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EfFective potential and stability of the rigid membrane
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The calculation of the effective potential for fixed-end and toroidal rigid p-branes is performed
in the one-loop as well as in the 1/d approximations. The analysis of the involved ( functions (of
inhomogeneous Epstein type) which appear in the process of regularization is done in full detail.
Asymptotic formulas (allowing only for exponentially decreasing errors of order ( 10 ) are found
which carry all the dependences on the basic parameters of the theory explicitly. The behavior of
the effective potential (specified to the membrane case p = 2) is investigated, and the extrema of
this effective potential are obtained.

PACS number(s): 11.17.+y, 03.70.+k, 11.10.Gh

I. INTRODUCTION

The theory of the rigid string [1,2] is interesting be-
cause of the number of applications it has to quantum
chromodynamics (see [1—3) and references therein) and
to statistical physics, Using the same idea, it is not
difficult to construct the action for the rigid membrane
(or p-brane). During the last few years, there has been
some activity in the study of quantum extended objects
(such as membranes, see Ref. [4] for a review). However,
already, the semiclassical quantization of such a highly
nonlinear system as a membrane is a very difficult task
[5—7]. Nevertheless, some interesting issues, such as the
study of the Casimir energy, the large-d approximation,
and the tachyon problem can be addressed already at the
semiclassical level [8,9].

In the present paper, we study the Casimir energy and
the static potential for the rigid p-brane (at the classi-
cal level, this theory has been considered in Ref. [10]),
specifying afterwards our results to the membrane case
(p = 2). We shall start from the following action, which
is multiplicatively renormalized only in the string case
(p = 1):

d"+'(~g
~

l'c+ s 6(g)X' )
where g p = 0 X'BpX', o. = 0, 1, . . . , p, i = 1, 2, . . . , d,
and A(g) = g ~ B~gis g S Op, the constant A: is the ana-
logue of the usual string tension, and 1/p is the coupling
constant corresponding to the rigid term.

I et us note that the p-brane is an interacting sys-
tem, without a free part in the action. Hence, one must
start from some classical solution for the ground state,
and then study the quantum fluctuations on such back-
ground. In this framework we can understand how the

tachyon appears (if that is the case), if the background
is stable, and also address some other issues. Owing to
the fact that string theory can be obtained as some com-
pactification of the membrane [ll], we can also expect to
find in this way some new features of string physics.

The paper is organized as follows. In Sec. II we calcu-
late the potential corresponding to two cases: fixed-end
and periodic boundary conditions. In Sec. III we obtain
the static potential, that is, the efFective potential in the
limit of large spacetime dimensionality. Owing to the
difficulty of the exact expressions, a saddle-point analy-
sis is carried out in Sec. IV. In Sec. V we provide a short
summary of very useful mathematical results on the in-
homogeneous Epstein-type ( functions and apply them
to the expressions that appear in the process of regular-
ization. Finally, in Sec. VI we study the general case and
provide some discussion of the results obtained.

II. CALCULATION OF THE POTENTIAL

We consider as the background the classical solutions
of the field equations [8,9] (which are the same for the
rigid as for the usual p-brane)

X,) ——(p, X,s
——0, X,"s ——(i, . . . , X„"= („,

with X = (X,X" " ) and

((i, . . . , (s,) c 'R—:[O, ai] x x [O, aJ,].
We also use the axial gauge of Ref. [8], i.e.,

X =X, X" =X" . . . , X" "=X
cl& cl

where the Faddeev-Popov ghosts are absent.
We shall consider the toroidal rigid p-brane which has

the. boundary conditions
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x'(C. , 0, (. C,) =x g..., C.

X ((o, (i, . . . , („ i, 0) =X ((0, (i, . . . , („ i, a„).
(5)

The effective potential is given by

V = — lim —ln 'DX exp( —S).1
T~OO

For the fixed-end boundary conditions, Eq. (4) is exactly
the same, while Eqs. (5) are replaced by (of Dirichlet
type)

x ((0, 0, (2, . . . , (~) = = x ((0, (i, . . . , („ i, 0),
(6)

((0 al (2 . (p) = . . = X ((0 6 (p-i ap)

Restricting ourselves to the one-loop approximation, we
need only consider the terms which are quadratic in the
quantum fields (this applies to the usual membrane and
p-brane; see [8,9]).

Integrating out X+ and using boundary conditions to
read off the resulting Tr ln E (see [8,9,12]), we get

+fixed end = k
d —p —1

Gi+ ). i, '+" +
A] y ~ + ~ )Ap 1

~'n' 1/2
P ' +a2

'-+ + "+kp
Gpn1, ... ,np ——1

and

+toroidaI = k
d —p —1

Gi+
t'4~'n', 4~'n„'&

' '
+ ~ ~ ~ +

G
A] )...~Ap= —OO )

t'

A1, ...)Ap= —OO

4~2n21
+ ~ ~ ~ +

G 1
s "+kp

G„
(9)

Observe that the contribution from the higher-derivative mode appears in (8) and (9) with a positive sign, as it follows
from the path integral. In the second of Refs. [3] this sign has been taken to be negative "by hand. " Actually, some
arguments based on the linearized approximations were given there in favor of the stability of such quantum field
theory. Unfortunately, the expression for the Casimir energy obtained in [3] (second reference) disagrees with the
large-d approximation [2].

III. THE LIMIT OF LARGE SPACETIME DIMENSIONALITY

First we calculate the static potential; that is, the effective potential in the limit of large spacetime dimensionality.
Such calculation for the usual Nambu-Goto or Eguchi string [13] has been carried out in Ref. [14], and for the rigid
string in Ref. [2]. Let us introduce the composite fields o. p for 0 X+ Opx, and constrain cr~p = 0~X+ Bpx+ by
introducing Lagrange multipliers A~~:

BX Vo.VA exp —k d"+ det 6 p+0. p

1+
P

d"+ (BOX AOX
2

e+'P, i' (a.X a,X —o.,) (10)

where 60 = rl~P8~8p Integrati. ng over X+, we get

'Dcr'DA exp( —S,s ),

with

S g = —(d —p —l)Tr ln
I

—Ao+ kB~A Bp ~
+ kTR" (1+op) (1+err)" ——(crpAO+ pcriAi)=1 (1 1 2 2 —1

2 ) 2
(12)

where we have chosen ai = = a„= R, and o p = di (aog. , 0,o. i. . , )o, iA p = diag(AO, Ai, . . . , Ai) (compare with
[8,9], where the case 1/p = 0 was considered).

In this case we obtain
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Tr ln 60+ kp (Apc)0+ A10 ) = Tr ln (c)0+ 8 ) + kp (Ape+ A18 )

= Tr ln 00+ ~

8 +
~

— kp2(A0 —A1)82+

&0+ I &~+
~
+ kp2(A0 —A1)82+

The spectrum for the boundary conditions (2)—(6) is known. Using this spectrum and evaluating the Tr ln terms by
means of analytic regularization for large T, we obtain (see [8,9] for details of this method)

jef = kTR (1 + &0) (1 + ol) (opAO + Vol A1)2

1/2

n

where for the fixed-end p-brane n = ni+ +n„and p„means p„, „1as in (8), while for the toroidal p-brane
n = 4(n1 + + nz) and p„means p, as in (9).

IV. A SADDLE-POINT ANALYSIS

The functions that appear on the right-hand side of (14) are rather complicated to analyze. To our knowledge, they
have never been considered in the literature and will be the object of a separate investigation. (Note that in the case
of the usual Dirac p-brane [8,9] these functions are simply constants. ) So we shall have little to say here about the
corresponding effective potential, only, for example, that as B ~ oo, V V,~

= kR . Rewriting the expression for
the static potential identically as

V = kR" (1+op) (1+o1) ——(o'pA0+ po1A1) + +1 K(kp R, Ap, A1)

we are led to the four saddle-point equations:

,p/2 1, 1/2 d —p —1 ~K(kp'R', AO, Al)
kR&+1 BA0

d —p —1 OK(kp2R, Ap, A1)
Ay = il + Oy) i1+oo), Oy-

c)A1

(16)

By eliminating from these equations o.o and o.~, we get

p/(p —1) —2 d —p —1 OK(kp R
& Ap& Al)

( )1/(„1) d —p —1 OK(kp R, Ap, A1)
kR~+1 c)A1

(17)

In principle, if not analytically, it is of course possible to eliminate (let us say) Ap from these two equations by means
of a numerical calculation, and to rewrite V in terms of A~ only. After doing this, one can study V as a function
of R and in terms of this parameter A&, in order to see if the tachyon is in the spectrum. We do not do this work
here, since our purpose is just to show the possibility, in principle, of calculating the static potential for a rigid string.
However, we are ready to look to some interesting limiting case of these equations. Let us assume that Ao ——A~ =—A

(such a choice has been taken for the rigid string in [2]). Then

1+go / 1+g~ &/ ——$ go+kg~ + ~2+ ~2+k p ~ 2p~& &/2

n n
(18)
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It follows from the saddle-point equations that cro = o.i, A = (1+0.)~" i~~, and

V = k~& ~~&+'l«&-'l —"+ X(X'~i&-'& —1) ' " ' K(k 'Xa')
2 2kRp+1

Here we have defined

K(kp'XZ') = ) v'n + ) [n'+ k(p/~)'Wa']'~', (20)

and the last saddle-point equation gives

p+ 1 2g(„,) (d —p —1)vr BK(kpsAR2)
2 2kB'+' OA

(21)

V. EXPLICIT EXPRESSIONS FOR THE INHOMOGENEOUS EPSTEIN FUNCTIONS

The expressions to be regularized are (in general) of the inhomogeneous Epstein form [15]

E„'(s) —= ) (n', +. +n„'+c') ',
A1 i ~ ~ oyAy 1

(22)

allowing for c = 0. These functions are not easy to deal with (for p ) 1, the case p = 1 is the only one that has
been investigated in the literature), and Refs. [15] can be considered pioneering in this respect. There, very general
formulas have been derived for the functions:

MN (s i &i'1» n'N i o'1» &N )

for any value of c, such as

n1, . . . ,n~=l
(aini ' + + a~n~~ + c2)

llrtC f
i&J g(si Qi ». . . Ggi Qi ». . . Q&v) = 1

N i — i' 5
—1/n,„(1

~kl'(s) ): ):
p=o t ~ 1~r=1

OO N —p—1 u

) I s+ ) k, , —)
N —p —1

(—5g&)" ((—o.„k,, )
A:, !

N —p —1 p

x( ct~ s+ ) k&&
—) ~

+Q~R&.=i '-) )
(24)

with b,„—:a,./a~ [notice the slight erratum in Eq. (3.22) of the second of Refs. [15]], and 1 & i i & & i„&N —1,
1 j1 & & j~ p 1 & X —1, being i1, . . . , ip, j1, . . . , j~ p 1, a permutation of 1, 2, . . . , N —1. The sum on C~
means sum over the (~„)choices of the indices ii, . . . , i„maongthe 1, 2, . . . , N —1.

In our case, ai —— ——az ——1 and ni = = n„= 2, and the involved general formula above, (24), is simplified
considerably. We have, for c = 0,

~~(&) =
~, , „,) (—&)'(', ) "(»—

&)&&'. & —
2

+&~~,2i' ' I' s (25)

and for cg0,

&'()= ) (-1)' " Ii -- ~~; -- +~(—1)' '
r(s) j=o

(26)

Notice that the poles of this function arise from those of Ei(s —j/2), which are obtained for the values of s such
that s —j/2 = 1/2, —1/2, —3/2, . . . . They are poles of order one at s = p/2& (p —1)/2, p/2 —1, . . ., except for
s = 0, —1, —2, . . . , in which cases the function is finite [owing to the I'(s) in the denominator]. These poles are
removed by g-function regularization [16].
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Alternatively, a very useful and exact recurrent formula is [15]

Eiv(s ai ~ ~ ~ aN) = ) (aini + ~ ~ ~ + aivn~ + c )

1 c 1
aiv) +

2
oo k/2 k

~ I'(s —1/2) E~ i(s 1/2; a2, ~ ~ ~, aiv)
G1 I (S)

fir 1 i ~ ~ ~ i Apf 1

n' " (a2n + +ann +c )
'+"

x exp — ni(a2n2 + + aivn~ + c )
2~ 2 2 2 1/2
ai

(27)

The recurrence starts from expression

C
—2s ~~ I'(s —1/2)
2 2 I'(s)
s —s+1/2

+ ) n' K, iy2(2~nc) (28).

E,'(s;1) =—

In order to deal with the derivative of the function K
above, one can follow two equivalent procedures: either
first do the usual analytic continuation, and then take
s = —1/2 and the derivative, or else first take the deriva-
tive of (22), perform the analytic continuation, and put
s = +1/2 at the end. The result is exactly the same.
Either way, other nontrivial series commutations have to
be performed (see [17] and references therein). We get,
in particular, for c g 0,

~~ r (s —
—,')E;() = —E;()+ I'(s) ' ( 2)Ei

I
s —I+ &aR,

2js
ki p.

12vr ) (3o)

this is a sensible root for large k p (specifically, for
1/R (( k~~sp ) and d g 3. For p = 3 the result is

1 3(4 —d) kps
210 & ~2 '

l

known term (here exponentially small), which was found
in [17]. As our final interest is numerical approximation
(see above), we will not take into account exponentially
small terms (let us point out that these expansions are
asymptotic and very quickly convergent) [15]. Notice,
moreover, that for c = 0 there is no dependence on A, so
the corresponding term does not contribute to Eq. (22).

From the above expressions, for any value of p there
is no difhculty in obtaining the value of A which solves
(22). In particular, for p = 2 we have

Es(s) = —Ei(s)—
4

~~ I'(s —-'), / 1&

2 I'(s) ' ( 2)
Ei (s —1)+A@~,

which is a sensible root for large k . p (specifically, for
kp )) 1) and d j 4. Let us now substitute these val-
ues into the expression of V, and look for the derivative
ojV/BR. We get, for p = 2, an expression of the form

ctVg c i c—g

BR R R~'

and similar expressions for c = 0, as it is clear from (25)
and (26) (it has been proven in [16] that this case can
be obtained from the former by analytically continuing
in the parameter c). Remember that A@~ is the well-

I

which always has one real root (at least) Rq. It corre-
sponds to a minimum of V for d & 3 and reasonable
values of the constants involved. Substituting back into
U(R) we see that the minimum is attained at

2
2/3

V2(R2) kR2 3(1 + oo) (1 + oi) ——
~

1/2 3 f'3 —dl
2 ( 127r 9

(o.o + 2oi)k'~'p'+, p'd —3

i.e., for large A; it is obtained at a negative value of V,
while for large p it is reached at a positive value of V.

The case p = 3 is quite different. We then get

so that its derivative has two real roots:

Vs(R) = o.iR —a2R+ —, (34)
n2 + (n~~ + 12nP) '~

B~ ——+
6O.1

(35)
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one of which is seen to correspond to a maximum and
the other to a minimum of V. Moreover, two additional,
complex roots appear. The minimum for V is now at-
tained at a negative value of V when either A; or p are
large enough and, conversely, at a positive value of the
potential for small k or p. Note that in order to find
the critical radius at which the potential becomes com-
plex (so that the static approximation breaks down and
tachyons appear) it is necessary to do the analysis with
the general expression (15) directly. One ean conjecture
from our results here that the rigid membrane is tachyon-
free (no critical radius exists), as it is also the ease with
rigid strings (see the second of Refs. [2] and the first of

Refs. [3]). At least for the limiting situation discussed
above, this is in fact the case.

VE. DISCUSSION DF THE GENER, AL CASE
Having done the calculation for this special case, corre-

sponding to the limit of large spacetime dimensionality,
and armed with the full equation (24), we can now be
more ambitious and consider the one-loop efFective po-
tential, (8)—(9), without further limit or approximation.
For the sake of conciseness, we shall restrict ourselves to
p = 2, but it is obvious that we could consider as well any
other value of p. We rely on Eqs. (27) and (28), which
specialized to p = 2 yield, after some work,

A$ jul 2 1

Vr'~2

2+aia2
exp —2'— 1+0 10

a2
(36)

and (this one after additional regularization, see above)

(ni& (n21 c vr s ( 1) . I

—
I +

I

—
I + e' = ———aiazc'+ I—

qai) qaz) 4 6 q47r
(exp (—2mca2) 1 + O(10 ) ) .

a2 4vra2
(37)

In both cases we have assumed (this is, of course, no restriction) that a2 & ai.
These expressions are really valuable. They are asymptotic, the last term (already of exponential kind) being of

order 10 s with respect to the two first ones, and the not explicitly written contributions being of order 10 s. To our
knowledge, the second expression, which can be termed as of inhomogeneous Epstein type, has never been discussed
in the literature.

For fixed-end boundary conditions, and not taking into account exponentially small terms, we obtain

(d —3)~ 1 f 1 1 3((3) (ai azl 3 2
Vfe —kala2 + —

I

—+ ——,
I

—,+ —,
I + vkp — k—' 'p aiaz—24 2 (ai a2 2vr kaz ai J

It is now straightforward to perform the analysis of ex-
trema of V. For brevity, we shall only discuss here some
particular cases. First will be the one which is obtained
from the two I agrange equations for the extrema of V as
a function of a~ and a2 only, for a~ ——a2 —= a, which is
reached for

( '-, "[3q(3) —~']
~12+k+ (3 —d)k ~ p

(39)

6
2~vkp & —&& 1.

p2 (40)

Typical values for which this is valid are p 2/3, k = 4,
and 2~c 8.

Now keeping ai and az fixed (but arbitrary), we see

It can be seen that for 12mk + (3 —d)k ~ p ( 0 this
point is a minimum. On the contrary, it is a maximum
for 12ak+ (3 —d)ks~2ps & 0. Consistency with the range
of validity of the series expansion above is obtained for

that (for d & 3) in terms of p, V is unbounded from
below, being always negative for large enough p. Con-
sidering V as a function of A:, the situation is similar.
Finally, in a sense the analysis of Ref. [8] is still valid
here when we fix the values of k, p and of the area
A = aqa2,. the minima of the potential are obtained for
elongated (stringy) membranes (small ai/az). Notice,
however, that even for the particular case considered in
[8], our asymptotic expansion provides a more universal
expression, because it is valid for any value of a2 & a~
(this is again not restrictive, in the end). It also goes
without saying that, from our general formula (38) for
the potential V = V(ai, a2, k, p, d), one can perform a
simultaneous analysis on all the different parameters at
the same tim" ".g. , in order to look for local minima of
the potential hypersurfac" the explicit dependences on
k and p being also basic outcomes of the present work.

In the case of toroidal boundary conditions, again ne-
glecting exponentially small contributions, we get (for a
very detailed discussion of the relations between the dif-
ferent boundary conditions see the last of Refs. [15])
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(d —3)~ ((3) (aq a2) 1
Vt, kaya2 + , I

—,+ —, I
v—kp

2 vr2 (a2& a2&) vr

1 3,/2 3k p aqa2
6vr2

(41)

12'vip&, &&1,
p

(42)

which can be met typically for values of p 3, k 9,

'Zhe particular extremum for aq ——a2 —=a is a minimum
of V provided that v kps ) 12' (it is a maximum for
~kps ( 12'). Consistency with the series expansion
now implies

and 2vrc 9, but, of course, as in the former case, the
range of allowed values is much wider.
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