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Statistical mechanics of extended black objects
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We extend the considerations of a previous paper on black hole statistical mechanics to the case
of black extended objects such as black strings and black membranes in 10-dimensional space-time.
We obtain a general expression for the Euclidean action of quantum black p-branes and derive their
corresponding degeneracy of states. The statistical mechanics of a gas of black p-branes is then
analyzed in the microcanonical ensemble. As in the case of black holes, the equilibrium state is not
thermal and the stable configuration is the one for which a single black object carries most of the
energy. Again, neutral black p-branes obey the bootstrap condition and it is then possible to argue
that their scattering amplitudes satisfy crossing symmetry. Finally, arguments identifying quantum
black p-branes with ordinary quantum branes of different dimensionality are presented.

PACS number(s): 04.60.+n, 11.17.+y, 97.60.Lf

I. INTRODUCTION

A complete picture of black hole physics (including the
effects of quantum mechanics) is still missing at present.
This problem is very much at the core of a larger problem,
that of a consistent description of a quantum theory of
gravity. However, as is well known, to this day, the only
consistent theory of quantum gravity (as well as that of
a comprehensive unification of all forces) is string theory.
Therefore, it may not be surprising to encounter string
physics in black hole physics.

t Hooft, in a series of inspiring articles [1], has led the
way for the search for a proper particle Hilbert space in
the presence of black holes. The effect of a particle falling
into or escaping from the horizon of a Schwarzschild black
hole is actually to shift the horizon and thereby produce a
so-called gravitational shock wave [2]. The corresponding
scattering matrix elements (built on the Hilbert space of
the particles' momenta) have been shown to be formally
identical with those of a string theory with imaginary
string tension [1,3].

In a recent paper [4], the present authors in collabora-
tion with Cox generalized the above considerations to the
case of a dilaton black hole and found that the require-
ment of real string tension (unitarity) could be achieved
for a specific value of the dilaton parameter in the naked
singularity domain r ) r+. This result seems to indi-
cate that quantum black holes can become (or decay into)
quantum strings beyond the extreme point r = r+, a
fact which may find its experimental verification with the
discovery of extragalactic cosmic p ray bursts [5]. How-
ever this also indicates that black holes are not quite
strings, an assertion supported by the asymptotic behav-
ior of their density of states which grows faster than that
of strings as mass increases.

In a more traditional approach, following semiclassical
treatments in which the above gravitational back reac-
tion eEects were neglected, the area of a black hole event
horizon has been interpreted in terms of thermodynami-
cal entropy and the black hole mass related to a canonical

temperature called the Bekenstein-Hawking temperature
[6, 7]. This picture, however, as we pointed out in previ-
ous articles [8—12], leads to difficulties with both thermo-
dynamics and quantum mechanics. This is especially so
in the thermally interpreted process of black hole evap-
oration as pure states are converted into mixed states.
Attempts to resolve this problem by taking into account
the effects of quantum hair have been made [8—11].

There exists however an alternative interpretation of
the semiclassical (WKB) calculation which does not vi-
olate the laws of quantum mechanics [12]. Namely, the
saddle point approximation to the path integral with Eu-
clidean action can be regarded as a tunneling probability
per unit volume of a particle escaping the event horizon.
This is basically a quantum mechanical barrier penetra-
tion problem and so the tunneling probability is an effec-
tive measure of the ratio of a single particle state escaping
the black hole to the number of available states pBH in-
side (and including) the horizon. We then arrive at the
following approximate semiclassical formula for the black
hole degeneracy of states at mass level m,

r'S~(m)&
pBH(m) = c exp

~ h

in which the constant c represents general quantum field
theoretical corrections and S~ is the Euclidean action
(so-called Bekenstein-Hawking entropy) of the classical
solutions (instantons) of the Euclidean equations of mo-
tion [13, 14]. These instantons are actually periodic in-
stantons as the condition of the vanishing of the conical
singularity of the Euclidean space-time in the black hole
background requires Euclidean time ~ to be a compact
space (S ) with period PH (the inverse Hawking temper-
ature). The integral over Euclidean time in Eq. (1.1) is
to be evaluated over a single period and, making use of
the relation between PH and the black hole mass m, the
density pBH becomes solely a function of mass (and pos-
sibly electric charge, angular momentum, etc.). In the
case of a four-dimensional Schwarzschild black hole, one
obtains (h, = c = G = 1)
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ps h (m) ce (1.2)

a result to be compared with the softer behavior for
strings:

psgring (m) c m ea bm (1.3)

II. BLACK (10 —D)-BRANES

However, like strings, Schwarzschild black holes have
been shown 12] to obey the statistical bootstrap con-
dition [15—17. Furthermore, arguments were presented
[12] which made it very plausible for the scattering ampli-
tudes to obey duality symmetry. That these properties
were realized for such a case originated from the fact that
extreme Schwarzschild black holes are massless. Quan-
tum black holes may then belong to some class of con-
formal theories, perhaps p-branes. Electric or magnetic
charge (hair) tends to destroy these properties [12].

In this work, we generalize these analyses to cases of
quantum black extended objects such as black strings and
black membranes in ten-dimensional space-time. Our
considerations are based on recent findings by Horowitz
and Strominger [18] as well as Gibbons and Maeda [19].

We first obtain an explicit general expression for the
degeneracy of states of black (10—D)-branes (4 & D &
10) and then proceed to analyze the statistical mechanics
of a gas of such objects making use of the microcanonical
ensemble. As in the case of black holes, the canonical
partition function of black (10—D)-branes diverges for
all temperatures. Our results closely resemble those for
dilaton black holes [12].

Although the canonical partition function is formally
divergent, a fact due to the negative microcanonical spe-
cific heat, it may be possible to extract information with
respect to the nucleation rate (decay rate per unit vol-
ume) of a gas of black objects by evaluating this same
partition function in the convergence domain of specific
parameters appearing in the expression for the density
of states. Once the integration is performed, these pa-
rameters are then analytically continued back to their
original values, an operation which often generates imag-
inary terms. The imaginary part of the corresponding
free energy is then simply related, as has been shown by
Langer in condensed rnatter systems [20], to the decay
rate of the metastable black object's gaseous phase.

pnB(m) c exp!
(S@(m))

!) (2.1)

Following Horowitz and Strominger [18], we wish to
consider the ten-dimensional action

d xQ—g e R + 4(c)4)

2 e2nC
F2

(D —2)!
(2.2)

2e- &

(D —2)!

in which LM D is the volume of (10—D)-space, g„is the
induced metric of D-dimensional space-time with Rie-
mann curvature R&, P is the rescaled dilaton field and
the dilaton parameter a is given by

4o.2 + 2n(7 —D) + 2
D —1
D —2

(2.4)

The equations of motion derived by extremizing the
action (2.3) are obtained as follows [18]:

in which the field F„,„~,is a (D—2)-form satisfying
dF = 0 and from which a magnetic charge Q oc J F is
carried by objects spatially extended in (10—D) dimen-
sions. In the above action, the field 4 represents the dila-
ton and B is the scalar curvature of the ten-dimensional
space-time. Actions similar to this one are found in string
theories. Of course, it is also possible to extend trivially
the above model to higher dimensions by taking the di-
rect sum of the ten-dimensional metric in (2.2) with that
of a flat space of arbitrary dimension D'. The resulting
extended object solutions will then have dimensionality
10+D' —D. The search for charged black (10—D)-brane
solutions extremizing the action (2.2) has been consider-
ably simplified by reducing the problem to finding dilaton
black hole solutions of an effective D-dimensional action
[18]. Such a solution has been given by Gibbons and
Maeda [19].

Through field redefinitions, Horowitz and Strominger
arrived at the action

L10—D

16'

In this section, we proceed to derive a general expres-
sion for the degeneracy of states of a quantum black
(10—D)-brane (4 ( D & 10) making use of the semiclas-
sical (WKB) approximated expression for the tunneling
probability per unit volume. In complete parallel to the
black hole case [cf. Eq. (1.1)], we have and

—ayF2
(D —2)!

(2.5)

(2 6)

(D —3)! " ' ' " (D —2)(D —2)!
(2.7)

Spherically symmetric solutions describing dilaton black holes in D dimensions have been obtained [18, 19]:

d-2 24 (r)dt2 + e2A(r)dP2 + +2(P)dfl2 (2.8)
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+gX "QD—S Q ~02"'PD 2—

(2.9)

and

F2 Q2

(D —2)! R2(D —2)(r) '

( ) D 3 —&(-D —3)
e(') (r) (2.10)

where

g D 3-—
(") —A( ) 1

I

+
(2.11)

D 3—
(2.12)

2a2(D —2)
(D —3)[2(D —3) + a2(D —2) ]

'

and where r" = r(r) can be obtained from the relation [18]

r dr = B dr .

(2.13)

(2.14)

The above solutions are parametrized by two horizons situated at r+ and r, parameters which can be expressed
in terms of the charge Q and mass M of the D-dimensional dilaton black hole as

'7(D 3) ("+"—)
2G

(2.15)

D —3
( ) ( D 3[1—

(D 3)] D 3)—
8I'( )

These relations can be inverted to yield

(2.16)

D —3
T+

4r(D-')M 1+ 1—
(D —2)m

a2(D —2) Q27(.D —3[1 —p(D —3)]
8p(D —3) I'2(D ')M2 (2.17)

and

rD —3 a Q (D —2)vr 1+ 1—
2p(D —2)~I'(~ ')M~

a2 (D —2) Q2~D —3 [1 —p(D —3)]

8P(D —3) I'2( 2')M2
(2.18)

Now in order to compute the semiclassical approximation of the path integral, the above solutions must be ana-
lytically continued to Euclidean time r. In the Euclidean space-time, they become instanton solutions. However, in
this Euclidean formulation, a surface term (Sbg) [21] must be added to the analytical continuation of the action (2.2),
which we denote by Sp. Therefore the full Euclidean action is given by

S@ ——Sp + Sbd . (2.19)

In addition, requiring the absence of the conical singularity in the Euclidean space-time yields the so-called inverse
Bekenstein-Hawking temperature [6, 7, 10]:

We find

2'
( g eC (r) ) e—A(r)

- r=r(r+)
(2.20)
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Y(D —2)

4«+ i("-i
D —3 &r+)

This result can be reexpressed in terms of M and Q with the aid of Eqs. (2.17) and (2.18). We get

(2.21)

1

4& 4r( D 1) — &—a

(D —2)~

1

MD 3 1+ 1 —Al —pD —3

9(D—2)—2- 2

a2Qz(D —2)zvrD

8~(D —3)sr&(D-') M&

(2.22)

The calculation of the contribution S0 to the Euclidean
action is straightforward. Contracting Einstein's equa-
tion [Eq. (2.7)] with the metric tensor g» (after rotation
to Euclidean time), inserting the result into the action
and making use of Eqs. (2.9)—(2.14),we arrive at the ex-
pression

D —1

volumeof boundary = PHe (")
D 1

r"' . (2.26)r(D 1)—
The above action however is divergent in the limit

r" ~ oo and so a subtraction must be performed, namely
that of a flat space contribution. Again following the
considerations of Ref. [10], the flat space contribution is
obtained as

(2.23)

S(b d )
flat

LM —D
(D 3)P ec'( )

4'
D —1

(2.27)

I 1G D~ q Q2p—

2(D —2)I'(D 1)r D—s (2.24)

in which the (D—4)-term originates from the nonvanish-
ing trace of the gauge field energy-momentum tensor for
D ) 4. The above action has been evaluated for a single
period in the compact Euclidean time. This is the con-
tribution from the periodic instantons. Carrying out the
integration finally yields

Therefore,
S(boundary) S(boundary)

bd flat

Explicit evaluation finally yields

3)L 10—D& ~ pH

x(r+ '+ [1 —~(D-3)lr- ').

(2.28)

(2.29)

S(boundary)

where

L10—D
(D —3)8'

x [ e (")0„-(volume of boundary) ]„-
(2.25)

Now in order to evaluate the surface boundary action,
we follow the analyses of Ref. [10]. We have

I ~D-'y) —=— (2.30)

where A is the horizon area of the black (10—D)-brane.
In terms of M and Q, we get

Making use of Eqs. (2.19), (2.24), and (2.29), the full
Euclidean action for the periodic instanton solutions is
finally expressed as

S@(M,Q) =
D—2

110 D& 4r( D —1)—
2r( )

D —2
a ~ (' D 3—

l
MD-a

i
1 + gl —A[1 —p(D —3)] i

e(D —2)—2- 2

x 1 —A 1 + gl —A[i —p(D —3)] I (2.31)

dS@ 1 dS@
d~ L M DdM— (2.32)

where A has been defined in Eq. (2.22). This is the
Bekenstein-Hawking entropy. It is easy to check that

where M—:ML10 D is the total mass of the black
(10—D)-brane. Actually, the overall proportionality con-
stant in the expression (2.16) for the mass density M was
chosen in such a way that the relation (2.32) held.

According to Horowitz and Strominger [18], dual; black
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m —+ —0, , D —+ 14 —D. (2.33)

branes with electric charges can be obtained from t;he
substitution

pee(M, Q) c exp (c(D) M -' 1 + O(Q /M ) )
(3.1)

in which we defined
We close this section by providing the expression for

the mass density of the extreme black (10—D)-branes. It
is derived from the condition r+ ——r . We find

D —2

L 10 D~— 81'( D —1)
(D) -= (3.2)

gD —2~~ Q
2I'(

2 ')Qaz(D —2) + 2(D —3)
(2.34)

and the constant c represents the quantum field theoret-
ical eKects.

The mierocanonieal density of states A(E, Q, V) of a
gas of identically charged black objects of charge Q, de-
generacy pBB(M, Q), total energy 8 and enclosed in a
nine-dimensional volume V is expressed as

III. STATISTICAL MECHANICS

For small charge, according to Eqs. (2.1) and (2.31),
black (10—D)-branes are characterized by the following
degeneracy of states,

(3 3)n(z, q, v) = ) n„(z,q, v),
A=1

in which the contribution from n black objects is given
as

A„(F,Q, V)
V 1

I'(n+1)---- dM, pBB (M, , Q)
n ( n

dp, 6~8 —) E', b ) p,
) &,=1 )

(3.4)

where Mp is the mass of the lightest (extremal) objects
in the gas. Now for small charge, the degeneracy of states
(3.1) actually belongs to the class of degeneraeies p„(M)
defined as

p„(M) —= f(M) exp(t)M"), (3 5)

V 1
~n —

( )s ( )
p (BEB' —(n —1)Mp)

x pBB(MO) (3.6)

The most probable configuration A~(t, Q, V) is the
one satisfying the condition

dA„(F,Q, U)
dn n=x(z, g, v)

0 (3.7)

In complete analogy with the case of the four-
dimensional dilaton black hole [12], we find the following

where f(M) is a polynomial in M and p = D s () 1).
Recalling the classic results obtained by Frautschi [16],
the dominant configuration for such a case is the one for
which a single (say the nth) black object carries most of
the energy while the n 1 others —carry energies 8, = Mp
(i = 1, ... , n —1). So t„=8—(n —1)Mp. At high energy
8, Eq. (3.4) therefore becomes

solution for N:

4(N+1) = ln, + S~(M„Q)cV

—MpPH(E —(N —l)Mo, Q), (3.8)

where 4(z) is the psi function and in which use has been
made of the relation (2.32). At high energy [8 )) (N—
1)Mp], we get the approximate relation

1

81( D1)
- o —3

(D —2)~

(N —1)Mp ((8 ((8, (N )) 1),

8 = E, (N=l).
(3.10)

The critical energy 8, is determined by the formula

cV
@(N + 1) ln

(2vr) s

XMpf ~-~ + O(qz) . (3 9)

It; is easy to see that & ( 0 and so the most probable
configuration at high energy is again the one for which
N is as small as possible, reaching N = 1 at a high en-
ergy "ionization point" E', . So, in complete analogy with
the case of the four-dimensional dilaton black hole, the
most probable equilibrium configuration of a gas of black
(10—D)-branes in nine-dimensional space is described as

cV
MoPH(~ ) = Sz(Mo Q) + ln —@(2) .

An approximate solution for small charge is

D 3 D —3

(2~)s y

- D —3

(3.12)
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Now since A(F, Q, V) Aiv(Z, Q, V), Eq. (3.6) shows that the statistical bootstrap condition is trivially satisfied
at 8 = 8', (N = 1) since there is a single object in the gas. We remark that for 8 ) 8„there is no equilibrium
configuration.

The total entropy of the gas is written as

S(F, Q, U) = lnA~(Z, Q, V) = Nln s
—lnI'(N+ 1) + S@(F—(N —1)Mp, Q, V) + (N —l)S~(Mp, Q) .

cV
2~ 9

(3.13)

The microcanonical temperature is given by

dS(Z, Q, V)
dE'

OS@(8 —(N —1)M p, Q, V) (3.14)

Cv = p-=- 2d
G

(3.15)

Explicit evaluation yields

Ci (8, Q, V) = C~~
'"g (8 —(N —1)leap, Q)

ON
x 1 —~p (3.16)

with N(F, Q, V) given by Eq. (3.8) and where Eq. (3.7)
has been used.

Therefore, as in black hole statistical mechanics in four
dimensions, the microeanonical temperature of a gas of
black (10—D)-branes in ten dimensions is the same as
the Bekenstein-Hawking temperature of the most massive
black object in the gas.

The microcanonical specific heat is now given as

The solution to this equation is given by Eq. (3.8) with
Mp ——0:

cV '
4(N+1) = ln

2vr s (3.21)

S(S,V) Nln s
—lnI'(N+1)+S~(F, Q = 0) .

27r s

(3,22)

The corresponding microcanonical temperature is ob-
tained as

Unlike the charged case, we find that the most probable
number of objects in the neutral gas becomes efFectively
independent of energy in the high energy domain.

The total entropy of this system is given as

where

C(Hawking)
H OP

(3.17)

p(E, V) = pH(F, Q = 0) .

The microcanonical specific heat is negative,

(3.23)

psB (JM) c exp o (D)M ~-' (3.18)

At high energy, as argued previously, ~&& ( 0 and so the
sign of the microcanonical specific heat is determined by
that of the Hawking specific heat.

The case of neutral (Q = 0) black branes is somewhat
difFerent as the extreme limit is massless (Mp = 0). The
degeneracy of states for such objects reads

81(D 1) - a —a-
Ci (Z, V) = —4vr ', Zo-a, (3.24)

(D —2)~

a situation analogous to Schwarzschild black holes in four
dimensions [12].

As is clear from Eq. (3.19), unlike the case of a gas of
charged black objects, the statistical bootstrap condition
can be met for the neutral gas provided

At high energy, one finds the following expression for the
corresponding microcanonical density of states:

- N

(2m) I'(N + 1)
(3.25)

x—z

A(Z, V)
( )s I (N 1) PiiB(F), (3.19)

which corresponds to a gas consisting of a single super-
massive black object and (N 1) massless others—. There-
fore we have 8 = M Now the most .probable configura-
tion is again determined from the condition pp =

V
(3.26)

Again, this is due to the fact that extreme neutral black
(10—D)-branes are massless.

Finally, for all cases treated in this section, the mi-
crocanonical equation of state of a gas of black (10—D)-
branes in ten dimensions is found to be identical to that
of an ideal gas: namely,

= 0 (3.20)
This is consistent with the fact that we neglected collision
processes.
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IV. DISC'USSIDN

N(m) = ) N (m) pBB(m) (rn ~ oo) . (4.1)

Again, it is then plausible to argue that neutral black
brane scattering amplitudes satisfy the duality (crossing)
symmetry characteristic of string theories. Like strings,
they perhaps belong to a class of conformal field theories,
e.g. , N-branes.

Calculations of the degeneracy of states of higher di-
mensional structures such as quantum N-branes have
been presented almost two decades ago by a few authors
[22—24] and happily rediscovered more recently by the
authors of Ref. [25]. According to these calculations, the
asymptotic behavior of the degeneracy of states of N
branes at large energy (mass) is given as

p~(t) oc exp [bZ~+'], (4.2)

where N is the dimensionality of the extended objects.
The above asymptotic behavior seems to be valid in any
space-time dimension although the parameter 6 may be
dependent upon the space-time dimensionality. It is in-
teresting to compare this result with our Eq. (3.18) de-
scribing the behavior of the degeneracy of states of a
quantum neutral black (10—D)-brane in ten space-time
dimensions (or analogously a neutral black hole in D di-
mensions). One finds the relation

D —2

D —4
(4.3)

Only three solutions for integer N exist in the allowed
range 4 & D &10, namely N = 2 (D = 6), N = 3 (D = 5)
and N = oo (D = 4). We then arrive at the conclusion
that black 4-branes in ten dimensions are 2-branes, black
5-branes are 3-branes and black 6-branes are oo-branes,
or analogously six-dimensional Schwarzschild black holes

In this work, we presented a generalization of previous
considerations on black hole statistical mechanics to the
case of black (10—D)-brane solutions recently discovered
by Horowitz and Strominger [18].

The results found here are somewhat similar to those
found in the case of four-dimensional black holes [12],
except that, to leading order in charge expansion, the
Euclidean action (Bekenstein-Hawking entropy) behaves

D —2
like M &-3 where M is the mass density per unit (10—D)-
volume.

As in the case of the four-dimensional Schwarzschild
black holes, neutral black branes also satisfy the sta-
tistical bootstrap condition, a fact related to the mass-
less nature of tbe extreme limit. Also in parallel with
Schwarzschild black holes, should we consider quantum
black brane scattering processes, the total number of
open channels, as a simple consideration would show, ac-
tually grows precisely in parallel with the degeneracy of
states as the center of mass energy is increased. There-
fore,

are 2-branes, the five-dimensional ones are 3-branes and
finally four-dimensional Schwarzschild black holes are oo-
branes. This last result, already pointed out in Ref. [25],
may come somewhat as a surprise in view of the usual
membrane (2-brane) viewpoint on four-dimensional black
holes [26]. Although our comparison of the density of
states leads to the identification of quantum black p-
branes with ordinary q-branes, a deeper physical under-
standing of why this is so is still lacking and certainly
warrants further investigation.

The considerations presented here with regard to the
interpretation of the semiclassical approximation of the
Euclidean path integral are completely quantum mechan-
ical. Periodicity of the instanton solutions certainly does
not constrain one to a thermal interpretation. Actually,
such an interpretation would lead to the following para-
doxical situation, namely, at least for neutral black ob-
jects (including black holes), should the semiclassical ap-
proximation of the path integral be interpreted as the
canonical partition function of a gas of black objects at
inverse temperature PH, then its corresponding (statisti-
cal mechanical) density of states would be the same as the
one obtained from a quantum system with degeneracy of
states pBB obeying the bootstrap condition. However,
we know that the thermal partition function for a gas of
objects with such a degeneracy of states does not exist
for any finite temperature.

Clearly, the resolution of this paradox lies in the
fact that the gas does not achieve thermal equilibrium
(the microcanonical specific beat is negative) and conse-
quently the microcanonical and canonical ensembles are
not equivalent. It is well known that in this situation
the saddle point approximation fails when passing from
one ensemble to the other (recall that the canonical par-
tition function is the Laplace transform of the density of
states). For such systems of course, one should trust the
microcanonical ensemble because it is more fundamental
in ensemble theory.

Although formally infinite for all temperatures, it is
however possible to extract information from the canoni-
cal partition function by evaluating it in the convergence
domain of certain parameters. Once the integration (over
mass) has been performed these parameters are then an-
alytically continued back to their original values. This
procedure usually produces a finite but complex parti-
tion function. The nucleation rate (decay rate per unit
volume) of the black objects gaseous phase is then simply
related to the imaginary part of the corresponding free
energy [20], a calculation not unlike the determination
of the decay rate of the false vacuum when dealing with
a complex effective potential in ordinary quantum field
theory [27,28]. Analogous situations also occur in string
theories [29—31].
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