will need to
use a first-order formalism for the gravitino, analogous to
that frequently used for the graviton. In ordinary (super)
gravity, a torsion constraint determines the Lorentz con-
nection ~ in terms of the vierbein e; here, another torsion
constraint determines the left-handed gravitino field

bp in terms of the right-handed gravitino field g
(Both gravitino fields here describe helicity +3/2. ) In
ordinary supergravity, a torsion constraint gives the field
equation for the gravitino; here, another torsion con-
straint gives the field equation for the graviton. [This is
possible because SL(2)' is not gauged, unlike ordinary
gravity. ] Thus, for gauged supergravity, all these con-
straints and field equations for the graviton and gravitino
are just the complete set of vector-vector torsions evalu-
ated at 0=0. Separating out the graviton and gravitino
equations,

I I I I

mn ~[men] +e[m ~n]P + 5[m Pn]b

I I I

Tmn [m4n] + t 4[m ~n]bc ) [m 0n]ba

(The bold indices are curved vector indices, m=pp'. ) A
Lorentz decomposition of these equations (after using the
vierbein e ~ to fiatten all curved indices) shows that
some parts determine co and g bp completely. The

remaining parts are the field equations for e and P
A light-cone gauge analysis reproduces the results ob-
tained earlier.

To include the gauge-contracted theories, we include
the usual field equation for g .bp. This is redundant in

gauged supergravity. Its simplest form is obtained by
taking the curl of the torsion equation and factoring out
an g':

I t C

[m n fI p]ga [m( n 0p)ap 4n ~ p]ba )

I—'~[~TNP) "=&' (~[~&N"&p)ac)

More covariant, but more complicated, forms of this
equation can be obtained from the covariant curl of this
torsion, or from the curvature —2R[m„,pe~] (w»c»s
the covariant curl of the torsion plus torsion squared
terms with an q' factored out, according to the Bianchi
identities). This equation is similar to the co-independent
part of the graviton equation:

& v' &'[&e P) —& 9 e &'[&e P)
[mn p]a 2 [m n p]a

a(a'y ae P') 0

On the other hand, in ungauged supergravity the
gravitino's torsion constraint simply says that it) ~ is

pure gauge. (The intermediate group contractions have
mixtures of these conditions, some components of each
chirality of it being trivial. )

The field equation for e appears with one more deriva-
tive in the covariant Lagrangian than in the light-cone
one. The light-cone equations of motion f„p, of which

the part ,'f = V+ .—follows from the light-cone

superfield action, actually appears in the covariant
derivative commutators as

)[V~-,Va- ]=(dc+f~a)n dD+

+,(a„,a, .y„, )MD' .

It is part of the first term, which is a torsion constraint,
which follows from the covariant Lagrangian.

VI. LORENTZ-COVARIANT ACTION

%'e have not yet completed a full analysis of the
Lorentz-covariant component action. However, the re-
sults given in the previous sections are suf5cient to obtain
the action itself, since the field equations for positive heli-

city are imposed by Lagrange multipliers; i.e., the fields

describing negative helicity appear only linearly, so their
Geld equations and the complete action are implied by the
field equations of the other fields. Specifically, the field

equations for helicity ) 1 were obtained by analyzing tor-
sion constraints contained in the commutation relations
in the previous section; the field equation for helicity 1 is

simply the self-duality of the (supercovariant) Yang-Mills
field strength (also implied by the commutation rela-

tions), that for helicity 1/2 is contained in the Bianchi
identity VF=F' of Sec. III and that for 0 (and —1/2) is
contained in the VF'=F"+I' identity of that section.
The remaining field equations can also be obtained from
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the rest of that series of identities. The supersymmetry
transformations can be obtained by a similar analysis:
those for helicity & 1/2 follow directly from the commu-
tation relations, as described in the previous section;

I

those for helicities 1/2 and 0 follow from the Bianchi
identity; and those for the negative helicities follow from

the rest of that series of identities.
The Lorentz covariant Lagrangian is then found to be

where

&abcdefgh ap 1 a p lj a
( )92 0abcd ef ghaP 72Xabc Xdef ghaP+ )92 9 NabcdXefi Xghj a)]

aa'4abcd aa'Y'abed 6 'Yaa'[a Xbcd ]P+ 'Yaa' XabcdeP'

aa'XabcP Daa Xab'cP+ 4aa'dy(fiP I 4eabc +
2
C fr[ bc]5P)+ Paa' PP'4'abed

I

Fmnab fmnab 0[ma Pn]by+ 4[m ( n] a'Xabca+ 2 4n] a'0abcd )»

abaP a Pa' mnab ~ aba'P' a' aP' mnab

and f is the Yang-Mills field strength found from D
the vector derivative covariant with respect to just
Yang-Mills theory and gravity [without gauging SL(2)'].
The independent fields are e (helicity +2), iti and g'
(+3/2), A (+ 1), X (+ 1/2), P (0), X' ( —1/2), G (

—1), g
and R (

—3/2), and co (
—2). (If we had used a first-order

formalism for the graviton, the full T „constraint
would appear, with co & also an independent field, and 6
part of a Lagrange multiplier R „..) Although all neg-
ative helicity fields appear only as Lagrange multipliers,
the kinetic terms pp, X'X, and»](»i](» have the usual form.
All fields with upper SL(8) indices (except f '

) have
been obtained from those with just lower indices by using
e' ' 'fg (including co, which originally had 8 lower in-
dices). In terms of the original fields, each term in l. (ex-
cept the R term) has exactly one e' '"' " factor. [This
means that the action has a specific quantum number of
the GL(l) subgroup of the GL(8) invariance of the
ungauged field equations. ] G and co appear as in the
first-order formalism for spins 1 and 2, but they have no
quadratic terms, and they are anti-self-dual.

itj, R, and co are Abelian gauge fields which do not ap-
pear explicitly in V at 0=0; their on-shell field strengths
appear in the 0' expansion of

I I I

abed 0abcd +~ Xabcdea'+ 2
~ ~ abcdefa'p

+ 1 yea'pf~'ggr R6 abcde fg a'P'y'

+ t9 0 0 g ~ b d f h /PI ige +

as

a a m n a — 5' a 1 ah
a'P'y' (a' aP' ( m4n y') ~my') 4n 5' 2 9 mnby') )

a m n~rr a p y $ e (a' cap' ~m~nZ'$')

These field strengths appear at 0=0 in the covariant
quantities FABCEDFGa'p'y' and FABCEDFGHa'p'y'5'

Xabcdea' and Gabcdefa'p' in FABCDEa' and FABCDEFa'p')»

which arise in the series of identities following from the
Bianchi identities discussed in Sec. III. We also have, at
0=0

ABCD ( ~aPy5» aPy5» ab y5» Xabc5» kabcd )»

the on-shell field strengths for non-negative helicities. In
the gauged theory, P and g, are purely gauge plus aux-

iliary, and propagating helicity +3/2 can be described
completely in terms of R and P '; in the ungauged case
the opposite is true; for nontrivial group contractions we

have components of each.
Of the local symmetries, we have the usual forms for

general coordinate, local Lorentz (M p), and SO(8) (or
the contractions, etc.), except that because of the Yang-
Mills noncovariance of the field equation from varying 1(i,

there is an extra term it[ .B„]gb, in the Yang-Mills

gauge transformation of R „, . We have not yet derived

the complete local supersymmetry transformations, but
they are roughly of the form

aa —eaa g a
m ma

da
Xabca e Vaa'4'abed

ea'
4'abed e Xabcdea

$v —~fP'~ ~ 1 f gh~
Xabcdea' abcdefa'P'+ )2 e a'9»i»abcgit'defh

[~y' b] 1 [a b]ca'p' a'p'y' 6 e (a'9 Xdef p')Wcdef

fiR mnaa' e G a'@%abed
6COmaepe =0?

aq aa'

++ah& ae a'

+D
e[a 0mb ]a

p de
[a bc ]aP ed a 9 0abce

m1+
6 ~[a +bed ]a

z4 [a Vaa'4'bede]

~c Va(a'+ p')

+~b
+?
+e, V (,Q 'p) (+y)RP)
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There are also the Abelian gauge symmetries

fin .,~=a X.,~, ny ., =g.,pq p,
P' afi+ mnaa' ~a' ( (m p' 4]aa 1((m p' n]ab )

a ab~ Pm a' 7 +mba'

While the non-self-dual ungauged N =8 theory had an
E7(+7) global symmetry for the scalars, the self-dual
ungauged N =8 theory has only a contraction of that. In
addition to the manifest SL(8) invariance, there is the
usual invariance of free scalar theories of translation of
the scalars by constants, which is here accompanied by a
corresponding transformation of 6:

~kabcd abed ~ ~Gabcdef a'P' 48 + (abed +ef ]a'P'

The proof of equivalence to the light-cone gauge action
involves choosing an appropriate gauge and eliminating
all auxiliary fields. (Again, the equivalence to string re-
sults follows from choosing a somewhat different gauge
and treating a different set of fields as auxiliary, in the
same way as for the superspace covariant derivatives. In
the case of the heterotic string, a gauge is chosen where
the antisymmetric part of the vierbein is identified with a
gauge field resulting from dualizing one of the scalars, al-
lowing a solution of the constraints for those fields which
does not resemble that for the other gauges. ) In some
cases, eliminating auxiliary fields involves solving con-
straints by writing remaining fields as (space) derivatives
of new fields; this was already done above in the deriva-
tion of the light-cone equations of motion from the corn-

coax

dx.
6y' =-'e ~'G . .

+,'~'. ~""[4b, 4d, ]
~G P'a~ (a'X P')tab

a b

—e.~I'.
p

+&[a Xb]a

+e V'
(

y'p. )
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mutators of covariant derivatives. One can then obtain
the same action as that resulting from expanding the
light-cone action over 0. The complete proof of
equivalence will require proof of local supersymmetry in-
variance of the action, so that the light-cone gauge
choices will be justified. This equivalence is the simplest
way to demonstrate that the light-cone action is Lorentz
invariant (although the light-cone equations of motion
have already been shown to be covariant).

For comparison, we give the covariant component ac-
tion for self-dual %=4 super Yang-Mills theory (open
string) [5] and the global supersymmetry transformation
(which we have completely verified): The Lagrangian is

& 6a'P'F +~aa'pc&

+&'"( ,'W. b&-]4',d+ 44.b»-. Xd ) .

The supersymmetry transformations are
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